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ABSTRACT

Suppose {¢}7_, is an orthonormal basis for the function space £,, of polynomi-
als or rational functions of degree n with prescribed poles. Suppose n = 2° and set
Vs = L,. Then k,(z,w) =Y 1_, ¢r(2)dr(w), is a reproducing kernel for V. For fixed
w, such reproducing kernels are known to be functions localized in the neighborhood of
z = w. Moreover, by an appropriate choice of the parameters {{,1}7_,, the functions
{n.k(2) = kn(2,&uk) Yoo Will be an orthogonal basis for V,. The orthogonal comple-
ment Ws = Vi1 © Vs is spanned by the functions {¢, (z) = ln(Z,Unk)}Z;é for an
appropriate choice of the parameters {"lnk}z;é where [,, = k,,41 — ky, is the reproducing
kernel for W,. These observations form the basic ingredients for a wavelet type of
analysis for orthogonal rational functions on the real line with respect to an arbitrary
probability measure.
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1 Introduction

Consider a Hilbert space H of complex functions analytic in X C C, equipped with an inner
product (-,-), then it is a reproducing kernel Hilbert space if there exists a function k,, such
that k, € H for all w € X and (f,k,) = f(w) for all w € X and for all f € H. This
k.,(z) = k(z,w), which is in fact unique, is called the reproducing kernel for H.

In such a reproducing kernel Hilbert space, it is well known that the solution of the
problem

inf {||f]| : f(w) =1}

feH

for some w € X is given by f(z) = k(z,w)/k(w,w).
This property is the key to this paper, because it characterizes the reproducing kernel
as a function which is localized near z = w. Indeed, without the constraint f(w) = 1, the



solution would be f = 0. With the constraint, the function is forced to take the value 1 at
z = w but to minimize the norm, it should be as close to zero as possible outside z = w.
So what really happens is that the solution will be an approximation of this impulse by a
function from H. If we solve this problem for subspaces of H with increasing dimension,
then the reproducing kernels for these subspaces will approximate the Dirac impulse better
and better, hence will be “narrower” near the peak at z = w and will oscillate more by
a Gibbs-like phenomenon. Thus the better we localize the function in the z-domain, the
worse it will be localized in the frequency domain. This is a manifestation of the Heisenberg
uncertainty principle.

This shows that two main ingredients of a wavelet analysis are present: localized func-
tions (and it will turn out that they can indeed be used to generate basis functions) and a
multiresolution idea where a function can be represented at increasing resolution levels.

This is the idea which will be elaborated in this paper. It is inspired by the paper of
Fischer and Prestin [14] where a similar construction was used for orthogonal polynomials
on the real line.

As a motivation to consider rational wavelets instead of polynomial wavelets, we refer
to the examples where it will be shown that with the introduction of the poles, one can
influence the shape of the wavelets considerably. Using a rational instead of a polynomial
basis may result in a faster convergence of the approximation. If we have a rough idea about
the location of the singularities of the function, then, using basis functions that have poles at
those places, will result in a much faster convergence. For a similar reason, rational wavelets
are also used in robust identification of linear systems (see [21]). Likewise, in many other
problems in systems and control it is much better to have a low degree rational approximant
rather than a high degree polynomial approximant. Also there, it is much better to use
rational basis functions, rather than polynomial ones.

2 The function spaces

In this paper, we consider the Hilbert space of rational functions whose poles are in a
prescribed set P = {1/ax : &k = 1,2,...} with all ax € R. Thus if II,, denotes the set
of polynomials of degree at most n, and if we set mp = 1 and m,(2) = [[;_;(1 — axz) for

n =1,2,..., then we consider spaces of rational functions
0, (z
ﬁn:{pn( ) :anHn}.
T (2)

We assume that the functions are real valued on the extended real line R = R U {oc} and
that the inner product is given by

(f.9) = / f(2)g(z)du(x),

with dg some positive measure on R such that Jadp(t) = 1.

It is obvious that if we set all ay, = 0, then £,, = II,,, and the polynomial case is recovered.

Note that unlike the polynomial case, in general, a function in £, can be finite at oo, so
that g can have a mass point at oco.

The orthonormal rational functions, i.e., the functions {¢g, ¢1,...} such that ¢, € L, \
Ly, ¢n L L,y and ||¢,|| = 1 were studied by M.M. Djrbashian [7, 8, 9, 10, 11, 12], (see
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also [20]), later by A. Bultheel, K. Pan, Xin Li, and in a long list of papers by Bultheel,
Gonzalez-Vera, Hendriksen and Njastad. Most of the known results are brought together in
the monograph [4]. These rational functions are also related to polynomials orthogonal with
respect to varying measures as studied in several papers by Lopez-Lagomasino and others

e.g. [16, 17].

3 Reproducing kernels and orthogonal rational func-
tions

The idea is to replace the basis of orthogonal rational functions {¢;} by a basis consisting
of reproducing kernels, because the latter have better localization properties. So let us first
recall some general properties of reproducing kernels. Assume that we have a general sepa-
rable Hilbert space £ at our disposal. The following properties concerning the reproducing
kernels are then well known (see for example [1, 19, 13]).

Theorem 3.1 We consider a general complex separable Hilbert space £ and an (m + 1)-
dimensional subspace K C L. We denote the reproducing kernel for K by k(z,w). Then

1. For any orthonormal basis {¢g,...,¢m} of K, the reproducing kernel for K is given by

k(z,w) = ¢r(2)di(w).

k=0

~—

1t reproduces any function in K as follows
(f, k(- w)) = f(w), VfeK.

9. For any set of distinct points {wo,wn, .. .,wn} among the points of analyticity for K,
(k(z,w;), k(z,wi)) = k(wi, w;)

and the matrix
M = [k(w;,w;)]]._,
is positive semi-definite.

3. The orthogonal projection of f € L onto K is given by
Pef =(f(2),k(z,w)), VfeL.
4. For any point w where it makes sense,
inf & =1} =1k -t
inf {17 flw) =1} = [k(w, w)]
and the minimizer is f(z) = k(z,w)/k(w,w).

Let us now return to our spaces of rational functions that we introduced above. Then the
following lemma is easy to verify.



Lemma 3.2 Let {¢y,...p,} be the orthonormal basis for the (n+1)-dimensional space of ra-
tional functions L,, as introduced above, then for any set of distinct points x = {xg, 1, ..., 2.}
which are points of analyticily for functions in L, , the matrix

950(150) T Qbo(lvn)
o.(x)=| ; (3.1)
bn(xo) - balan)

1s tnvertible.

Proof. If it were not invertible, then there would exist a nonzero vector ¢ = [cg, ..., ¢,
such that ¢®,(x) = 0. In other words, the function ¢(z) = ZZ:O cxPr(z) € L, would vanish
at n + 1 distinct points {z}7_,. Because ¢ is rational of degree at most n, it would be
identically zero and this would imply that the functions {¢y};_, were linearly dependent,
which is impossible. O

This lemma shows the unisolvence (Haar condition) of the system {¢x}. See Davis [6, chap.
II, Sect. 2.4]. This lemma entails immediately

Corollary 3.3 If k,(z,w) is the reproducing kernel for L, and the x = {x}i_, are n + 1
distinct poinls of analyticity for L., then the functions {pn;(2) = kn(z,2;)}0_y form a basis
for L,.

Proof. Since, with the matrix ®,(x) as in the previous lemma:

kn(za "L'O) ¢O(Z>
: =0/(x)| |, (3.2)
the statement follows because {¢y}7_, is a basis and ®,(x) is invertible. a

4 Multiresolution

Now we want a multiscale representation of a function. If we use the orthonormal basis ¢,
and consider the Fourier expansion

f(z) ~ codo+ 1 (z) + capalz) + -+, = ([, dr),

then as we add more and more terms, we shall add more and more details to the low
resolution approximation. We shall consider the spaces Lys for s = 0,1,... and set V, = Lys.
The orthogonal complement of Vs in V,4; is denoted by W,. Thus if we assume from now
on that n always has the meaning of 2°, then we can define the nested spaces V; and the
orthogonal complements W; in V4 as

V—l :£07 W—l ZVOGV—b Vszﬁn and Ws:Vs+16Vsa S:O,l,...

We call the orthogonal projection of a function onto Vg the representation of that function
at scale or resolution level s. For s = —1, for example, this is just a constant ¢y, which is
the weighted (by ) average of the function.



Obviously, V, = span{¢p}i_, and W, = span{¢z};Z,., can both be generated by our
orthonormal basis functions. These basis functions are in general not localized both in the
z and in the frequency domain and as we mentioned before, we want to switch to a basis of
reproducing kernels. However, since the reproducing kernels k,,(z, w) are expressed in terms
of the ¢y, we first discuss the basis of orthogonal rational functions (ORF) in some detail.

5 The ORF basis

Recall that we required the points aj to be all in R, so that the poles 1/ay are all on R\ {0}.
It will also be assumed the the measure has infinite support and that an infinite sequence of
orthogonal functions, as defined below, will exists.

Define the elementary factors

Go(z) = —

1 —agz’

k=0,1,...

and set By = 1 and B, = (;---(, forn = 1,2,... and £, = span{By, By,...,B,}. The
substar is defined by f.(z) = f(Z). Note that the basis functions By, satisfy By. = By so that
feL,= f.€L,. Lettheorthonormal functions ¢ be generated by orthonormalizing the
basis By, By, ..., then it is easily checked that the coefficients of the ¢, with respect to the
basis By are real. We remark that if all the o, = 0, then By(z) = 2% and hence, £, = II,,,
the set of polynomials of degree at most n. We say that ¢, is regular (or that n is a regular
index) if p,(1/an-1) # 0 where p, is the numerator polynomial of ¢,, i.e., ¢, = p,/m,
with m,(2) = [[;_,(1 — axz). We say that the system {¢;} is regular if ¢ is regular for all
k =0,1,.... For consistency reasons, we shall say that a polynomial p, € II,, will have a zero
at infinity whenever it has defective degree, i.e., p, € 1I,,_;. Hence, in the polynomial case

where all «y are zero, the system of orthogonal polynomials will automatically be regular,
because the orthogonal polynomials will never have defective degree.

If the system is regular, then the following generalization of the three-term recurrence
relation for orthogonal polynomials exists. We refer to [4] for a proof.

Theorem 5.1 Suppose that the orthonormal system {¢r} is reqular, then there holds a re-
currence relation of the following form

Cn(2)
(n-1(2)

) z 7&1(2) ) z n =
>¢n_1( )+Cngn_2(z)¢n_z( )s 2,3,... (5.1)

o(z) = (Ancn<z> B,
with initial conditions

¢o(2) =1, d1(2) = (AGi(2) + Bi)do(2).

Moreover A, and C,, are all real and nonzero, and A, = —C,A,_1, n=2,3,...
Conversely, if the functions ¢y are given by such a relation, then they will be orthonormal
with respect to some positive measure p on R.

This theorem can also be found in several pieces and in slightly varying forms for example
in [2, 3] where analogs are given for the unit circle.

The relation A, = —C,A,—1 monitors the norms. This means that ¢, £k = 2,3,... will
be normalized to norm 1 if we choose ¢y and ¢; to be normalized. Recall that ¢y = 1 is



normalized because we assumed that [du = 1. So, if all the numbers C), are given, then
all the A, will be uniquely defined once that A, is fixed. This value of A; is related to the
orthonormality of ¢;. From the viewpoint of the Favard theorem, given all the €, and the
B, we can choose A; nonzero and then all the remaining A, will be fixed. Thus all the
orthogonal functions are fixed, and therefore also the orthogonality measure is fixed to a
large extend. In this sense, A; will impose a certain condition on the orthogonality measure.
The coeflicient A; is a generalized standard deviation and somehow it controls the width of
the weight function as is explained in Appendix A, Lemma A.1.

Another useful property we shall need later is that A, = 0 iff ¢,, is not regular. This is
also proved in Appendix A, Lemma A.2.

We also have a Christoffel-Darboux type formula, which can be formulated as follows.

Theorem 5.2 (Christoffel-Darboux) Let {¢x}7_, with ¢ € L\ Li—1 be an orthonormal

basis for L,, then the reproducing kernels k,(z,w) = > 7_ ¢x(z)dr(w) for L, satisfy

ten i - [(26) (229) - (5) ()]

For a proof we again refer to [4], where also the following generalization of a well known

property of the polynomials can be found.

Theorem 5.3 Let ¢, be the nth orthogonal rational function, then the zeros of the numer-
ators of ¢, are simple and are in R. If ¢, is reqular, then the numerators of ¢, and ¢,_,
have no common zeros.

Note that the presence of poles can disrupt the classical property for polynomials which says
that the zeros of the orthogonal polynomials are real and interlace with the zeros of the
neighboring orthogonal polynomials. In the rational case, the numerators of the orthogonal
functions have simple zeros which are all in R, but it is not a priory sure that none of the zeros
of the numerators coincides with with one of the numbers in ‘]A3 = PU{oo} = {1/ag,1/ay,...}
(we define ag = 0). Because of this problem, one should consider zeros of quasi-orthogonal
functions to construct quadrature formulas because such quasi-orthogonal functions can be
guaranteed to have the appropriate number of real and simple zeros.
QQuasi-orthogonal functions are defined by
iy Gnlz) 5
Qn(277n> = @n(z) + Tni@n—l(z) S »Cna T € R.
Cn1(2)

For 7, = oo, this should be read as Q,(z,7,) = [(.(2)/Ci=1(2)]¢n-1(2). The numerator
of a quasi-orthogonal function @,(z,7,), will have n simple zeros in R\ B, with B, =
{1/a1,...,1/a,}, except for at most n values of 7, € R. Let us denote by &, the set of
these exceptional points for 7,. We call 7,, regular if 7, € R\ &,. We call Q),,(z, 7,,) regular if
¢, is regular and 7, is regular. Note that if @, (z,7,) is regular, then Q,(z, 7,) has n simple
real zeros, which are not in {1/ay,...,1/a,}. Also observe that 7, = oo can never be a
regular value because z = 1/a,,_; will always be a zero of the numerator of @),(z,00) by
construction. In fact the exceptional points €, are among the points of the form

Pry1(w) ] Cogr (w)
bn(w)[Ca(w) “e ‘Bnﬂ} '

With B4 = {1/aq,...,1/a,41}, we have the following theorem.

an+1 g {_



Theorem 5.4 If Q,41(2, Thy1) is reqular, then it has n+1 simple and real zeros in R\ P, 41.
Let us denote them by {&,1}7_,. Moreover, defining M. = [kn(Enky Enr)] ™", with k,(z,w) the
reproducing kernel for L, then equality holds in

k=0

Conversely, if the above equality holds for all f,qg € L,, then the nodes &, are the distinct
zeros of some reqular quasi-orthogonal rational function.

Again, the proof of this theorem can be found in [4].
We know that in the polynomial case 7,4, = 0 is a regular value and the n + 1 zeros of
¢ny1 are simple and real. Moreover we have the Gaussian quadrature formula

/Rf(»"C)du(rc) = A f(bur), VS € Hapyps.
k=0

Also this can be generalized to the rational case: if 7,41 = 0 is a regular value, then the
zeros of ¢,41 can be used in a quadrature formula which will be exact in a slightly larger
space L,11 - L, and not just in £,, - L,,.

Concerning the zeros {£,;} of these regular quasi-orthogonal functions, i.e., the nodes of
these quadrature formulas, we show that we can choose one, for example g, arbitrarily in
R\ P41 and the other zeros are then given by the zeros of k,(z, &,0).

Theorem 5.5 Let k,(z,w) be the reproducing kernel for L, and assume that ¢,y is reqular.
Choose w arbitrary in R\ B,41 and define

_ _¢n+1(w)/cn+1(w)
Toil = o) fen(w) (5.2)

Then, if 1,41 s finile (i.e. w is not a zero of the numerator of ¢,,), then defining &0 = w
and {&uk }r, as the n zeros of k,(z,w), we have that the numbers {&,}7_, are the zeros of
the regular quasi-orthogonal function Qny1(z, Tot1).

Conversely, if {&qx }i_ are the zeros of some regular quasi-orthogonal function Qui1(2, Try1),
then there exists a number w € R\ P41, such that &,0 = w and 7,41 is given by (5.2), while
{&uk }ro, are the n zeros of ky(z,w).

Proof. Note that w ¢ B,41 implies 7,41 € €,41 unless 7,17 = oo. In that case w should
be a zero of the numerator of ¢,, but since it is not one of the ay, it has to be a zero of
¢n. In that case, it follows from the Christoffel-Darboux formula that, as a function of z,
kn(z,w) € L,_1, and thus, it can never have n + 1 zeros. However, if 7,4, is finite, and
thus regular, then it follows easily from the Christoffel-Darboux relation that the n zeros
of k,(z,w) coincide with n zeros of @Q,4+1(2,7,41). The remaining zero of Q,(z,T,+1) is
obviously z = w.

The converse statement follows along the same lines. By Lemma A.5 in Appendix A,
there are n + 1 values of w for which the right-hand side in (5.2) will give the value of any
Tut1. Because Qpi1(2, Tpq1) is regular, w has to be in R\ B,4; and because 7,41 # oo, w
will not be a zero of ¢,. Now the Christoffel-Darboux relation can be applied again to give
the result. O



6 The ORK basis

We discussed the ORF basis for £,,, but this has in general not the property of being a local
basis. For a wavelet analysis, one would rather have a basis of kernel functions, which, if
possible, should be chosen orthogonal.

By Corollary 3.3, we know that {k,(z,z;)}7_, forms a basis for £, for almost any set of
distinct points x = {z;}7_,. The question is whether it is possible to choose the points in x
such that this basis is orthogonal. In that case we would have a basis of orthogonal rational
kernels (ORK).

It turns out that if we choose z; = §,;, 7 = 0,...,n to be the zeros of a regular quasi-
orthogonal function Q,41(2, Tnt1), then the basis {¢n;(2) = kn(2,&n;) }i=o is orthogonal.

Theorem 6.1 Let k,(z,w) be the reproducing kernel for L, and let §, = {&.;}7-y be the
zeros of a reqular quasi-orthogonal function Qn41(z, Tng1). Then the basis for L, defined by

¢n](2):kn(z7§‘n‘7)7 jZO,l,...,n
is orthogonal.

Proof. Let @, = ®,(&,,) be defined by (3.1) then it follows from (3.2) and from

<S‘9ni750nj> = <kn<Z,§m),kn(2’,§n])> = kn(fnj;fni); Z,j = 07 L

that {¢n;}7_, will be an orthogonal basis if and only if

kn(fnj,fm') = 5z'jkn(§ni7§ni>7 ,g=0,...,n.
In terms of the matrix ®,, this reads

®7®, = A7!  or equivalently ®,A, 7 =1

with A, = diag (Ano, ..., Aun) a diagonal matrix with A, = 1/ky,(€ni, €ni) # 0. Writing out

the relation ®,A,®" = I elementwise gives
Z Mk ®i(&nr)Di(Enk) = ij, 1,7 =10,...,n.
k=0

Because also (¢;, ¢;) = &;; for i,j = 0,...,n, this means that the above quadrature formula
is exact for the inner product of all basis functions in £,,, hence for the inner product of any
two functions in £,. By Theorem 5.4, this means that the nodes {£,;} should be the zeros
of a regular quasi-orthogonal function Q,11(z, Thy1)- O

7 The WRK basis

Now suppose that we know the function at resolution level 2n, i.e., we know fy, € L4,. The
problem is to decompose the function into two orthogonal functions

f2n:fn+gna anEna gnEICna



where K, = Ly, & L, is the wavelet space. This is a trivial problem if we know the
decomposition with respect to the ORF basis: if f,, = Ziio cxPr, then f, = D77 crodn
while g, = Ziim_l cpdr. However, for reasons that have been explained, we prefer not to
use the ORF basis, but we use the ORK basis instead. We know how to express the function
fn in terms of an ORK basis. The remaining problem is to write g, in terms of a basis
which is generated from the reproducing kernel [,,(z, w) for K,, = L4, © L£,,. Obviously the
reproducing kernel for K, is

In(z,w) = kyn(2,0) = ko(z,w) = Y di(2)(w).

k=n+1

The main question in this respect is: Can we find n real numbers {nnj}?;é such that the
functions {¢y;(z) = ln(z,nnj)}?:_(} form a basis for K, and if possible, can it be made
orthogonal?

This problem for the basis of K, is not as trivial as it was in Corollary 3.3 for the basis
of L. There is indeed no guarantee that for an arbitrary set of distinct points y, = {yx}iZ4
(on R or not) the matrix

bt (y0> o Ong (yn—1>
Vo(ya) = : : (7.1)
%n(yo) T ¢2n(yn—1)

would be invertible. However, using the following lemma, it is possible to prove that there
always exists a set of points {y; ;L;(} in R\ B2, which make this matrix invertible.

Lemma 7.1 Assume that Q € C?t)x2 ) s 4 square matriz such that Q"Q = D with
D invertible and diagonal. Assume moreover that this () is partitioned as

| @1 Qo
Q‘{@a @4}

with @y € CHUX( 1) and hence Q4 € C¥™. If Qy is invertible and if Qy € C'H'*" is of
full rank n, then Q4 is invertible.

Proof. Let D be partitioned into the two parts D; € R+Dx(+1) and D, € R™ ", We
know from Q7(Q = D that

QY Q1+ QY Qs =0
so that rank (Q4 Q1) = rank (Q4 Q3). Because Q; is invertible and rank (Q,) = n, we find
that rank (QQ3) = n. Now if Q4 were singular, then there would exist a nonzero vector
c € C™" such that ecQ} = 0, hence also cQ¥ Qs = 0. In other words, rank (QY¥Q3) < n,
which is a contradiction. O

So we have

Theorem 7.2 Consider the zeros §,, = {&amxr : k = 0,1,...,2n} of the reqular quasi-
orthogonal function Qany1(z, Tany1) for some m9p41 € R\ Cqppy. If we select y,, = {y : k =
0,...,n— 1} to be any n oul of the 2n + 1 zeros in §,,,, then the matriz U, (y,) as defined
in (7.1) will be invertible and hence {y,;(2) = kan(z,y;) — kn(z, yj)}}:(} will form a basis for
the wavelet space Ly, & L,,.



Proof. Since the ordering of the zeros &, 1s completely arbitrary, we can always assume
that we select the y; to be the last elements of §,, = {&,;: 7 =0,...,2n}. Now consider
the matrix ®,, = ®,,(&,,) of (3.1) where the evaluation is in the points of §,,,, then ¥, (y,)
appears as the n X n right lower part of the matrix ®3,. By Lemma 3.2, it follows that
taking the block of the first n + 1 columns in ®5,, any selection of k different rows from it
will result in a matrix of rank min{k,n + 1}. Thus the conditions of the previous lemma are
satisfied and the theorem follows. O

In the polynomial case, another possibility exists to construct a WRK basis by choosing
yn = {yr}iZ} to be the zeros of the polynomial ¢,. This was proved in [14]. We give an
alternative proof.

Theorem 7.3 Assume that y, = {yx}iZ, are the zeros of the orthogonal polynomial ¢,,
then {1,(z,yx) Y12} forms a basis for K, = Lo, © L.,

Proof. If it were not a basis, then the matrix U, (y,) would be singular, and thus there
would exist a nonzero vector ¢ = [¢, ..., ¢,| such that \I/n(yn)cT = (. Consider the function
o(z) = EZ=1 CkPntr. This function vanishes in the zeros of ¢,. Thus it has to be of the
form ¢ = ¢,p, where p, is a polynomial of degree r with 0 < r < n. On the other hand
(¢, dx) = 0 for any k =0,...,n. In particular (¢, ¢,—) = (prén—r, $n) = 0. This is however
impossible because p,¢,_, 1s of strict degree n and can thus not be orthogonal to ¢,. Thus
we have a contradiction and the [,(z, yx) have to be independent. a

Example 7.1 Let us give an example. The Hermite polynomials are given by the recurrence
relation (5.1) with all oy, = 0 and initial conditions ¢y =1, ¢1(2) = V?2z, and

2 p—
An: K anoa Cn:_ " s 7?:2,3,

n n

2
—1/26—1‘

These are orthogonal with respect to the weight w(z) = = , x € R, thus in our

notation ,
e dx

d = .
p(x) NG
The scaling functions and wavelet functions multiplied by the weight are plotted in Figure 1.
The wavelet plot in Figure 1(B) is of course the same as in Figure 2.7(d) of [14]. See also

Example 12.1 for the effect of introducing poles.

Example 7.2 For the Chebyshev polynomials of the first kind we have plotted Figure 2.
Of course this is directly related to the trigonometric bases studied in [5, 22].

This settles the question of how to find a basis of reproducing kernels for X,,. The question

of how one has to choose these points to make this basis orthogonal is yet an open problem.
Even in the polynomial case, it is not known how this could be obtained.
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FIG. 1: The scaling and wavelet functions ksa(z, w) (left) and l33(2, w) (right) multi-
plied by the weight function in the case of Hermite polynomials. In Figure A: w = 0,
in Figure B: w = 1.

A: k32(2,0) and l32(2,0)

—o0.4 —o.8,

FIG. 2: The scaling and wavelet functions ks(z,0) (left) and I32(z,0) (right) in the
case of Chebyshev polynomials.

Za —o.5 ) 0.5 s =a —0.5 ) 0.5 ES
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8 Interpolation and biorthogonal bases

Although an orthogonal basis is easy for computations, it is almost as easy to work with
biorthogonal basis functions. So, in many wavelet applications authors have designed biorthog-
onal basis functions, which leave more freedom in the design of the wavelet. By relaxing the
orthogonality condition, one can give the wavelet more smoothness properties in combina-
tion with an essentially local support. In the case of reproducing kernels, the biorthogonal
basis functions are directly related to interpolating functions. We will give a treatment that
is completely parallel to the polynomial case.

Recall that the poles for £, were taken from the set B, = {1/as,...,1/an} C R\ {0}.

Let us define the Lagrange polynomials in IL, for the interpolation points x, = {xx}7_,

(all distinct and on R\ ,,) by

N
lok(z) = nj_o’#k( i) , k=0,...,n
Hj:o,j;ék(l'k - ;)
and define
Lnk(’Z) = lnk(z> 7;;((2,13)7 k= 07 SRR
with .
m(z) = | [ (1 — oy2).
7=0

Then obviously Lux(z;) = 0, k,7 = 0,...,n while L,z € L,. We call these L,; the
fundamental Lagrange interpolating functions (FLIF) of £, for the points x,, = {x3}7_,. It
immediately follows that for any function f € £, we may write

)= 3 ) L),

Defining the discrete inner product in £,

(9%, = D f(xe)g(xe),

k=0

it is directly seen that (L, Lnj), = dgj. Thus the FLIF are an orthonormal basis for

L, with respect to this inner product. So, by the general theory of reproducing kernels, it
follows that the solution of the problem

win{|f]2, ¢ [ € Lai f(x) = 1)

is given by Z?:o Lyj(2)Lni(xr) = Luk(z). Moreover, if we set pni(z) = ku(z,25) and
&nk(z) = Luk(z), then because of the reproducing property of ¢,

(Prks Pnj) = Onj.

In other words, {@n }7_o and {@nk}i_, are biorthogonal bases for £,.

Note that we can characterize @, in another way. We may write @, = Z?:o cgk)%

where c¢®) = [cgk) . .c(k)] is defined by c¥)®, = e, where e, =[0...0 1 0...0] is the kth
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unit vector and ®,, = ®,(x,,) is the matrix (3.1). Thus c®) is the kth row in the inverse of
®,,, so that we have

Bro & T o
N S : =0t . (8.1)

It is clear that if the 2 are the zeros of the regular quasi-orthogonal function Q,41(z, Thy1),
then the ¢, are orthogonal and (@, ¢n;) = 0;j¢ni(2;). In that case we have of course
Lnk(2) = pni(2)/ ok ().

Similarly, given y, = {yx}?Z), one can construct a biorthogonal basis for 1,.(2) =
ln(z,yx), on condition that the matrix ¥,, = U, (y,) of (7.1) is invertible. Indeed, if ey (is)the

JE

kth unit vector, then if ¥, is invertible, there is exactly one solution d*) = [dfﬂl ...dy] to
the equation d® W, = ey, for each k =0, ...,n—1. The function @nk(z) = Z2n d;-k)wnj (2)

i=nt1
is obviously in K,, and we have 1,(y;) = 6j, kyj = 0,...,n — 1. Thus the {¢, }7Z} form
the FLIF of K, for the interpolation points y, = {yx}7Z}. We can write for any function
f € K, that

—

n—

F(2) =Y F(ye)dan(2).

0

o
I

The 1;,”‘C are orthonormal with respect to the discrete inner product

n—1

(F:9)y, = > Fyr)glyr)

k=0
and L/an is the solution to the problem
min{||fl|2 : flye) = 1;F € Ko}

Moreover, they form a biorthogonal basis for the t,; in K, because by the reproducing

property of . we have <L/~Jnk,¢nj> = Okj, k,7 = 0,...,n — 1. The relation between the
bases {du 2,41 and {hue}7o is given by

772)710 d7(3|).1 e dg? ¢n+1 ¢n+1
'lfzn,n—l df{;” e déﬁf” b2n P2n

with ¥,, = U, (y,).

9 Decomposition and reconstruction

To do the wavelet analysis of a function we should be able to decompose a function fy, € Ly,
into a sum fy, = f,+¢g, where f, € L, and g, € K,, = L2,5L,,. This is a matter of a change
of basis. Assume that for each n = 2%, we select a number of distinct points x,, = {z.x }7_,
on R\ P, and a number of points y,, = {ynk}z;é distinct and on R\ By, such that U, (y,)

13



of (7.1) is invertible. We write in short hand @, = ®,(x,) and ¥,, = U, (y,). In that case
©nk(2) = kn(z, xnr) forms a basis for £, and ¥,(2) = kon(2, Ynk) — kn(z, Ynk) is a basis for
K, when k,(z,w) is the reproducing kernel for £,,. Let the coefficients with respect to the
appropriate bases be defined by

2n n n—1
Jon = ZPQn,k992n,k§ o= ank99n,k§ gn = Z an¢n,k-
k=0 k=0

k=0
Then setting pa, = [P2no---P2n2nls Prn = [Pro- - Ponl, and dn = [¢no - - - @ 1], We get
¢0 ¢0 ¢n+1
f2n = p2n‘1)gb s fn = pnq)nH s Gn = qnq}nH :
¢2n an ¢2n

Equating coefficients of the corresponding basis functions in fy, = f, + g, leads to

o1 0

This relation allows us to compute p, and q, from ps, and conversely to reconstruct pa,
from p, and q,.
For example, using the relation p,, = (fan, @nr) and the biorthogonality relations, we get

2n
Pnr = E pZn,kLranr(xZn,k)y r= 07 - .
k=0

Similarly, it is seen from ¢, = <f2n, 2,7)7”> that

2n
Qnr = ZpZn,k¢nr($2n,k)a r = 07 see, = 1.

k=0

In the special case where the ¢, ; are orthogonal, i.e., when the z, ; are the zeros , j of
Qn+1(2, Tug1), then @, = @u .,/ onr(€nr) we get for the first of the analysis formulas

1 2n

In general, the ¢,z are not orthogonal, but if we choose {yn, "Z5 to be the last n zeros
{€anmi14r 10y, then by definition ¥, (yns) = &5, 7,8 = 0,...,n — 1. Thus, the second
analysis formula reduces to

Gnr = Z p2n,k¢nr(£2n,k> + Penptl4r, T = 07 ceey— L.

k=0

For the reconstruction formula, we have by pa,» = (fu + gn, P2nr),

n n—1
Pongr = ank <Sonk7 Lr52n,7‘> + Z gnl <¢nl; ¢2n,r> ; r= 07 ey 2n.
k=0 =0
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When the ¢y, , are orthogonal, i.e., when the xy, i are the zeros €3, 1 of Qapnt1(2, T2ny1), then
Gonr = Pons/P2nr(E2nr), and the reconstruction formula becomes as in [14],

1 n n—1
Pany = ¢ _) (Z pnkﬂpnk(fm,r) + Z qnzlﬁnl(fgn,r)) , r=0,...,2n.
2n,r k=0 {=0

S‘QQTLJ‘(

10 Dilation and translation

The nested spaces {V;}2°_, are a special case of a second generation multiresolution analysis
[24], but they can be interpreted in a way which is much closer to the classical definition of
a multiresolution analysis. This is what we shall do here.

Before we start checking the MRA properties, we should first adapt the notion of a shift
which is essential in the definition of an MRA.

10.1 Generalized shift

Recall that several of the properties in definition of classical MRA refer to shifted functions.
In our case, this shift has to be given a more general meaning. It was also introduced in the
polynomial case [14], and we follow here the same lines.

To introduce the idea, it is interesting to consider some classical cases. Suppose F(0) is a
2m-periodic function. In classical MRA for 27 periodic functions, the orthogonal basis is the
Fourier basis ¢x(t) = ¢'*, a shift F/(§ —7) has the effect that the kth Fourier coefficient of F
is multiplied with ¢x(7)/¢x(0) = e=*7. Similarly, for the continuous Fourier transform, the
basis functions are ¢,,(¢) = €™ and a shift f(¢ —7) has the effect that the Fourier transform
f™(w) is multiplied by ¢, (7)/¢.(0) = e=™7.

The generalization we need is to consider a shift operator which is defined as above but
now with respect to our orthonormal basis ¢, which in general is not the basis of classical
Fourier analysis. So we consider the Fourier transform with respect to the basis ¢, namely
F(f) ={fL152, with fl* = (f,¢x). A shift operator S, will be defined as the operator whose
effect is that

(S-N)k = Ti - u(7)/ dr(10),
where 75 was zero in the above examples. In fact the choice of a specific 79 € R is not really
crucial and if another point is more appropriate, one can use it. This 7q is just a reference
point with respect to which the shift is taken.
If we consider F(f) for f € L, as a finite dimensional vector of dimension n+ 1, then we
can describe the shift operator restricted to £,, as a multiplication with a finite dimensional
diagonal matrix. So we define the shift restricted to £, as S, ;, then for f € L,

g = Sn,ff A4 f(g) = F(f>D7L,T

where D, , is a diagonal matrix defined in terms of the orthogonal basis functions {¢x}7_,

of L,.
Dyr = diag <¢°(7) L Sa) )H
’ ¢o(70)" dn(0)
Thus if a, = [ag,...,a,] and f = a,[do,..., ) € Ly, then S, f = b,[do,...,d,])T with
b, = [bo,...,bs] = a,D, .. Note that this corresponds to the classical shift if the ¢ are the
classical Fourier basis functions of complex exponentials and 75 = 0.

Now we turn to the MRA properties.
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10.2 Nesting property

This one is trivial to verify. Defining V_; = Lg, it is immediately seen that

V_1 CV()CV] C"'CVSCVS-H (G

10.3 The completeness condition

If M is a subspace of the Hilbert space H, then for the {V;} to form a MRA of M, one

should have that
closy ( U Vs> = M.
s=—1

In our case, this means that we should verify in which spaces the system {By}32, is
complete.

Let P be the space obtained as the closure of span{1l,z, 2% ...} in LQ(R, p). The following
theorem is then known [4].

Theorem 10.1 If du is a finite measure on R, such that

n

/|Bn(£€)|2d,u($) < oo, By(zr)= H

k=1

X

1 —apx’

then L, as a subspace of L(R, du) ts in P and hence Lo = U2 Ly is dense in P.

Thus in our case, we have a multiresolution of the space P.

10.4 Scaling property

The scaling property in a classical MRA says that if one doubles the frequency then one
moves from Vs to V,yq1. Interpreting frequency again in a generalized sense as being the
Fourier coefficients with respect to the basis ¢, then this can be reformulated as follows. If
F denotes the Fourier transform

F) =0 JE =),

then f € V, & supp F(f) =4{0,1,...,n = 2°}. Thus moving from V; to V41 is equivalent
to doubling the support of this Fourier transform

10.5 Shift invariance

The shift invariance, in the classical MRA definition says that a shifted version of a function
remains at the same resolution scale, i.e., stays in the same space Vs: f €V, = S, f €V,
for all shifts 7. With our definition of general shift, this is obviously true because (recall
n = 2%)

k=0 k

k=0 TO)
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10.6 Riesz basis

The final condition for a stationary multiresolution is that there should exist a Riesz basis for
Vo which consists of translates of one scaling function. By the scaling property, one can then
generate bases at all resolution levels. Here we shall have one scaling function per resolution
level which will generate all the basis functions for that resolution level. Indeed, using again
the general shift operator defined as above, then it is clear that if ¢,.(2) = k.(z, zu),
k=0,...,n = 2°is a basis of reproducing kernel scaling functions (orthogonal or not) for
Vs, then we can write them as ¢,;(2) = S, , ¢n(2) with

quk = ku(z, 7o)

Thus all the scaling basis functions ¢, are generalized translates of a unique (for V) scaling

function @,.

Similarly v, = 5, , 1, where

2n

Ya(z) = Y A(10)dk(2) = ln(z,70).

k=n+1

The bases used also have a Riesz property, i.e. there are constants 0 < A < B < oo such
that
Allpall < [I71I < Bllpall

where the norms are 2-norms and f € V, is given by f = pn[@nos- -+ @na]’. Tt follows from
(3.2) and Parseval’s equality that

1717 = 1pn®, [0, - dal " [I* = [P0 @]

and this implies that
1
ramr el < 171 < Il ol

Similarly, it holds that

1
gzl <171 < 19l

when f € W, with f = qu[¢n0, - - .,;/)n,n_l] )

10.7 Consequences of the generalized shift

This generalized shift operator implies that the functions in the ORK basis look like shifts
of each other. The same holds for the functions in the WRK basis. This can be verified in
Figure 1 where we have plotted ks;(z,w) and l35(z, w) for w = 0 and w = 1.

We give yet another example.

Example 10.1 Consider the Chebyshev polynomials of the second kind. In the recurrence
relation (5.1), the ay’s are all equal to 0, and the recurrence coefficients are given by

A,=2, B,=0, C,=-1, n=1,2

g Ligaan
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The orthogonality measure is
1 — a2
dp(r) = —dux.
ple) = —-
Keeping the same recurrence, but setting oy = 0.3 we get orthogonal rational functions with
respect to a weight function that is plotted at the right in row A of Figure 3. The dashed
lines represent the Chebyshev weight, which is plotted for reference. The kernels ksy(z, w)

and [33(x, w) are plotted for w =0, 0.5 and 0.9 respectively in row A, B, and C.

11 Symmetry

Sometimes symmetry (or antisymmetry) of the wavelet functions can be an issue in certain
applications. It is obvious that if the problem is not symmetric, then the wavelets and
scaling functions will not be symmetric. However, if the measure and the poles are chosen
in a symmetric way, then the kernel functions that we used will be symmetric as well.
Assume that the measure is symmetric with respect to x = 0 and let the poles defining
L, be chosen symmetric with respect to @ = 0, thus they appear in pairs (1/ag, —1/ax).

Theorem 11.1 Under the above conditions about symmetry of the measure and of the poles,
the kernels kqs(2,0) and therefore also the kernels ly:(z,0) = kyst1(2,0) — kg (2,0) are sym-
melric w.r.t. x = 0.

Proof. Suppose n = 2°. We first observe that k,(z,w) is given by Y ,_, fu(2)fs(w) where
{fr}i_, is any basis of orthonormal functions such that £, = span{fx : £ =0,...,n}. Now
consider the measure dp,(z) = du(z)/|m,(z)[* where m,(z) = [[;_,(1 — axz). Define the
polynomials pi, K = 0, 1,...,n by orthogonalizing the functions {1, z, ..., 2"} with respect to
tn. Because p, is real on R and symmetric with respect to 0, the py,, are even while the pa,,41
are odd functions. Tn particular pz(0) = 0 for odd k. Hence k,(z,0) = S27_ pr(2)pe(0) =
Y% even P(2)pr(0) is an even function. Furthermore, because of the symmetry of the ay, it
holds that 7, (z) is an even function if n is even. The theorem now follows by observing that
the kernel ];/'n(z, 0) can be transformed into a reproducing kernel for £, with respect to p
by setting k,(z,0) = Z:n(t, 0)/[ma(t)]*. Therefore k,(x,0) is even and hence also [,(z,0) as a

difference of even functions. O

12 Computation and more experiments

It is difficult to write a general and efficient code to generate the coefficients {A,},{B,}
and {C,} given the measure and the points {a,}. For example, these coefficients can be
expressed as inner products, which would require the computation of integrals which may
be time consuming if one wants to evaluate these accurately. There is the Nevanlinna-Pick
algorithm, which is an interpolation type of algorithm to generate the coefficients from the
Stieltjes transform of the given measure. This algorithm however leads to extra complications
if some of the ay do coincide. If none of them does, the algorithm is relatively simple. If
all of them coincide, then a modified algorithm can be used which needs some generalized
moments for the given measure.

We have chosen for the opposite direction to do some experiments. Given the coefficients

Ay, {B,} and {C,} and the points {a,}, it is relatively simple to generate the ORF basis
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FIG. 3: Tllustration of generalized shift. The weight function times the kernels k33 (z, w)
and l32(z, w) are plotted for w = 0,0.5 and 0.9. There is only one pole at 1/aq with
a1 = 0.3, all other poles are at co. The recurrence used is the recurrence for the
Chebyshev polynomials of the second kind. The weight function is plotted on the
right. For reference, the Chebyshev weight of the second kind is plotted in dashed
lines.

A: ks2(2,0) and I32(x,0) and weight function
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and with these, the kernels and hence also the scaling functions and the wavelets can be
generated. This is what we did to see how the classical polynomial situations were influenced
when some of the poles are shifted from oo to some finite value(s) on R.

What is lacking here is a general theory about the construction of the weight function
from the recurrence relation. Our experiments lead to certain conjectures about convergence
of reproducing kernels, but a detailed proof or investigation of these is really beyond the scope
of this paper which is to generalize the polynomial wavelets to the rational case. Further
research will be reported in separate papers.

With respect to the problem of constructing the weight function from the orthogonal
functions or reproducing kernels, there are two theorems that give a partial result. Apph-
cation of these theorems in situations that are not covered by them, worked fine for the
examples we include here.

First there is the case of a weight with a compact support. Here we can refer to a theorem
of Maté-Nevai-Totik. for convenience of the reader. [18, Theorem 5.

Theorem 12.1 Let all ap = 0, so that we are in the polynomial case. Let ¢y be the or-
thonormal polynomials with respect to a measure dy supported on [—1,1]. Define k,(z) =
Yoreo lon(x)|?. Then if

" log ¢ ()

—————=dx > —o0,

-1 \/1 — £U2
lim T(L ) =mp'(z)V1 — 22

n—o0 k‘

it holds that

for almost every x € [—1,1].

Of course this involves the polynomial case, but we include it for the convenience of the
reader. We do not know of a proof which generalizes this to the rational case where the
measure has a compact support, but we conjecture that this theorem is also true for the
rational case, at least when the poles are not in the support of the measure. We shall
postpone a more detailed investigation and a possible proof of this conjecture to a separate
paper. Anyway, our experiments gave satisfactory results for the polynomial case, and
relying on the conjecture that the theorem also holds in the rational case, this is how we
computed and plotted the weight function for the rational variations of the Chebyshev cases.
See Figures 3.

For measures whose support is not compact, such as the Hermite or the Laguerre polyno-
mials, the previous approach does not work, and as far as we know, the construction of the
Welgh‘r function is still an open problem. However we have ’rhe fo owmg result which does
hold for the rational case. Defining the functions K, (z) 1)/ kn(1,1) with k, (2, w)
the reproducing kernels for £,, and 1 the imaginary unit one can prove the fo]]owmg theorem
where A represents the measure defined by dA(z) = [7(1 4+ 2%)]7'dz. The proof can again be
found in [4, Theorem 11.10.15].

Theorem 12.2 With K, ( 1)//kn(1,1) we have

/f /f g(@)dua(t), Vf,g€ Ly

where
d)\(m) dx

d,un(lf) = |[\‘7n<$>|2 - 7|-|](n(;c>|2(1 + ;U2>.
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Moreover, if all the generalized moments m, = [ 2" /m,(x)du(z) with m,(z) = [[1_, (1 —az2)
are finite for all n and if log ¢/ is integrable with respect to dA, i.e., logu’ € Li(}), then
1/ K, (z) will converge to the outer spectral factor o(z) of the measure g uniformly in compact
subsets of the upper half plane [4, Cor. 11.11.3]. The outer spectral factor is defined as

r—z

U(z)zcexp{—%/1+wz log,u'(x)d)\(;c)}, ceT.

It is an outer function in Hy of the upper half plane. Therefore it has a non-tangential limit
to the real line such that |o(z)|* = p/(z) a.e. for x € R. Thus if the measure is absolutely
continuous and given by du(z) = w(z)dz, and if we denote the boundary function of K,(z),
as K,(z), z € R, then
1 1
SIEEDITABLE

will give a good idea of what w(z) looks like if n is large enough. Experimental results confirm
this. However, this assumes that log w € L;()). Although in the case of Hermite polynomials
where logw(z) = —z%, we have [logw(z)d\(z) = —oo, we still get good convergence as
described above. However there are many important examples where the measure is only

supported on a half line or on a finite interval (and is assumed to be zero everywhere else
on the real line). In that case, logw will certainly not be in L;(A) and it turns out that in
those examples, the simple convergence does not hold in the support of the measure. But if
one then replaces K,(z) by the (C,1) Cesaro sums

J
Snlw) = = - ;A](:ﬂ)

then we do observe convergence and we get a reasonable picture of the weight function w(z)

by plotting
1 1

(14 2?) [Sn(2)|?

for n sufficiently large. These conclusions are drawn from many experiments but were not

proved so far. A precise investigation of the conditions under which this kind of convergence
holds and a proof of these results are also postponed to a separate paper. Our conjecture is
that for a continuous weight function w that is positive almost everywhere on R, the Cesaro
means as described above will converge uniformly in compact subsets of R.

We also note that the two conjectured theorems are mutually exclusive. We seem to need
the positivity of the weight, or at least the existence of ¢ in the last one because, it was clear
from the experiments that for Chebyshev-like examples where the support of the measure is
an interval, the convergence of the Cesaro means was not uniform.

We used the Cesaro means of the K, (z) to compute the weight in the following examples.

Example 12.1 The latter strategy is used for example to see what the influence is when
poles are introduced. It is illustrated in Figure 4. We took the recurrence relation for the
Hermite polynomials and introduced poles. In figure A, the only pole was 1/az = 1072
and in figure B we chose two poles 1/ay = 1 and 1/as = —0.5. The corresponding weight
is plotted together with the scaling functions kss(z,0) and ls3(x,0) both multiplied by the

weight function. For comparison, the original Hermite weight is plotted in dashed lines.
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FIG. 4: The functions ks3(z,0) and [35(2,0) multiplied by the weight function and the
weight function itself. They are generated by the recurrence relation of the Hermite
polynomials, but now with a3 = 10?2 and all other o = 0 (figure A) or oy = 1,
a3 = —2 and all other a = 0 (figure B). The dashed line shows the Hermite weight
function.

A: as = 10%° and all other o = 0

1.a o.s o.8
1.2 = 0.6 - - o.7 | -
1 — o.a —
o.e |- =
o.8 - = o.z2 -
o.s5 |- —
o.6 |- — o
o.al- —
o.al- — —o.2 —
o.3| —
o.z | — —o.a —
o.z2| —
o———J\/\/ —0.6 -
—o.2 - —o.s A o.1 |- -
—o.a —1 o
=5 o =3 =s o E -5
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Example 12.2 As a final example, we take the recurrence relation for the Laguerre poly-
nomials and introduced poles by setting ax = —2 for £ = 1,2,3,4,5 and we chose a; = 0.25
for £ = 7,8. The result is plotted in Figure 5.

FIG. 5: Weight function times ksz(z,0) (left) and I33(z,0) (right) where the recursion
is for the Laguerre polynomials and o = =2 for &k = 1,2,3,4,5 and o = 0.25 for
k =17,8. The weight function is plotted on the right. The Laguerre weight function is
plotted in dashed lines for comparison.

k32(2, 0) and l32(2, 0)

a 1 1
\
3.5} - oo -
o.s | — o.s —
3| -
\
o.7 |-\ —
2.5 —
\
o _— = o.6 |- =

Appendix A: Proofs of some auxiliary results

In this appendix we prove some of the results that were used in the text. First we prove

Lemma A.1 The value of A, in the recurrence relation for the orthogonal rational functions,
as described in Theorem 5.1 is related to the orthogonality measure by a generalized standard
deviation, i.e.,

1
Ay = j:—, with s> =m2 —m?, m3= / |G(2))Pdp(x), my = / Ci(z)dp(z).
R R

S

Proof. First assume that By = 0, then (¢o,¢1) = 0 implies that the generalized mean

my = [ (i(z)dp(z) = 0. The normality condition ||¢]|> = 1 then gives A?m32 = 1.
If By # 0, then the condition (¢, ¢1) = 0 gives A; = —B;/my, while ||¢1||* = 1 leads to
Bt — ) =

In both cases, this gives the desired formulas. O

Recall that in the polynomial case where all o, = 0, then (i(z) = = and we then get the
usual definition of standard deviation.
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Thus, if dy(z) = w(z)dz, in some sense we can say that a larger |A;| will correspond to
a smaller s which means that the graph of w(z) will be wider, a small |A;| will correspond
to a more peaked w(z).

Lemma A.2 Consider the orthogonal rational function on the real line ¢py1 = pus1/Tnt1
with m,41(2) = Z:;(] —agz). Then ¢nqq will be singular, i.e. ppy1(1/ay) =0 iff Ay = 0.

Proof. First assume A,;; = 0. Define fi(z) = ¢r(2)/((2). Then it follows from the
Christoffel-Darboux relation that

(020 = Fan () olw)] = Az, 0) =0
Therefore fo1(w)/ fo(w) = far1(2)/fa(2) for all z and w, so that f,41(w)/fu(w) is a con-
stant. Thus

T(w) _ f“+1(w) _ ¢n+1(w>/§n+1(“}) _ (1 —an+1w)¢’n+1( ) o Pn+1( )

falw)  da(w)/CGalw) (= anw)da(w) (1= anw)pa(w)

is a constant. Taking w = 1/a,, it follows p,41(1/a,) = 0. Thus A,41 = 0 implies that
®n+41 18 singular.
Conversely, assume ¢, 41 is singular. It follows from the reproducing property (¢, (2), kn(z,w)) =
¢n(w) evaluated for w = 1/a,, and substituting the Christoffel-Darboux relation for k,(z, w)
that after some calculations we get

<¢n,¢n+l “”“Z>pn<1/an><an— ) (s ) Pt (1fan)n = Avarpn(1 o).

This implies A,41 = 0 because p,(1/a,) # 0 and p,n + 1(1/a,) = 0. O

Lemma A.3 Let ¢y be the orthogonal rational functions on the real line. Define f,(z) =
On(2)/Ca(2) and T = fopi/fu- If Apyr # 0 then the derivative ' does not change sign on

the real line.

Proof. First note that f,(z) is real for 2 € R\ B,41, where Bry1 = {1/a,..., 1 /a1 }.
So when in the Christoffel-Darboux formula we take w € R\ B,.41 we get

Note that A,y # 0 means that ¢, is regular. Now let z — w, then

2

Aw [fapr(w0) fo(w) = f1 41 (w) fu(w)] = En(w,w) > 0.
n+1

On the other hand

7= (fn+1>l fn n+1 fqlmfn+1
In f2 '

Thus it follows that depending on the sign of A, 11, 7/(w) is positive or negative for all real
values of w such that f,(w) # 0. O
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Lemma A.4 Lel ¢ be the orthogonal funclions on the real line. Define the function hy,
by hi(z) = (1 — apz)dp(2). If Gnyr is regular, then the functions h,yq and h, can have no

comimon zZeros.

Proof. Like in the proof of the previous lemma, we get from the confluent form of the
Christoffel-Darboux formula that

1
b () (10) = H (0o ()] = 0,10) > .
n+1
Therefore a common zero of h, and h,11 is impossible. O

Lemma A.5 Let ¢, = p,/m, with m,(z) = szl(l — az) be the orthogonal rational func-
tions on the real line. Define

(w> _ ¢n+1<w)/<’n+1 (w) . (1 - an+1w)¢n+1(’w) _ pn+1('w)

Sn(w)/Cu(w) (1= anw)dn(w) (1 = anw)pn(w)’

Then if ¢nyq is a reqular, T(w) will run n 4+ 1 times through all values of R as w runs over

all values in R.
Hence, for a given value 7 € R, there are n + 1 values of wy, € R, k = 0,...,n such that
7 = 71(wy).

Proof. Because the numerator and the denominator of 7 will have no zeros in common
by the previous lemma, and because p,(z) has at least n simple zeros in R, and because
7'(w) # 0 wherever the derivative exists, the conclusion of the lemma follows. O

Acknowledgements

The work of A. Bultheel was performed as part of the project “Orthogonal systems and their
applications” of the FWO under grant #G0278.97.

The work of P. Gonzalez-Vera was supported by the scientific research project of the
Spanish DGES under contract PB96-1029.

References

[1] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337-404,
1950.

[2] A. Bultheel, P. Gonzalez-Vera, E. Hendriksen, and O. Njastad. Orthogonal rational
functions with poles on the unit circle. J. Math. Anal. Appl., 182:221-243, 1994.

(3] A. Bultheel, P. Gonzalez-Vera, E. Hendriksen, and O. Njastad. A Favard theorem for
rational functions with poles on the unit circle. Fast J. Approx., 3:21-37, 1997.

[4] A. Bultheel, P. Gonzélez-Vera, E. Hendriksen, and O. Njastad. Orthogonal rational
functions, volume 5 of Cambridge Monographs on Applied and Computational Mathe-
matics. Cambridge University Press, 1999.

25



[5] C.K. Chui and H.N. Mhaskar. On trigonometric wavelets. Constr. Approz., 9:167-190,
1993.

[6] P.J. Davis. Interpolation and approzimation. Blaisdell, New York, 1963. Reprint: Dover,
1975.

[7] M.M. Djrbashian. Expansions in systems of rational functions on a circle with a given
set of poles. Doklady Akademii Nauk SSSR, 143:17-20, 1962. (In Russian. Translation
in Soviet Mathematics Doklady, vol. 3, 315-319, 1962).

[8] M.M. Djrbashian. Orthogonal systems of rational functions on the unit circle with
given set of poles. Doklady Akademii Nauk SSSR, 147:1278-1281, 1962. (In Russian.
Translation in Soviet Mathematics Doklady, vol. 3, 1794-1798, 1962).

[9] M.M. Djrbashian. Orthogonal systems of rational functions on the circle. Izv. Akad.
Nauk Armyan. SSR, 1:3-24, 1966. (In Russian).

[10] M.M. Djrbashian. Orthogonal systems of rational functions on the unit circle. [zv.
Akad. Nauk Armyan. SSR, 1:106-125, 1966. (In Russian).

[11] M.M. Djrbashian. Expansions by systems of rational functions with fixed poles. Izv.
Akad. Nauk Armyan. SSR, 2:3-51, 1967. (In Russian).

[12] M.M. Djrbashian. A survey on the theory of orthogonal systems and some open prob-
lems. In P. Nevai, editor, Orthogonal polynomials: Theory and practice, volume 294 of
Series C: Mathematical and Physical Sciences, pages 135-146, Boston, 1990. NATO-
ASI, Kluwer Academic Publishers.

[13] W.F. Donoghue Jr. Monotone matriz functions and analytic continuation. Springer,

Berlin, 1974.

[14] B. Fischer and J. Prestin. Wavelets based on orthogonal polynomials. Math. Comp.,
66:1593-1618, 1997.

[15] T. Kilgore and J. Prestin. Polynomial wavelets on the interval. Constr. Approz., 12:167-
190, 1996.

[16] G.L. Lépez [Lépez-Lagomasino]. Szegé’s theorem for orthogonal polynomials with re-
spect to varying measures. In M. Alfaro et al., editors, Orthogonal polynomials and their
applications, volume 1329 of Lecture Notes in Math., pages 255-260. Springer, 1988.

[17] G.L. Lépez [Lépez-Lagomasino]. Asymptotics of polynomials orthogonal with respect
to varying measures. Constr. Approz., 5:199-219, 1989.

[18] A. Maté, P. Nevai, and V. Totik. Szegd’s extremum problem on the unit circle. Ann.
of Math., 134:433-453, 1991.

[19] H. Meschkowski. Hilbertsche Riume milt Kernfunktion. Springer, Berlin, 1962.

[20] K. Miller and A. Bultheel. Translation of the Russian paper “Orthogonal systems of
rational functions on the unit circle” by M.M. Dzrbasian. Technical Report TW253,
Department of Computer Science, K.U. Leuven, February 1997.

26



[21] J. Partington. Interpolation, Identification and Sampling, volume 17 of London Mathe-
matical Sociely Monographs. Oxford University Press, 1997.

[22] J. Prestin and E Quak. Trigonometric interpolation and wavelet decomposition. Numer.

Algorithms, 9:293-318, 1995.

[23] E. Quak and N. Weyrich. Wavelets on the interval. In S.P. Singh, editor, Approzimation
Theory, Wavelels and Applications, volume 454 of NATO-ASI Series C: Mathematical
and Physical Sciences, pages 247-283, Dordrecht, 1995. Kluwer.

[24] W. Sweldens. The lifting scheme: A construction of second generation wavelets. STAM
J. Math. Anal., 29:511-548, 1998.

[25] M. Tasche. Polynomial wavelets on [—1,1]. In S.P. Singh, editor, Approzimation The-
ory, Wavelets and Applications, volume 454 of NATO-ASI Series C: Mathematical and
Physical Sciences, pages 497-512, Dordrecht, 1995. Kluwer.

27



