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Abstract

In this paper we present an algorithm for calculating the B—spline representation of a Powell-Sabin
spline surface on a refinement of the given triangulation. The resulting subdivision scheme is a v/3
scheme; a new vertex is added inside every original triangle. Applying the v/3 scheme twice yields
a triadic scheme, every original edge is split into three new edges, but special care is needed at the
boundaries. The scheme is numerically stable and generally applicable, there are no restrictions on
the initial triangulation.

Keywords: Powell-Sabin splines, subdivision, normalised B—splines, CAGD

AMS(MOS) classification: 65D07, 65D17, 68U07

1 Introduction

Geometric modelling of complex shapes relies heavily on the use of powerful mathematical represent-
ations of surfaces. Widely used now in CAGD packages is the tensor product B-spline representation,
which is, however, restricted to rectangular domains, and therefore is not well suited for designing
surfaces with an arbitrary number of edges. Farin’s Bézier triangles [2] are a worthwhile alternat-
ive to represent piecewise polynomials on polygonal domains, but imposing smoothness conditions
between the patches requires a great number of nontrivial relations between the coefficients to be
satisfied. Another approach is a B-spline representation for Powell-Sabin (PS)-splines by Shi et al.
[6], but their construction method has some serious drawbacks from the numerical point of view.
Dierckx [1] presented an improved algorithm to construct a normalised B-spline basis for PS-splines,
which guarantees global C'! smoothness for any choice of the coefficients, and resolves the numerical
problems. This representation also has a nice geometric interpretation involving tangent control
triangles for manipulating the PS—surfaces.

For the graphical display of a surface we need a denser set of points that represent the surface,
or in other words, we need a representation of the surface on a refinement of the triangulation on
which it is defined. This procedure is called subdivision. Because after subdivision the new basis
functions have smaller support, it also gives the designer more local control when manipulating
surfaces. Windmolders and Dierckx [9] solved the subdivision problem for uniform Powell-Sabin
splines, that is on triangulations with all equilateral triangles. In this paper we solve the subdivision
problem for general Powell-Sabin splines.

Section 2 recalls some concepts of polynomials on triangulations and gives the definition of the
space of Powell-Sabin splines. It also covers the relevant aspects of the construction of a normalised
B-spline basis. In this work we are only interested in the functional case. Section 3 first gives an
overview of possible subdivision schemes. Then the subdivision rules are developed for the case
of /3 subdivision. The boundaries are treated separately to achieve a triadic scheme. Finally we
conclude with some remarks and suggestions for further research in section 4.
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2 Powell-Sabin splines
2.1 Polynomials on triangles

Let A = (A1, A2, A3), [Al =M+ X+ X3 =4d, \; € {0,1,...,d} using standard multi index nota-
tion. Consider a non degenerate triangle 7 (T7,7T>,7T3) in a plane with its vertices having Cartesian
coordinates T;(x;,v:),7 = 1,2,3. Any point P(z,y) in that plane can be expressed in terms of bary-
centric coordinates T = (71,72, 73) with respect to 7: P = 2?21 7;T; where |7| = 1.

A Bézier polynomial [2] of degree d over the triangle T is defined by

bH(P) = bh(r) = 3 baBY(7), (2.1)
|A|l=d

in which by are called Bézier ordinates, and

d!
Bi(r) = 7)\1!/\2!)\3!7'?1 52T (2.2)

are the Bernstein-Bézier polynomials on the triangle.
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Figure 1. (a) Positions of Bézier ordinates for d = 2. (b) PS-refinement. Each triangle
pj is split into six smaller triangles with a common vertex Z;.

The points (%,bx) are the control points for the surface z = b‘;—(T) and the piecewise linear
interpolant to these points is the Bézier net or control net. This is displayed schematically in figure
1(a) for the case d = 2. The points %, marked with dots on the figure, are called Bézier triangle
points. The control net mimics the shape of the surface and is tangent to the polynomial surface at

the three vertices of the triangle.

Representing complex shapes, however, requires the use of patch complexes with a great number
of Bézier triangles. Keeping up continuity conditions between all the neighbouring patches then
results, in general, in nontrivial relations between their Bézier ordinates. The use of split triangles
can overcome this problem.
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2.2 PS-splines

Consider a simply connected subset @ C R? with polygonal boundary 6€). Suppose we have a
conforming triangulation A of €2, constituted of triangles p;, j = 1,...,¢, having vertices V}, with
Cartesian coordinates (zg,yx), k¥ = 1,...,n. Let A* be a Powell-Sabin refinement of A, which
divides each triangle p; into six smaller triangles with a common vertex Z; as follows (figure 1(b)) :

(1) Choose an interior point Z; in each triangle p;, so that if two triangles p; and p; have a common
edge, then the line joining these interior points Z; and Z; intersects the common edge at a
point R;; between its vertices. Choosing Z; as the incentre of each triangle p; ensures the
existence of the points R;;. Other choices may be more appropriate from the practical point
of view.

(2) Join each point Z; to the vertices of p;.

(3) For each edge of the triangle p;

e which belongs to the boundary 6(2, join Z; to an arbitrary point of the edge.
e which is common to a triangle p;, join Z; to R;;.

Now we consider the space of piecewise C' continuous quadratic polynomials on A*, the Powell-
Sabin splines. It is denoted by Si(A*). Each of the 6t triangles resulting from the PS-refinement
becomes the domain triangle of a quadratic Bernstein-Bézier polynomial, i.e. we choose d = 2 in
equation (2.1) and (2.2), as indicated for one subtriangle in figure 1(b). Powell and Sabin [5] proved
that the dimension of the space S(A*) equals 3n: there exists a unique solution s(z,y) € S3(A*)
for the interpolation problem

Os 0s
%(Vk) = faks By

So given the function and derivative values at each vertex Vi, the Bézier ordinates on the domain

subtriangles are uniquely defined and the continuity conditions between subtriangles are automat-
ically fulfilled.

S(Vk)sz7 (Vk) :fy,k: k=17"'7n' (23)

2.3 A normalised B-spline representation

Dierckx [1] showed that each piecewise polynomial s(z,y) € Si(A*) has a unique representation

S(Z’,y) = ZZC”B{(.’E,y) ) (m,y) €, (24)

i=1 j=1

where the basis functions satisfy

Bi(z,y) > 0 (2.5)
n 3
> Blay =1 (26)

and have local support: B{ (z,y) is nonzero only on the so-called 1-ring M; of V;, being the set of
triangles p; that have V; as a vertex. The number of triangles in M; is called the valence m;.

To construct the basis functions B! (z,y) we use the algorithm from [1]. For each vertex this
approach leads to a triangle ¢;(Qi1, Qi2, Qi3) with vertices Q;;(X;;,Y;;) that must contain certain
Bézier triangle points of the underlying Bézier representation. These Bézier triangle points shown as
S,5, 8" in figure 2 and we denote their barycentric coordinates with respect to t; as (L;1, L2, L;s),
(Li1, Liz, Li3) and (L;.l, L;3, L;.3). The triangles t;, i = 1,...,n are called PS-triangles.
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Figure 2: PS-points and PS-triangle.

We define the control points as
Ci; = (Qij,ci5) = (Xij,Yij, ¢i5) (2.7)
and the control triangles as
Ti(Ci1, Ci2, Ci3)- (2.8)

The projection of the control triangles T; in the (z,y) plane are the PS-triangles ¢;. One can
prove that the control triangle T; is tangent to the surface z = s(z,y) at V;. The tangent point
is (x4, yi,8(V;)). For design purposes we prefer the control points of the corresponding control tri-
angle to be close to the surface. In [1] the PS-triangle with the smallest area is computed, but other
choices are possible.

2.4 Bézier representation of a PS-spline

The Bézier representation of a PS-spline surface can be calculated from the B-spline representation.
Consider a domain triangle p(V;, V;,V;) € A with its PS-refinement as on figure 3(a), where

Rij = XijVi+ (1= 2ij)V;

Rjr = AjeVi+ (1= Xjr) Vi

Rii = MiVie + (1= M) Vi

Zijk = aijk Vi + bijr Vi + ciji Vi

(2.9)

Denote the Bézier ordinates as on figure 3(b). They can be written as the following unique convex
barycentric combinations of the B-spline coefficients:

S = ;161 + Q2Ci2 + 43653
u; = Lycyp + Liacip + Lizcss

2.10
Ll ci1 + Liscia + Liscis ( )

(%
w; = Ljcy + Liacia + Lizcis.

The coefficients in these formulae depend on the geometry of the PS-refinement, and on the choice
of the PS-triangles. Similar expressions hold for (s;,u;,v;,w;) and (sg, uk, vg, wy). The other Bézier
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Figure 3. (a) PS-refinement of a triangle p(V;, V}, V4). (b) Schematic representation of
Bézier ordinates.

ordinates can be found from the C* continuity conditions between the Bézier triangles, e.g.,
r = )\ijui + (1 - )\ij)'l}j
0, = )\ijwi + (1 — )\ij)wj (2.11)

w = aijrw; + bijrw; + Cijrwe-

Consider the triangle Tz.‘j/,? formed by the Bézier control points corresponding to the Bézier or-

dinates w;, w; and wy. From the tangent property of the Bézier control net for each of the Bézier

triangles in the PS-refinement follows that Ti}/,? is tangent to the surface at (Zjjx, w = s(Zjk))-

Notice that also the Bézier control points corresponding to 6;, 8; and 6}, lie in TZ\J/E The projection

t;]/.z of Tz.‘j/,f in the (z,y)-plane is shaded in figure 3(a).

3 Subdivision

The goal of subdivision is to calculate the B-spline representation (2.4) of a PS-spline surface on a
refinement A of the given triangulation A°. The new basis functions after subdivision have smaller
support and give the designer more local control when manipulating surfaces. Adjusting one coef-
ficient c;; of a control point of a subdivided PS-spline surface, influences a smaller neighbourhood
of the involved vertex. The control triangles are tangent to the surface and in case of repeated
subdivision, the linear interpolant of the tangent points converges to the surface itself. Therefore
subdivision is a common technique for displaying surfaces graphically.

In section 3.1 we consider different possibilities for the refinement A! of the original triangulation
AP, This answers the question where to place the new vertices. Then, in section 3.2, we derive the
subdivision rules for the /3 scheme. It turns out that the triangle Ti*j/,f can be used as the control

triangle for a new vertex. The boundaries are treated separately.

3.1 Choosing a suitable refinement A! of A°
3.1.1 Dyadic subdivision

The most obvious possibility is dyadic subdivision. In this scheme a new vertex is inserted on every
edge between two old vertices and every original triangle is split into four new triangles.
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When choosing the positions of the new vertices, the lines of the PS-refinement A%* of the initial
triangulation A° must be maintained in the PS-refinement A of the refined triangulation A,
because the aim is to represent exactly the same surface. To ensure this, the new vertices have
to be placed on the intersections R;; of the PS-refinement with the edges. For the new triangle
(Vij, Vik, Vii) the PS-refinement is already fixed, the point Z;;, is the interior point for this triangle.
The interior points for the three remaining triangles have to lie on the line of the old PS-refinement
A% that crosses the new triangle. The refined triangulation is shown in figure 4.

=y v
Figure 4. Positions of the new vertices and PS-refinement in the new triangles for
dyadic subdivision.

The dyadic scheme was used by Windmolders and Dierckx for uniform Powell-Sabin splines, this
is on a triangulation with all equilateral triangles. The subdivision rules for this special case can
be found in [9]. In the general case the idea of dyadic subdivision can only be used under certain
conditions. For example, the point Z;;;, of the PS-refinement of a triangle, must lie inside the middle
triangle (V;;Vjx Vi;)- This leads to conditions on the initial triangulation A® and its PS-refinement
A% ie. on the placement of the interior points Z;j; and the resulting positions of the R;;: the
dyadic scheme is not generally applicable.

3.1.2 /3 subdivision

Another possiblity is v/3 subdivision. This kind of scheme was first introduced by Kobbelt [3] and
Labsik and Greiner [4] and used for uniform Powell-Sabin splines by Vanraes et al. [8]. The new
triangulation AV3 is constructed by inserting a new vertex Vj;; at the position of the interior point
Z;jr, of each triangle. Except at the boundaries, the old edges are not preserved in the new triangu-
lation. Instead new edges are introduced connecting every new vertex V;;; with the vertices of the
old triangle it lies in, and connecting every two new vertices that lie in neighbouring old triangles.
Figure 5(b) shows the result of v/3 subdivision on the triangulation A° of figure 5(a). In this figure
the PS-refinement is not shown, but note that the new edges in AV3 must coincide with the lines

of the PS-refinement A% and that the original edges of A® are now part of the new PS-refinement
A3+,

Figure 6 shows a detail of one original triangle after v/3 subdivision. In the new triangles new
interior points must be chosen on the one line of the new PS-refinement AV3* that is already fixed,
that is, the original edge that crosses the triangle. For example

Zij = wiVi + (1 — wij) Rij,

3.1
Zji = w;jiVj + (1 — wji) Rij. (3

For the resulting refinement to exist, the new vertex V;;;, has to lie inside the hexagon formed by
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Figure 5. Principle of v/3-subdivision. Applying v/3-subdivision twice results in triadic
subdivision. The PS-refinements are not shown.

B

the interior points (Z;;, Zji, Zjk, Zkj, Zrs, Zir)- It is always possible to place these interior points,
i.e. choose a value for w in equation (3.1), such that this condition is fulfilled: there are no conditions
on the initial triangulation A9 or its PS-refinement A%*. Therefore we prefer to use the v/3 scheme
instead of the dyadic scheme.

In a practical implementation we use w = 1/3 because this leads to the expected results in the
uniform case when all triangles are equilateral and have the same size. We check whether the result
satisfies the hexagon requirement and in the occasional case that is does not, we decrease the value
incrementally, e.g. by dividing it by a factor 2, until it yields a valid PS-refinement.

Applying the /3 subdivision operator a second time, again results in new vertices that coincide
with the interior points that in this case lie on the edges of the initial triangulation. As can be seen
in figure 5(c), this causes a refinement trisecting of every original edge and splitting each original
triangle into nine subtriangles. Hence one single refinement step of this scheme can be considered
as the square root of one step of a triadic scheme.

In order to achieve a triadic scheme for splines defined on a bounded domain, the boundary
triangles have to be treated different in the second v/3 step. Instead of inserting one new vertex in
the interior of the boundary triangle, we insert two new vertices on the boundary edge such that
the result is the same as if there would have been a neighbouring triangle. For this reason we always
do two v/3 steps in a practical implementation.

3.2 Calculating the refined B-spline representation

3.2.1 The triangles t;ﬁ and Tz.‘j/,f

We now show that the triangles T; j,?, introduced in the last paragraph of section 2.4, can act as

control triangles for the new vertices V;;. Recall that such a triangle is defined by three particular

cv3  oV3
ik, 10 Yijk,2

and Cz'\j/lzj,3‘ The corners of the corresponding PS-triangle t;ﬁ are then Q;]/.E,l, Q;ﬁg and Q;]/.i:;.

Bézier control points as shown in figure 3(a). We denote these new control points by

Theorem 3.1 The triangle Ti\j/,? is a valid control triangle for the new vertex Viji,. The B-spline
coefficients are

Cz.\j/g,l =LiCii + LipCio + LisCis
C¥Ra = LinCin + LinCa + LysCia (3-2)
C;J/,:jﬁ = Lk1C1 + LyaCro + Li3Chs.
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Figure 6. /3 subdivision: t\J/_ is a valid PS-triangle for V;j;. A valid choice for the
new interior points and the PS-refinement always exist, there are no conditions on the
initial triangulation.

Proof: To prove that T‘[ is indeed a wvalid control triangle, we first need to prove that t‘/,; is
a valid PS-triangle, or in other words, that t‘f contains all the involved PS-points. The valence

myjr of Vi is always six and there are twelve PS points, shown as gray dots in figure 6, plus the

3
ijk

vertex V;ji itself, that have to be contained in the new PS-triangle. The proposed PS-triangle ¢
is marked in gray. We can see that the corners Qz.jk of this triangle are PS-points of the original
PS-refinement A%* that lie in the middle between Vijr and the old vertices. We now zoom in on the
left bottom corner and check that the PS-points A, B and C' of AY3* are contained in the proposed

PS-triangle t;j,;

Referring to (2.9) and (3.1) it immediately follows that

A= 2R + (1= X)QE (33)
and
= waz]k 1+ (1 —wi)A
= (wij + Mij — wighif) Qa1 + (1= Nij — wij + wijhif) Qs - (3.4)
Denote by E the intersection of Z;; Z;;, and V;;,V;. We can determine 0 < 7 < 1 such that
E =rVi + (1 — )V, (3.5)

1
C = —(E+Vijk)

= er]k 1 (1 - T)‘/z'jk;
= (1= r)age +7)QYe , + (1= 1)bijuQYa 5 + (1= reije@Ya 5- (3.6)
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From (3.3), (3.4) and (3.6) we see that the barycentric coordinates of A, B and C with respect to
t;]/% are all positive, which means that they lie inside or on the boundary of the triangle t;ﬁ This
is independent of the value for w;; that was used in equation (3.1) to determine the position of

the interior point Z;;. The same reasoning can be used for the remaining PS-points of V;;;, and we
conclude that t;ﬁ is a valid PS-triangle for the vertex V;;; after one /3 subdivision step.

For the corresponding triangle Ti}/,f to be a valid control triangle, it needs to be tangent to the
surface at Vji. This follows from the tangent property of the Bézier control net as already men-

tioned in section 2.4.
From Equation (2.10) we know that

V3 7 7 7
ik = Lircin + Liscia + Liscis

3

cz’jz,z = Ljicjn + Ljscja + Ljscys (3-7)

. - - .
C;J/‘];;g = Lyickr + Lgacia + Liaces.

The same convex combinations also apply to Q;ﬁ C’;ﬁ .

O

and consequently also to

O

_ The formulas (3.7) use only convex combinations of the old data. The barycentric coordinates
L have values between 0 and 1. This means that the subdivision scheme is numerically stable.

3.2.2 Boundaries

If the triangle (V;, V}, Vi) has no neighbouring triangle (V;, Vj, Vi), i.e. the edge V;Vj is a boundary
edge, we need different rules for the second v/3 step to achieve a trisection of the edge ViV;. Instead
of inserting one new vertex in the interior of the boundary triangle, we insert two new vertices on
the boundary edge on the positions where they would have been if there was a neighbouring triangle.

For these vertices, V;; and Vj; on figure 7 we propose a different PS-triangle that uses only
information of the triangle (V;,V;, V). The control points C;;1 and Cjj; 3 are calculated with the
standard formulas. From the tangent property of the Bézier control net we know that C;;» can be
written as a linear combination of the two Bézier ordinates u; and v; from figure 3

Cij2 = wijui + (1 — wiz)re
= WijU; =+ (1 — wij)(/\,-jui + (1 — )\ij)vj)
= (wij + Aij —wigAij)ui + (1 — wij — Aij + wijXij)v;
= (wij + Aij — wijAij)(Lin Qi1 + LinQi2 + LizQi3)
+ (1 —wij — Aij +wijAij) (L1 Q1 + Lja Q2 + LjzQjs).
Note that because
wij + )\,’j — wij)\ij = w,-j(l — )\,J) + /\ij >0 (3 9)
=1-(1—wi)(1-Ay) <1 '

this special rule is a convex combination of the data on the previous level: the algorithm is also
numerically stable at the boundaries.
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Figure 7. For vertices V;; on a boundary edge we choose a different control triangle
that only uses information of the triangle (V;V;V}).

3.2.3 Further optimisation

For the original vertices we can reuse their original control triangles. This is a valid choice because
after subdivision, the PS-points are closer to the involved vertex and are therefore contained in the
PS-triangle. It is however possible to choose a smaller PS-triangle, rescale ¢; and denote the new
PS-triangle with ¢;.

To find the appropriate scaling factor, we need to know the positions of the interior points of
the PS-refinement AY3*. For example in the triangle V;V;;; Vi where Vi, is the new vertex in the
neighbouring triangle (V;V;V}/) we choose the interior point Z;; between R;; and V;

Zij =w;V; + (1 — w,-)V;jk, O<w; <1 (3.10)

and we suggest to choose the same value w; for the interior points of all triangles that have V; as a
vertex. It is this value w; that we use to rescale t; to t, i.e.

Cii = (wian + 1 — w;) Ci1 + wian Cip + wiauiz Cis
Ciy = wian Ca + (wiciz + 1 — w;) Ciz + wias Ci3 (3.11)

k2

01{3 = w;ia Cip + wiaie Cio + (wiai3 +1- wi) Cis.

4 Concluding remarks

In this paper we have proposed an algorithm for computing the B-spline representation of a Powell-
Sabin surface on a refinement of the given triangulation. We haven chosen a v/3 subdivision scheme
because there are no restrictions on the initial triangulation, as opposed to a dyadic scheme. Triadic
subdivision can be seen as two subsequent steps of v/3 subdivision. For new vertices on the bound-
aries of the initial triangulation special rules apply every second v/3 step. Since the algorithm uses
only convex combinations it is numerically stable.
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For a triangulation with a certain PS-refinement, there are different possibilities for the control
and PS-triangles. The only requirement is that a PS-triangle must contain all its PS-points. In [1]
the control triangle with the smallest area is chosen, because then the control points are close to the
surface. This leads to a quadratic programming problem. The control triangles of the new vertices
are optimal in this sense. The scaling operation on the control triangles of the old vertices does not
result in optimal triangles but the control triangle shrinks in each step. This is important because
otherwise the basis functions become linearly dependent.

Wavelets can be developed with the technique of the lifting scheme with the subdivision scheme
as the prediction step and an extra update step [7]. This was already done for uniform Powell-Sabin
splines in [10], but was not yet possible in the general case.
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