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Abstract

This paper discusses wavelet thresholding in smoothing from non-equispaced, noisy
data in one dimension. To deal with the irregularity of the grid we use so called second
generation wavelets, based on the lifting scheme. The lifting scheme itself leads to a grid-
adaptive wavelet transform. We explain that a good numerical condition is an absolute
requisite for successful thresholding. If this condition is not satisfied the output signal can
show an arbitrary bias. We examine the nature and origin of stability problems in second
generation wavelet transforms. The investigation concentrates on lifting with interpolating
prediction, but the conclusions are extendible. The stability problem is a cumulated effect
of the three successive steps in a lifting scheme: split, predict and update. The paper
proposes three ways to stabilise the second generation wavelet transform. The first is a
change in update and reduces the influence of the previous steps. The second is a change
in prediction and operates on the interval boundaries. The third is a change in splitting
procedure and concentrates on the irregularity of the data points. Illustrations show that
reconstruction from thresholded coefficients with this stabilised second generation wavelet
transform leads to smooth and close fits.

Keywords: noise reduction, wavelet, lifting, adaptive, irregular meshes, stability, conditioning

1 Introduction

The classical wavelet based methods for data smoothing mostly assume the input to be a dyadic
vector of equispaced, homoscedastic data. The wavelet basis functions, used in these methods,
possess smoothness properties on regular, dyadic grids. When used for data on irregular point
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sets, remapping these basis functions to the actual grid, makes the irregularities show up in the
output [1, 2].

Most existing wavelet based regression of non-equispaced data combines a traditional equis-
paced algorithm with a “translation” of the non-equispaced input into an equispaced problem.
Possible techniques to do so are:

1. Interpolation in equidistant points [3, 4, 5]

2. Projection of the equispaced result onto the irregular grid [6, 7, 8, 9, 10, 11]. Some of
these methods pay special attention to the approximation of the scaling basis and the
projection coefficients therein.

This paper follows a different approach, based on so-called second generation wavelet trans-
forms [12, 13]. Second generation wavelets extend the familiar concepts of multiresolution,
sparsity, fast algorithms to data on irregular point sets. The key behind this extension is the
lifting scheme [14]. Apart from a few publications [15, 16] that we know of, the use of second
generation wavelets in statistical applications is quite new.

At the core of our noise reduction technique lies simple thresholding. The idea of threshold-
ing is based on the concept of sparsity: the majority of wavelet coefficients is small, and can be
replaced by zero. In the second generation setting, however, the transform may be unstable,
i.e. ‘far from orthogonal’, no Riesz-basis is guaranteed. This turns out to be a challenging
problem in applications of smoothing: the lack of orthogonality makes it hard to predict the
effect of a threshold after reconstruction, and small coefficients may carry important informa-
tion. Although the lifting scheme guarantees a smooth reconstruction, closeness of fit remains
a problem, creating a considerable bias. Specifically for noise reduction, irregularity creates
an additional complication: the noise in the wavelet domain becomes heteroscedastic (i.e. with
fluctuating variance), even for homoscedastic input noise and even within each subband (resol-
ution level). Correcting for this heteroscedasticity, though computationally feasible, may result
in additional instability. Staying with the heteroscedastic noise on the other hand, leads to
inferior fitting when using thresholds.

This paper proposes a novel scheme to deal with instability. Section 2 first puts the different
components of our approach together. Section 3 explains why instability matters. Section 4
explores the mechanism behind the instability. This helps in finding and motivating the new
scheme in Section 5: unlike classical lifting, the proposed scheme does not split the data into
even and odd indexed samples. It rather takes the local grid structure into account. In this
sense, the new scheme is more design adapted than classical lifting. Second, we reduce boundary
problems by symmetric prediction rule near the signal end points. We conclude that section
with some simulations on real data and conclude the paper with comments on the interesting
results.
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2 Owur approach

2.1 Lifting

The input samples s;;, or fi can be associated with a function f living in the space spanned
by basis functions ¢

2J
flx) = suppun(z). (1)
k=1
Here J stands for the highest resolution level used. The application of one step of the wavelet
transform results in a low pass and a high pass signal. A wavelet decomposition algorithm has
the structure of a repeated filter bank algorithm on the low pass output. Transforming from
the highest resolution level J to the lowest resolution L gives the decomposition

2L J—1 27
f(x) = Z SLePLK(T) + Z Z w; 1P k(T), (2)
=1 i=L k=1

where sp,j, are the scaling coefficients and w;;, are the wavelet coefficients. This is a multiresol-
ution analysis (MRA).

The lifting scheme decomposes the filterbank operation in consecutive lifting steps [17]. The
main difference with the classical construction is that is does not rely on the Fourier transform.
All classical wavelet transforms can be implemented using the lifting scheme. The basic idea
is simple. It starts by splitting the signal in points with an odd index and points with an even
index. The lifting scheme then gradually builds the filterbank transform. The building blocks
are lifting steps as shown in Figure 1.

., Dual . Primal,
SPIt ! itting | Lifting
) Ot
Input— o | |
Keepeven}— —(H)——=LP

Figure 1: Decomposition of a filterbank into lifting steps. The first type of lifting is called dual
lifting or prediction. The other type is primal lifting or update.

Dual lifting subtracts a filtered version of the even samples from the odd samples. The
filter applied to the evens acts as a prediction of the odds. The prediction formula used in
this paper is an interpolating polynomial, as proposed by Deslauriers and Dubuc [18, 19, 20].
Primal lifting, also known as update step, adds a filtered version of the dual lifting output to
the so far untouched even samples.
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2.2 Subdivision

Inverting a lifted transform is straightforward: run through the scheme backwards replacing
plus with minus-signs, and merge what had been split [13]. Unlike the classical filterbank setup,
the same filters appear in forward and inverse transform. Running through all scales of the
inverse transform starting with all zeros except for one coefficient equal to one at a particular
position, reveals the basis functions corresponding to the coefficient at that position. Indeed,
inverse transform on a Kronecker sequence of wavelet coefficients w;; = 0;;05; synthesises the
function:

oL J—1 27
Z 0-ork+ Z Z 050k = iy (3)
1 =L k=1

This procedure is known as subdivision. Applying this to the lifting decomposition of a
wavelet transform, reveals the effect of the primal lifting step. Without this update step, the
unique non-zero coefficient would flow unchanged and without any effect through the filter bank
and arrive at the low pass branch of the (inverse) filter bank at the next (finer) scale. In other
words, the wavelet function at scale 7 would simply coincide with the scaling function at the
next, finer scale:

0
¢£I]f = ©j+1,2k+1- (4)

Although in the forward transform the dual lifting step creates the detail or wavelet coefficients,
it leaves the odd scaling basis functions untouched. The background (meaning, interpretation)
of the detail coefficients before the update has taken place is still a scaling function. After the
update step, this changes. Consider now the inverse transform including the update step. A
two taps update filter with (possibly non-stationary) coefficients A, x, B; ; adds two non-zeros to
the even branch, namely —A;; and —B; ;. The unique non-zero in the odd branch corresponds
to the unlifted wavelet basis function, i.e. the odd, fine scaling function. This allows to write:

ik = %[‘?l]c — Bikpjk — AjkPjki1- (5)

The extension to longer update filters is obvious.

2.3 Thresholding

Thresholding, especially soft-thresholding [21] is a successful non-linear technique in wavelet
based noise reduction of piecewise continuous signals. A central issue in this kind of smoothing
procedures is how to find a suitable value for the smoothing parameter, in this case the threshold
A. This article opts for a minimum mean square error (MSE) approach. The expected MSE
(also known as risk) combines two effects:

Risk = bias® 4 variance, (6)
with:
1
bias?(A) = —|Ewx —v|? (7)
N
1
variance(\) = —E|wx— Ew,l|?* (8)

N
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In these equations, w stands for the vector of noisy wavelet coefficients and wy is the vector
of thresholded wavelet coefficients. The vector v has the noise-free coefficients and N is the
length of all these vectors. The variance stands for the noise: it decreases when the threshold
grows. The bias on the other hand increases when the threshold grows. The minimum MSE
threshold is the best trade-off between variance and bias in /5-norm sense.

In practical applications, the mean square error cannot be computed exactly, since the noise
free data are unknown. Therefore, in our tests, we use the method of the Generalised Cross
Validation (GCV) to estimate the minimum mean square error threshold [22].

2.4 Non-equidistant data

Lifting steps are by no means limited to equidistant data. Interpolating prediction, for instance,
can trivially be extended to non-equispaced samples.

In the non-equispaced case, the lifting filters are no longer stationary. The standard devi-
ation of the noise will be different for every wavelet coefficient even if the noise on the input
had a constant standard deviation. Therefore we need a noise stationarity compensation: com-
puting the noise covariance matrix S in the wavelet domain according to

S=wQwr, 9)

where W is the forward wavelet transform matrix, can be performed with linear complexity
if the input correlation matrix () is banded, for instance, if the input noise is uncorrelated.
The matrix W can be constructed by multiplying the filter matrices of each step. The entries
follow directly from analysing the (time varying) impuls response of the lifted filter bank. The
matrix () is definied as Enn? where 7 is the vector with the noise on the input. Dividing each
coefficient w; by the corresponding diagonal element +/S;; results in homoscedastic noise.

2.5 Example

Unlike Fourier-based procedures, wavelets perform particularly well in catching discontinuities
in signals, but the traditional theory is directed to equispaced samples only. This paper tries
to estimate piecewise continuous signals corrupted by noise, and sampled at non-equispaced
locations. Figure 2(a) has an example of such a signal, the so called ‘heavisine’ test function

f(z) = 4sin(4rx) — sign(z — 0.3) — sign(0.72 — z) (10)

sampled on 2048 points. This test function is a piecewice continuous signal, a typical member of
the class of signals for which wavelets are the optimal approach. The points were drawn from a
uniform density on [0, 1]. To this signal, white and stationary noise was added with a standard
deviation of 0 = 0.3. Figure 2(b) shows the output from thresholding the 5 finest resolution
level of a classical wavelet transform. The wavelet transform here was constructed by lifting
with cubic prediction followed by 2-taps-update, but no grid structure was taken into account.
Remapping the estimation to this grid makes the irregularity show up in the result. A much
smoother result follows if the transform is based on the grid. Lifted wavelet transforms can be
made grid-adaptive. The prediction operates on the real positions of each observation. Just as
in classical threshold algorithms, coefficients are being thresholded and the output is obtained
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Figure 2: (a) A noisy version of the ‘heavisine’ test function. (b) Classical wavelets cannot take
the grid structure into account. (c) Second generation wavelets, based on lifting, are smooth
on the actual grid but lead to a tremendously biased reconstruction. (d) A detail of both
reconstructions in a region without bias.

by inverse transform from these thresholded coefficients. From the detailed comparison of
Figure 2(d) we see that the second generation approach is intrinsically superior. Figure 2(c)
however shows that the reconstruction from these second generation wavelets contains strange
artifacts, or — in statistical terminology — a strange bias.

3 The problem: instability

3.1 Numerical condition

A classical wavelet transform guarantees a norm semi-equivalence between the input and the
wavelet coefficients: if w is the wavelet transform of y, then the ¢5 norms of these vectors
satisfy:

¢ Jlwl <yl < C-lwl, (11)

with 0 < ¢,C < oo independent of the vector length. This relates to the concept of Riesz
bases. Loosely speaking, a Riesz basis, also known as stable basis, is a basis in which the basis
vectors or functions cannot be arbitrarily close to each other. This notion becomes important
in vector spaces with infinite dimension, or, as in our case, when dealing with situations where
the dimension is finite but arbitrarily large. The constants ¢ and C' are closely related to the
condition number of the wavelet transform matrix.

The extension to non-equispaced data through lifting gives no guarantee for the preserva-
tion of this comfortable Riesz basis background. As a matter of fact, Table 1 illustrates that
condition numbers can be quite high. The condition number of the multiscale transform matrix

W is defined as & = ||W||[|W] .
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n equidistant points random points
2 1.98.10? 3.25.10¢
4 6.11.10 1.48.10%
6 1.78.102 6.02.103
8 1.51.10% 1.22.10°

Table 1: Condition numbers of multiscale transforms on regular and irregular multilevel meshes
for increasing number of dual vanishing moments (72)

3.2 Unpredictable effect

High condition numbers mean that a small modification of wavelet coefficient values may result
in an unpredictable effect on the output. In the case of thresholding, this means that a small
coefficient may carry substantial signal information. Since thresholding only works well on
homoscedastic data (i.e. coefficients with constant noise variance), the wavelet coefficients have
to be renormalised according to their variances. This makes the problem analysis even more
complex.

x10*

(c)

Figure 3: (a) MSE plot in the signal domain. (b) MSE plot in the wavelet domain. The
transform is unstable: the optimal threshold in the wavelet domain results in an unacceptable
bias in the signal domain. (c) An arbitrarily unstable basis in IR”.

Figure 3 illustrates this observation: it compares the MSE plot in the wavelet domain with
the MSE plot in the signal domain. Whereas the MSE in the wavelet domain is smooth, small
changes in threshold value may cause an important increase in error of the output in the signal
domain. The threshold minimising this output error is also smaller than the minimum MSE
threshold in the wavelet domain. This is because the bias increases faster in the signal domain.
This small threshold is not really able to remove all the noise.

Not only do some individual coefficients have a wide impact, the interaction between the
coefficients may be unpredictable, due to the fact that the transform is far from orthogonal. A
simple example in IR® makes clear what happens. Suppose we have the basis vectors
{(=1/2,4/3/2,0), (=1/2,—+/3/2,0),(1,0,¢)}, as in Figure 3(c). If ¢ is small, this basis has
an extremely bad condition. Suppose the noise is (0,0,¢) in the canonical basis, then its
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coordinates in this oblique basis are (1,1, 1). If one or two of these coordinates are thresholded,
“hidden components” become clear. This bad condition can only be detected with a global
analysis: none of the basis vectors is close to another one. In the example of Figure 2, the noise
added large coefficients to the wavelet representation. In the unthresholded set of coefficients,
the effect of one coefficient is cancelled by a combination of other wavelet coefficients. We
could state that the noise does not fit well into the oblique basis, thereby causing these large,
mutually annihilating coefficients. Removing a part of these coefficients uncovers these hidden
components.

4 The mechanism behind the instability

A more quantitative analysis of the instability problem follows from considering the lifting steps
throughout. It turns out that the instability gradually builds up in the subsequent filter stages,
culminating in the last, update step.

4.1 Large update coefficients

The expression for the lifted wavelet function in Section 2.2 shows that if the update coefficients
are large, for instance, if:

0
(el

B .
T skl

(12)

the lifted wavelet 1); , nearly falls within the vector space spanned by its neighbouring scaling
functions at the same scale. This creates a detail space which is far from orthogonal to the
coarse scaling space. Large update coefficients result in a considerable overlap of scaling and
wavelet function at a given scale. When the scaling functions are further decomposed into
a wavelet basis at coarser scales, the immediate correlation between basis functions becomes
hidden. The bad condition is then hard to detect in advance and hard to localise.

4.2 Prediction determines update coefficients

The classical implementation of the lifting scheme finds update filters such that they meet
conditions of vanishing moments. With a two taps update filter, for instance, we can impose
the primal wavelets to have two vanishing moments. The update coefficients are then:

A, = M1 2541 Tj k1 — Tjgp1,2641 (13)
VIL A — —
M, Tjke1 — Tjk
Mj10k41 Tjg12k01 — Tjk
B = ) (14)

Mjr+1 Tjk+1 — Tik

In these expressions, M, stands for the scaling function integrals:

Mj,k:/ wix(z)dz, (15)

—00
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and T, stands for the first normalised moment:

ffooo z;(z)de
7 ein(x)ds

Through these expressions, the update coefficients depend on the primal scaling functions.
These basis functions in their turn are determined by the prediction operator. Hence, the
prediction has an influence on the stability of the transform.

An interesting example is a lifting scheme with linear interpolating prediction, followed by a
2-taps update. On an equidistant data set, this scheme reduces to the well known biorthogonal
wavelet basis of Cohen, Daubechies, and Feauveau [23] with two dual and two primal vanishing
moments (CDF 22). Subdivision shows that in this simple case the scaling functions are
always positive. The Li-normalised scaling functions all have integral one. On the other hand,
the values of T, can be interpreted as the mean value of the corresponding scaling function.
Taking that into account, it is easy to check that Z;; < Zj;12k4+1 < Tjr4+11. As a consequence,
0 < Ajx <1 (and similarly for B;j), and the transform is stable on any grid.

(16)

Tjk =

4.3 Splitting causes prediction to mix scales

If we use interpolating prediction with polynomials of higher order than linear, the scaling
functions may show unwanted features. Mixing of scales creates scaling functions with heavy
side blobs. Figure 4(a) has plots of two adjacent scaling functions after one subdivision step.
‘Even’ points at this scale are marked with a box, while the ‘odd’ points appear as circles.
The first scaling function shows a heavy side blob, resulting in its integral being negative. The
second scaling function does not have its maximum in its central point (i.e. the even point from
which the subdivision started), which causes an unexpected move of its balancing point. Both
phenomena persist in subsequent subdivision steps. Update steps using combinations with
this kind of scaling functions are likely to use high update coefficients in orde to get wavelet
functions with a given number of vanishing moments.

A closer look to the grid points reveals that the same ‘odd’ point creates both phenomena:
the gap between this odd point and its immediate even neighbours is wider than the gaps
between the even points on both sides. As a consequence, the prediction in this point mixes two
scales. Figure 4(b) illustrates what happens to cubic interpolating polynomials on such a grid.
If the gap between the point of prediction and the nearest interpolation points is larger than
the gaps between the interpolation points at both sides, the interpolating polynomial stretches
over two scales and may show high values at the position where the prediction takes place. Fine
scale information is in some sense extrapolated to coarse scales, resulting in unexpected values.

5 Stabilising the lifting scheme

Because the stability problem is a combination of cumulating effects, there are several points
in which the lifting procedure can be modified in order to enhance stability. A combination of
modifications may further reduce the problem.
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Figure 4: (a) A scaling function with a negative integral and a scaling function of which
the maximum does not coincide with the initial central point of the subdivision scheme. (b)
[lustration for cubic interpolating polynomials.

5.1 Update step

There are several ways to control the destabilising effect of the update step. A method of local
semi-orthogonalisation has been proposed [24] and applied to curve estimation problems [25].

A more direct method to reduce the magnitude of update coefficients, is by looking for a
minimum norm update filter. In order to meet the same number of vanishing moments, the
filter length has to be extended. For an update with two vanishing moments we can use a three
taps update filter with coefficients A;, B; i, C; . This leads to the wavelet function:

0
(s %[;]g — Cirpjk-1 — Bjrpjr — Aj k) k+1- (17)

Two degrees of freedom are used to impose the vanishing moments. The general solution for
the update coefficients then involves a parameter, u, that is left to choose:

aps L :
Aj,k = Aitk,p — UN, with L= Mj,k—ljj,k - Mj,kjj,k—17 (18)
aps K
Bjr = B;fkp R K = Mjp1lj1— Mjp11p41, (19)
Cij = U. N = Mj,k—‘rllj,k - Mj,klj,k—kl' (20)
(21)

The minimum norm solution for this system follows from
N
T2 LK+ NQ'(
A third possibility is to look for the closest pair of coarse scaling functions ¢,; and ;, that
satisfy

u A2 L+ BYPK) (22)

Tt < Tjs1oke1 < Ty (23)

All three procedures expand the support width of the wavelet basis functions. Since the actual
problem originate from splitting and prediction, a solution based on the update only has no
guarantee of being effective in all cases.
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5.2 Prediction and interval boundaries

The interpolation scheme for the prediction of ‘odd’ points needs to be adapted near the bound-
ary of the interval. It is no longer possible to choose the interpolating points symmetrically
around the point of prediction. The standard lifting procedure then chooses the interpolating
points as close as possible to the prediction point, allowing for asymmetrical interpolation and
even extrapolation as prediction, as illustrated in Figure 5(b). As a consequence, some pre-
diction points use the same interpolating polynomial and the prediction in points close to the
boundary is influenced by points relatively far.

We therefore propose to give up some vanishing moments in the neighbourhood of the
boundaries, in order to preserve a symmetric prediction. This new prediction at the boundaries
is illustrated in Figure 5(c). This approach is also used in [26, 27] in the framework of adaptive
wavelet transforms.

(a) (b) ()

Figure 5: (a) Symmetrical interpolation points away from the boundary. (b) Close to the
boundary the standard lifting procedure chooses the interpolation points as close as possible
to the prediction point, but asymmetrically. (c¢) We preserve a symmetric prediction, giving up
some vanishing moments.

Smooth functions, or smooth pieces of functions, are well approximated by polynomials and
therefore have small coefficients if the wavelet basis reproduces polynomials exactly up to a
certain degree. This degree is the number of dual vanishing moments: it measures the approx-
imation capacity of the wavelet basis. Shortening the prediction stencil near the boundaries
may therefore lead to a less sparse representation in the neighbourhood of these boundaries.

5.3 Splitting and scale mixing

As explained in Section 4.3 a good subdivision algorithm should not mix scales in one step.
To this end, the splitting of samples can be reorganised. Changing the splitting procedure also
influences the subsequent prediction and update steps.

5.3.1 At the splitting stage

Following the analysis of Figure 4, we wish to exclude odd points from the list of points whose
function value is predicted, if this prediction would involve different scales. Figure 6 illustrates
what we do. Point d is moved from the list of ‘odd’ points (points in which the value is
predicted) towards the list of ‘even’ points (points used for prediction) since the distance C
between this point and its even neighbour e is larger than the minimum distance between the
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evens used for the prediction (in this case: C' > D + E). Adding point d to the list of evens
however introduces a new problem for the prediction of point b, since the distance between b
and even neighbour c¢ is larger than the distance between this even neighbour and new even d.
We could rerun the resplitting procedure until we have reached a point where no scale mixture
occurs. This would make some lattices unsplittable, or may lead to a slow progress in the
wavelet coefficient computation.

a b c d efg h i
e O e Ogge e oe 0 €
N A é C a E
Figure 6: Re-arranging the split procedure: odd point d is added to the even list, because

predicting the value in this point with a cubic polynomial would involve two scales. Indeed,
the distance C' > D + E.

5.3.2 Prediction stencil

We therefore take a different approach to deal with odd points that get into an unbalanced
scale situation after new evens were added. Those new evens are not used for prediction if they
are too close to an existing even point. The even point originally destinated to do this job is
used instead. In the example of Figure 6, the value in d is only used for the prediction in f,
not for b. The computation of the detail coefficient in b involves the values in ¢ and in e, as
originally planned.

One could ask why we do not apply the same procedure to predict the value in d. We could
leave this point in the ‘odd’ state and predict it using the values in a, ¢, e and ¢. This would
reduce instability indeed, but not completely. It could introduce new problems, since it would
create a heavy and far side blob in the scaling function associated with 7. If we apply this
procedure on d, on the other hand, the scaling function associated with e stretches up to a, but
that is no further than it was originally.

5.4 Examples and extensions

We now apply the proposed scheme to the ‘heavisine’ example from Figure 2. Using the
symmetric prediction near the boundaries, as proposed in Section 5.2, in combination with the
resplit procedure of this section, reduces the bias to acceptable level, as shown in Figure 7.
This reconstruction involves approximately the same number of thresholded coefficients and
none of them reveals hidden effects. The output is still a bit noisy, due to the imperfections of
the brute threshold approach. More sophisticated coefficient selection remove a great deal of
this remaining noise, typically by looking accross scales (28, 29].

Although the problem analysis had a four points prediction in mind, the method also solves
the even worse instabilities at higher prediction orders. Figure 8 investigates the effect of our
proposed modifications on a transform with eight dual vanishing moments, i.e. the predic-
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Figure 7: The proposed lifting scheme applied to the example of Figure 2.

tion was a seventh degree polynomial. The proposed stabilising methods bring the estimated
function back to finite values, in a smooth and close fit.

Figure 8: Left: the classical implementation of a second generation wavelet with 8 dual and 2
primal vanishing moments leads to an unacceptable bias. Right: the proposed lifting scheme
has a stabilising effect, also for 8 dual vanishing moments.

A second example is a real data set [30]. It has 133 observations of motorcyclists’ heads
during a crash. The set represents the values of the head acceleration as a function of time (in
milliseconds). This data set contains several simultaneous observations (i.e. different acceler-
ation values at the same time). The classical second generation transform crashes when three
or more abscis points coincide (the return values were oo). Therefore, we first omit double
observations and fit the data in 94 single observations. We could apply a threshold procedure.
The observations are clearly heteroscedastic, so we first need to estimate the standard deviation
in each point, for instance, using a pilot estimator as in [25]. Our findings were that the final
outcome heavily depends on this pilot estimator and on the number of levels being thresholded.
As a matter of fact, the non-linearity of thresholding added little effect to a simple, linear
estimation: remove all coefficients at the first say M levels. A cross validation procedure finds
a good value for M: we first apply one step of the (new or classical) splitting scheme without
prediction or update. We then run the algorithm on the reduced set, using a forward wavelet
transform of M — 1 levels. We compute the values of the inverse transform with M levels in
the left-out data points. The quality of this prediction (w.r.t. the observed values) measures
the quality of the wavelet estimator with M levels of scale. Figure 9(a) shows that also on
small data sets, the classical implementation suffers from instability. Our modified algorithm
finds a smooth and quite unbiased curve in 9(b). Thanks to the improved splitting scheme, no
problem arises from simultaneous data, as shown in the output in Figure 9(c).

In a third example we repeated an experiment a hundred times, i.e. we generated 100 random
grids with uniformly distributed sample points and additive Gaussian noise. We compared to
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Figure 9: Fitting the motorcyclists’ acceleration data. (a) Using a classical second generation
wavelet transform (cubic interpolating prediction, 2-taps update) leads to bias. (b) Apply-
ing the corresponding, modified transform, preventing mixing of scales and with symmetric,
lower order prediction near the boundaries. (c) The original data set contained simultaneous
observations, which pose no problem in the proposed scheme.

no-grid | simple lifting | stabilized lifting
mean SNR | 29.71 dB 10.38 dB 29.20 dB
stand. dev. | 0.666 dB 9.95 dB 0.86 dB

Table 2: Average output SNR-values and standard deviations for three methods applied to 100
experiments. Input SNR was 20 dB.

output of three methods: the procedure without taking the grid into account (brute remapping),
the non-stabilized lifting procedure, and our stabilized version. Table 2 compares the average
output SNR-values, as well as the estimated standard deviation (i.e. sum of squared deviations
from the average, devided by total number of experiments minus one). The input SNR for
all these experiments was 20 dB. On the average, the straightforward lifting procedure sees a
dramatic decrease in SNR, because of the occasionally severe bias. Moreover, there is large
variation in output quality: some experiments generate a reasonable output, but in others,
the bias may even destroy the signal completely, resulting in a negative SNR value. Both the
no-grid approach and our stabilzed lifting procedure show a regular performance. The no-grid
approach has a slightly higher signal-to-noise ratio, which seems to indicate that minor bias
effects are still present after stabilsation. On the other hand, the SNR was computed point by
point, so this measure has no direct influence from smoothness.

6 Conclusions

This paper has presented an original analysis of the instability problems of second generation
wavelet transforms. This problem is the cumulated effect of several factors: the three successive
steps in a lifting scheme — split, prediction and update — together are responsible for the
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instability.
Based on this analysis, the paper proposed three novel adaptations for the lifting scheme:

1. the first modification is a minimisation of the update coefficients in order to reduce the
effect of the previous steps,

2. the second modification is a relaxation of the prediction operation near the boundaries,

3. while the third modification starts from an alternative splitting scheme, followed by an
according prediction and update, in order to deal with the irregularity.

Although the analysis concentrates on cubic polynomial prediction, the experiments il-
lustrate that the adaptations are applicable for a wider range of prediction operators. The
combination of our proposed modifications reduces the bias after reconstruction to the order
of magnitude of bias on the wavelet coefficients: this compares to the classical, (bi)orthogonal
situation.

These results leave us with a couple of mainly theoretical questions, none of which has a
trivial answer, given the fact that subdivision on arbitrary grids in general is still a quite open
field. More specifically, when applying lifting to non-equispaced data, at least four issues are
important:

1. Convergence of the subdivision scheme is necessary for proper definition of the multiresol-
ution basis functions. Whereas convergence is well understood in regular or semi-regular
design, far less is known about convergence of subdivision on arbitrary point sets. Since
Fourier techniques no longer apply, the proofs follow a totally different path [1]. The
present results mainly concentrate on the cubic interpolation case and the extension to
higher order scheme is not automatic. Moreover, the results are based on certain assump-
tions on the homogeneity and balancing of the grid. In our rearranged transform, it is
unclear what the effect is of skipping prediction points in order to prevent scale mixing.
The present results do however not depend on the splitting strategy, so one might expect
that the new scheme does converge, possibly under less stringent conditions, because of
the scale mix prevention. Proving this using the present techniques, would require a
considerable effort.

2. What can be said about the smoothness of the limiting curve? If the rearranged scheme
converges, what do the basis functions look like? Looking at the results of our experi-
ments, we conjecture that the basis functions exist and are smooth, but they may have
an interval of strict positive length inside their support where they are exactly zero.

3. What result can be found for the numerical condition? Is there any upper bound for the
condition number? This could help in establishing a more precise criterion for splitting
the input into interpolation points and prediction points. Also note that convergence
results give information about the scaling basis, and the corresponding nested spaces.
The step to a wavelet decomposition, i.e. update filters, may add new instabilities, as
discussed in this paper.
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4. What are the approximation properties of the basis? Dual vanishing moments play an
important role in approximation. Since our adaptation includes a relaxation on the num-
ber of dual moments near the boundary, this could have (minor) impact on the local
approximation capacity and the sparsity of the wavelet decomposition.
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