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Abstract

We investigate clusters of hypercubes in d-dimensional space as a function of the
number of vertices, N , and number of cluster shells, L. The number of links, vertices,
and exterior vertices exhibit ‘magic number’ characteristics versus L, as the dimension
of the space changes. Starting with only the spatial coordinates, we create an adjacency
and distance matrix that facilitates the calculation of topological indices, including the
Wiener, hyper-Wiener, reverse Wiener, Szeged, Balaban, and Kirchhoff indices. Some
known topological formulas for hypercubes when L = 1 are experimentally verified.
The asymptotic limits with N of the topological indices are shown to exhibit power
law behavior whose exponent changes with d and type of topological index. The
asymptotic graph energy is linear with N , whose slope changes with d, and in 2D
agrees numerically with previous calculations. Also, the thermodynamic properties
such as entropy, free energy, and enthalpy of these lattices show logarithmic behavior
with increasing N . The hypercubic clusters are projected onto 3D space when the
dimensionality d > 3.

Introduction

A d-dimensional hypercube Qd can be defined recursively in terms of two graphs and a
Cartesian product as

Qd =

{
Q0, d = 0
K2 ×Qd−1, d > 0

where Q0 is a trivial graph having one node, K2 is a complete graph with two nodes, and
× represents a Cartesian product [1,2]. Thus, the d-cube, Qd, is a graph with 2d Boolean
vectors with coordinates 0 or 1, where two nodes are adjacent if they differ in exactly one
coordinate. One application of hypercubes is for multicore computer architectures with a
publication history of over 30 years [2,3]. Our interest is in the graph properties, which also
have a long history [1].

Clusters have been considered in geometry [4] and in 3D nanoscience [5], but we are not
aware of previous work with hypercubes. A large collection of results from metal nanoclusters
exists, as metals comprise 75% of elements in the Periodic Table. These results are fairly
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recent with the majority occurring since the beginning of this century 15 years ago from
developments in chemical synthesis [6]. Semiconductor nanocrystals or quantum dots are
also of interest as they have novel properties due to doping [7].

Topological indices can be traced back to the Wiener index in 1947 [8], although it was
some time later in 1971 [9] that its status in the field of mathematical chemistry became
established. Today there are many topological indices, and there have been fluctuations
in the number of publications on these topics, with some indices becoming more relevant
in the lexicon of topological chemistry. Recently, a C++ program detailing the numerical
calculation of many of these indices has been made available [10] and we have rewritten these
programs with a MATLAB program that calculates the adjacency and distance matrices
from only the spatial coordinates. It is worthwhile to note that the C++ program only
works for fullerenes, while our program only requires the coordinates. In a different type of
analysis, we have modeled both fullerenes and nanoclusters [11,12].

Asymptotic limits have been studied for the Wiener index [13]. The current authors also
looked at limits for topological indices in 3D for nanoclusters [12]. Topological indices have
power law large N behavior, where the exponent depends on the dimension, d [12,13]. In
this manuscript, we examine in more detail these relationships for several topological indices
as the dimensionality changes. We also examine the asymptotic limit of the graph energy,
which has been examined in detail for d = 2 [14].

In the last 15 years, complex network theory has evolved to consider the statistical
mechanics of graphs [15,16]. Examples of networks include the cell, a network of chemicals
linked by chemical reactions, and the Internet, which has physical connections. More recent
analysis has considered the adjacency matrix as a central element of the partition function,
with thermodynamic definitions resulting from this designation [17]. We consider the large
N asymptotic behavior of the subsequently defined entropy, free energy, and enthalpy as it
applies to clusters of hypercubes.

1 Methods

As mentioned, we use a theoretical graph – network approach where an adjacency matrix is
created which contains a 1 at position (i, j) if vertices i, j are nearest neighbors. Thus,

A(i, j) =

{
1, if i, j are n.n.
0, otherwise

Some topological indices are most easily calculated from the distance matrix, which is defined
as

Dij =

{
0, i = j
dij, i 6= j

(1)

where dij is the length of the shortest path from i to j. An efficient algorithm for the
calculation of the distance matrix from the adjacency matrix exists [18]. Using this definition,
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we can calculate the Wiener index, W (G) and hyper-Wiener index, WW (G) as

W (G) =
1

2

n∑
i=1

n∑
j=1

dij =
n∑

i>j=1

dij

WW (G) =
1

2

n∑
i=1

n∑
j=1

(dij + d2ij)

(2)

and the reverse Wiener index [19] Λ(G) is

Λ(G) = rW = n(n− 1)D/2−W (G) (3)

where D is the topological diameter defined as

D = max
i
{max

j
(Dij)} (4)

and Dij is an element of the distance matrix. A related index is the Szeged index introduced
by Gutman [20], where

Sz(G) =
∑
edges

ninj (5)

where, for any edge ij, ni counts the vertices of G that are closer to vertex i than to j, and
nj counts those that are closer to j than to i, with vertices equidistant from i and j ignored.
This is a natural generalization of the Wiener index since (5) is actually the formula used by
Wiener for acyclic graphs (for which W = Sz) [21]. The Szeged index also has some other
similarities to the Wiener index, in that if G and G′ are catacondensed benzenoid systems
with an equal number of hexagons, then W (G) = W (G′)(mod8) and Sz(G) = Sz(G′)(mod8)
[22]. Also for any connected network G, Sz(G) ≥ W (G) [23].

Another invariant derived from the distance matrix is the Balaban index [24-26], J ,

J(G) =
b

c+ 1

∑
edges

(didj)
−1/2 (6)

where b is the number of edges, c is the number of primitive cycles and di is the row sum

di =
n∑
j=1

dij. (7)

The Balaban index was originally introduced as being less degenerate than other indices
[24], and has some asymptotic limits: for a linear alkane CnH2n+2 it tends to π, while for
highly branched alkanes, J increases without limit.

The Kirchhoff index can be determined from the Laplacian matrix, where L is defined
as

L = ∆−A (8)
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and ∆ is a diagonal matrix of order n, with diagonal elements = the number of first neighbors,
or the number of non-zero entries in a column in the adjacency matrix, A [27]. Then the
Kirchhoff index is

Kf(G) = n
n−1∑
i=1

1

λi
(9)

and λi is an eigenvalue of L.
The complex systems network theory uses the adjacency matrix in the model [17], where

the partition function is
Z = Tr eβA (10)

and β = 1/kBT is the inverse temperature, with kB Boltzmann’s constant. For an un-
weighted network, β = 1, which is what we use. The statistical mechanics quantities are
then calculated from the probability of occupying a state j as

pj =
eβλj

Z

where λj is an eigenvalue of A. The informational Shannon entropy is then

S(G, β) = −
∑
j

pj ln pj (11)

for a graph G [28]. The total energy H, or enthalpy, and Helmholtz free energy, F , are
related by F = H − TS, which results in the expressions

F (G, β) = − 1

β
lnZ (12)

and

H(G, β) = − 1

Z
Tr(AeβA) (13)

where A is again the adjacency matrix [17].
There has been previous work on the asymptotic behavior of lattices. The large N

behavior of the topological indices follows a power law when d = 3 [12]. For the Wiener
index, there exists a conjecture [13] that

lim
N→∞

W (N) = aN s, s = 2 + 1/d. (14)

The definition of lattice energy for a graph is

E(G) =
N∑
i=1

|λi(G)| (15)

where λi(G) is an eigenvalue of A [14]. In 2D, there exists a formula for the asymptotic
energy, which is [14]

lim
N→∞

E(G) = 1.6211N. (16)
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Magic formulas
Dimension d = 4 d = 3 d = 2 d = 1
Vertices (2L)4 (2L)3 (2L)2 2L
Links 32L3(2L− 1) 12L2(2L− 1) 4L(2L− 1) 2L− 1
Exterior Vertices 16(4L3 − 6L2 + 4L− 1) 8(3L2 − 3L+ 1) 4(2L− 1) 2

Table 1: Magic formulas for clusters of hypercubes when d ≤ 4.

Our work adds to this analysis by adding more topological indices and more lattice di-
mensions when considering the graph energy. Also, when using a Hamiltonian in the sta-
tistical mechanics approach, we have demonstrated large N logarithmic behavior for the
thermodynamic properties of 3D nanoclusters [11]. This work extends that analysis as the
dimensionality changes and we find the large N logarithmic behavior still applies.

2 Results

We construct clusters in d-dimensional space where each layer sequentially covers the pre-
vious one. When considering clusters in geometry, one can derive ‘magic formulas’ for the
number of vertices, links and exterior vertices. Some work has been done in this regard for
2D and 3D clusters [4]. Our work considers clusters in d-dimensional space. Table 1 shows
magic formulas for clusters with d ≤ 4.

Thus, our hypercube clusters have N = (2L)d vertices, where L is the number of cluster
layers. Figure 1 shows clusters for L = 1, 2 and d ≤ 4. We project the d = 4 dimensional
hypercube onto the diagonal 3D subspace containing the center of the hypercube and the
vertices (0,0,0,0), (0,0,1,1), and (0,1,0,1). This is the diagonal 3D subspace through the
center of the hypercube and spanned by the orthogonal vectors (1, 1, 1, 1), (1, 1,−1,−1),
and (1,−1, 1,−1). In general for d ≥ 4 we take a 3D subspace containing the center of
the hypercube and three vertices such that the three vectors connecting the center with
these three vertices are ‘as orthogonal as possible’. This is the affine subspace through the
center of the hypercube and spanned by the vector (1,1,...1) and two other vectors with ±1
coordinates such that the absolute value of their inner product is minimal.

We calculate the six topological indices from a MATLAB program. We have previously
demonstrated that this program reproduces the values associated with C60 for all six indices,
so we are confident of our calculations [12]. Figure 2 shows the behavior of the indices for
a fixed N = 4096, where d and L changes to accommodate that N . The Szeged index is
monotonically increasing, while the Balaban index is relatively high for d = 1, since that is
an acyclic graph and J → π, but for d = 2, J decreases due to the cycles in the graph. All
the other indices are monotonically decreasing with a smaller decrease after d = 6.

Formulas for the topological indices of hypercubes, Qd, have been derived in previous
publications [29-32]. For convenience, we list them in Table 2. These formulas are strictly
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Figure 1: A-D are plots of L = 1 and d ≤ 4. E-H are plots of L = 2 and d ≤ 4. For d = 4,
we have projected the hypercubic cluster onto 3D space.
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Figure 2: Line graphs of six topological indices when N = 4096, and is fixed, as d changes.

Topological index Hypercube formula L = 1

Wiener W (Q− d) = 22(d−1)d [29]

Szeged Sz(Qd) = 23(d−1)d [30]

Balaban J(Qd) = 2d−1d
2d−1(d−2)+2

[31]

Kirchoff Kf(Qd) = 2d
∑2d−1

i=1 1/λi [32]

Table 2: Published topological formulas for hypercubes of four indices. The formula is found
in the reference listed in each equation.
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Index d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 12
Wiener 1 8 48 256 1280 6144 50331648
Szeged 1 16 192 2048 20480 196608 103079215104

Balaban 1 2 2 1.778 1.599 1.4769 1.1998828239
Kirchoff 1 5.00 19.33 68.66 236.53 809.06 1560002.3088

Table 3: Calculated topological indices corresponding to the formulas listed in Table 2.

for L = 1 in our designation of cluster geometry. We mention here that a different formula
for the Szeged index is listed in [33] as

Sz(Qd) = 23d−2. (17)

According to our calculations, this is incorrect, and we agree with the formula listed in
Table 2. The results of our calculated values of the four indices for the L = 1 hypercubes
are shown in Table 3. These values agree with the formulas in Table 2.

We note that the formula for the Kirchhoff index can be simply obtained from the
definition after replacing N with 2d. However, a computer best calculates the eigenvalues of
the Laplacian used in the Kirchhoff index.

The asymptotic behavior of the indices for different dimensions is demonstrated in Ta-
ble 4. These limits are obtained by choosing d and L so that N is about 30,000 for most of
the calculations. These structures take about 24 hours on a computer with an i7 processor,
32GB of RAM, and running MATLAB R2014a. It takes less time when the adjacency ma-
trix is sparse, as when d = 1. We find upon closer analysis, the following power law limits
for large N

lim
N→∞

TI(N) = aN s. (18)

In Table 4, both a and s can be numerically interpolated from the data, using adjacent
ordered pairs of (TI,N), where TI is a topological index as N → ∞. This gives us the
following results for the dependence of s on d for the indices

sW = srW = 2 + 1/d, d ≥ 1, sWW =
2(d+ 1)

d
, d ≥ 1,

sSz = 3, sKf =

{
3, d = 1
2, d ≥ 2

, sJ = −1

d
, d ≥ 2.

It appears that the Wiener and reverse Wiener indices have the same dimensional power law
dependence with 2 < s ≤ 3, with 2 being a lower limit as d increases. For the hyper-Wiener
index, we have 2 < sWW ≤ 4, and 2 is again a lower limit. The Szeged index is the only
one that does not depend on d, with sSz = 3 for all dimensions. The Kirchhoff index is 3
for d = 1 and is 2 for all higher dimensions. For d = 1, the Balaban index tends to π, since
there are no cycles in the straight-line graph. For higher dimensions, d varies as the inverse
of d. We comment that for d = 1 and d = 2, W (N) is known exactly as [13]

W (N) =
1

6
(N3 −N), d = 1; W (N) =

1

3
(N5/2 −N3/3), d = 2.
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d W WW rW Sz Kf J E

1 0.16667N3 0.040156N4.0038 0.33293N3.0001 0.16667N3 0.16659N3 π 1.2734N

2 0.32839N2.5015 0.16342N2.9848 0.62898N2.5048 0.33319N3 0.55871N2.0696 6.1926N−0.50059 1.619N

3 0.49568N2.334 0.3388N2.6543 0.76246N2.355 0.49541N3.0008 0.36119N1.9755 4.3716N−0.32994 1.9808N

4 0.62541N2.2558 0.56903N2.4913 0.8088N2.2872 0.63481N3.0042 0.27317N1.959 3.5254N−0.24021 2.2116N

5 0.74986N2.2086 0.79922N2.3994 0.83488N2.2471 0.74466N3.0094 0.23146N1.9521 3.0481N−0.18611 2.407N

Table 4: Asymptotic behavior of six topological indices and the graph energy. The coefficient
and exponent are experimentally determined.

d Entropy, S −Free energy,−F −Enthalpy,−H
1 −0.45961 + 0.98617 ln(N) 0.6327 + 1.0234 ln(N) 1.3955
2 −0.83514 + 0.96526 ln(N) 1.0978 + 1.0607 ln(N) 1.9328 + 0.095493 ln(N)
3 −1.0707 + 0.92918 ln(N) 1.3532 + 1.1175 ln(N) 2.4239 + 0.18833 ln(N)
4 −1.1226 + 0.88042 ln(N) 1.3935 + 1.1829 ln(N) 2.5162 + 0.30242 ln(N)
5 −1.1985 + 0.84633 ln(N) 1.4942 + 1.2241 ln(N) 2.6927 + 0.37775 ln(N)

Table 5: Asymptotic behavior of the thermodynamic properties. The signs of the free energy
and enthalpy have been reversed so that they may be modeled.

These results are in agreement with our asymptotic limits. Our other results may help
modeling efforts by providing the leading coefficient and exponent.

Also listed in Table 4 is the asymptotic behavior of the graph energy. This is linear in
N for all dimensions, with the coefficient increasing with d. We are aware of a calculation
of the asymptotic behavior for d = 2, where the authors determine the dependence listed
in equation (19) [14]. Our value for the coefficient is 1.619, a difference of −0.13% from the
calculated value. A better asymptotic limit could be obtained using larger structures, at the
cost of larger processing times.

In Table 5, we show the large N asymptotic behavior of the thermodynamic quantities
entropy, free energy, and enthalpy. The signs of the free energy and enthalpy have been
reversed so that they may be modeled. These properties depend on N as

P = A+B ln(N)

where P is the thermodynamic property, and A and B are computationally determined. The
fit (not shown) of the thermodynamic properties is better for the entropy and free energy
than for the enthalpy. This is not surprising since the logarithmic dependence is inherent in
the definition of the first two properties. The fit for the enthalpy improves as d increases.
Less obvious is that B decreases which increasing d for the entropy and decreases with
increasing d for both the free energy and enthalpy. Also, for d = 1, the enthalpy does not
have any N dependence.
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3 Conclusions

We have determined the asymptotic behavior several properties of clusters of hypercubes
in d-dimensional space. This includes six topological indices, the graph energy and ther-
modynamic properties such as entropy, free energy and enthalpy. For the case of L = 1,
our calculations are in agreement with previously published formulas for four topological
indices. The graph energy for d = 2 is close to the value determined mathematically, and
we add limits for several more dimensions. The thermodynamic properties have large N
logarithmic behavior in agreement with the definitions.

4 References

[1] F. Harary, J.P. Hayes, H.Y. Wu, A Survey of the Theory of Hypercube Graphs, Comput.
Math. Applic. 15(4) (1988) 277-289.

[2] M. Abd-El-Barr, F. Gebali, Reliability analysis and fault tolerance for hypercube multi-
computer networks, Information Sciences 276, (2014) 295-318.

[3] J.P. Hayes, T. Mudge, Q.F. Stout, S. Colley, J. Palmer, A Microprocessor-based Hyper-
cube Supercomputer, IEEE Micro 6(5), (1986) 6-17.

[4] B.K. Teo, N.J.A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorg.
Chem. 24, (1985) 4545-4558.

[5] J.M. Montejano-Carrizales, F. Aguilera-Granja, J.L. Moran-Lopez, Direct enumeration
of the geometrical characteristics of clusters, NanoStructured Mater. 8(3), (1997) 269-287.

[6] Y. Xia, Y Xiong, B. Lim, S.E. Skrabalak, Shape-Controlled Synthesis of Metal Nanocrys-
tals: Simple Chemistry Meets Complex Physics?, Angew. Chem. Int. Ed. 48, (2009), 60-103.

[7] D.J. Norris, A.L. Efros, S.C. Erwin, Doped Nanocrystals, Science 319, (2008), 1776-1779.

[8] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69,
(1947) 7-20.

[9] H. Hosoya, Topological index. A newly proposed quantity characterizing the topological
nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Japan 44, (1971)
2332-2339.

[10] P. Schwerdtfeger, L. Wirz, J. Avery, Program fullerene: a software package for construct-
ing and analyzing structures of regular fullerenes, J. Comput. Chem. 34, (2013) 1508-1526.

[11] F.H. Kaatz, A. Bultheel, Informational thermodynamic model for nanostructures, J.
Math. Chem. 52(6), (2014) 1563-1575.

[12] F.H. Kaatz, A. Bultheel, Topological Indices for Nanoclusters, Comput. Mater. Sci.,
(2014).

[13] O. Ori, F. Cataldo, D. Vukicevic, A. Graovac, Wiener Way to Dimensionality, Iranian
J. Math. Chem. 1(2) (2010) 5-15.

[14] W. Yan, Z. Zhang, Asymptotic Energy of Lattices, Physica A 388, (2009) 1463-1471.

10



[15] R. Albert, A.L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys.
74, (2002) 47-97.

[16] J. Park, M.E.J. Newman, Statistical mechanics of networks, Phys. Rev. B. 70, (2004)
066117.

[17] E. Estrada, N. Hatano, Statistical-mechanical approach to subgraph centrality in com-
plex networks, Chem. Phys. Lett. 439, (2007) 247-251.

[18] W.R. Müller, K. Szymanski, J.V. Knop, N. Trinajstic, An algorithm for construction of
the molecular distance matrix, J. Comput. Chem. 8(2), (1987) 170-173.

[19] B. Zhou, N. Trinajstic, Maximum eigenvalues of the reciprocal distance matrix and the
reverse Wiener matrix, Inter. J. Quan. Chem. 108, (2008) 858-864.

[20] I. Gutman, A formula for the Wiener number of trees and its extension to graphs con-
taining cycles, Graph Theory Notes New York 27, (1994) 9-15.

[21] P.W. Fowler, G. Caporossi, P. Hansen, Distance matrices, Wiener indices, and related
invariants of fullerenes, J. Phys. Chem. A 105, (2001) 6232-6242.

[22] P.V. Khadikar, N.V. Deshpande, P.P. Kale, A. Dobrynin, I. Gutman, G. Domotor, The
Szeged index and an analogy with the Wiener index, J. Chem. Inf. Comput. Sci. 35, (1995)
547-550.

[23] S. Klavzar, M.J. Nadjafi-Arani, Wiener index versus Szeged index in networks, Discr.
Appl. Math. 161, (2013) 1150-1153.

[24] A.T. Balaban, Highly discriminating distance-based topological index, Chem. Phys.
Lett. 89(5), (1982) 399-404.

[25] A.T. Balaban, Topological indices based on topological distances in molecular graphs,
Pure Appl. Chem. 55(2), (1983) 199-206.

[26] A.T. Balaban, D. Mills, O. Ivanciuc, S.C. Basak, Reverse Wiener indices, Croat. Chem.
Acta 73(4), (2001) 923-941.

[27] I. Gutman, B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide, J. Chem.
Inf. Comput. Sci. 36, (1996) 982-985.

[28] S.E. Massen and C.P. Panos, Universal property of the information entropy in atoms,
nuclei and atomic clusters Phys. Lett. A, 26 (1998) 530-533.

[29] A. Graovac, T Pisanski, On the Wiener Index of a Graph, J. Math. Chem. 8, (1991)
53-62.

[30] M.R. Darafsheh, Computation of Topological Indices of Some Graphs, Acta Appl. Math.
110, (2010) 1225-1235.

[31] M. Ghorbani, Remarks on the Balaban Index, Serdica J. Comput. 7(1), (2013) 25-34.

[32] J. Liu, J. Cao, X.F. Pan, A. Elaiw, The Kirchhoff Index of Hypercubes and Related
Complex Networks, Discr. Dynamics in Nature and Society 2013, Art. ID 543189 (2013)
1-7.

[33] S. Daneshvar, G. Izbirak, M.M. Kaleibar, Topological Indices of Hypercubes, J. Basic.
Appl. Res. 2(11), (2012) 11501-11505.

11


