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Abstract

The vacancy concentration dependence on temperature and diameter of noble metal
(gold, silver, and copper) nanoclusters is investigated using a kinetic Monte Carlo
method. Icosahedral and decahedral nanoclusters are studied, with diameters up to
3.73 nm for icosahedral clusters and up to 6.65 nm for decahedral clusters. The cohe-
sive energy is calculated using a coordination number approach, resulting in a linear
relation with cluster size. Random Schottky defects are frozen into the clusters at
low temperatures (100K-600K) and we find that the vacancy concentration increases
with smaller diameters and higher temperatures. We develop a model for this behav-
ior, which explains the temperature and size dependence. Vacancy concentrations are
related to the ratio of surface/interior sites based on nearest neighbor calculations.
The modified enthalpy and entropy of constant diameter clusters are derived from a
logarithmic model for the Gibbs energy. Melting entropy and enthalpy are calculated
in this coordination type model and compared with previously published molecular
dynamics results.
Keywords: vacancy concentration; icosahedra; decahedra; enthalpy; entropy; gold;
silver; copper; coordination number; low-atomicity systems

1 Introduction

Defects in solids were first predicted by Frenkel as an interstitial – vacancy pair in 1926 [1].
Wagner and Schottky discussed vacancies, also known as Schottky defects, in a publication
in 1930 [2]. Defects can affect the properties of solids, such as luminescence, resistivity,
volume and thermal expansion, and affects diffusion and the specific heat [3]. Vacancies are
more stable than Frenkel defects since they require less energy of formation in close packed
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crystals. Schottky defects are stable in solids since they raise the entropy of the crystal in
an Arrhenius model of the Gibbs energy [3]. We will show here that the linear Arrhenius
model does not apply to metal nanoclusters, but in fact a logarithmic model takes its place.

Measurements of bulk vacancy concentrations in the noble metals gold, silver and copper
were originally done in the early 1960’s [4-6]. These were lattice expansion measurements
by x-ray diffraction and thermal expansion measurements by micrometer microscopes. A
typical concentration in gold at an elevated temperature of 850◦C was found to be about
∆N/N = 10−5 [4]. Usually, vacancies are not observed in bulk samples, due to the low
concentration and migration of vacancies to grain boundaries and dislocation sinks. However,
when heated to near 1000◦C and rapidly quenched (4 × 105◦C/sec) to room temperature,
vacancy clusters and voids have been seen via electron microscopy in gold after aging at
100◦C for one hour [7,8].

Single vacancy and vacancy clusters heavily influence the fundamental properties of ma-
terials at the nanoscale and characterizing them, from a theoretical point of view, at the
single-defect level represents a scientific investigation of particular relevance. Here, we simu-
late in nanoclusters of noble metals the effects of individual vacancies placed in lattice sites
with different coordination numbers. Our calculations are based on the the Kinetic Monte
Carlo (KMC) method is a variant of the Monte Carlo (MC) method specifically designed
to model a kinetic approach to fundamental processes and then to study the stochastic se-
quences giving the temporal evolution of complex systems [9]. It is well suited to study
temporal processes that have intermediate time scales, i.e. greater than atomic vibration,
along the scale of diffusion, grain growth, and thin-film deposition [9]. It has been used
previously in calculations on copper nanoparticles [10]. We use it here to model vacancies
in noble metal nanoclusters as a function of size and temperature.

Nanoclusters and nanoparticles are ever increasing scientific fields of study and gold in
particular has properties in the nano-regime unknown in the bulk. Silver and copper are
more recent scientific studies, as copper is difficult to make due to its rapid oxidation. A
nano-phase diagram of structure versus temperature has been developed for gold and silver
from experiments and density functional theory (DFT) [11,12]. A phase diagram for copper
has been produced as an alloy with gold for nanoclusters [13]. We model all three noble
metals, gold, silver, and copper and use gold to present typical data, with tabular data
compiled for silver and copper.

The experimental and theoretical work on noble metal nanoclusters goes back to at
least 1976 when Buffat and Borel studied gold particles and measured a size dependence
in the melting temperatures [14]. For a review of progress in the chemical synthesis and
physics of metal nanoclusters, we refer to a publication in 2009 [15]. More recently, work
on gold nanoclusters has resulted in atomic structure (icosahedral, decahedral, and fcc)
control of isomers during the formation processes [16]. Also tunable size control of gold,
silver, and palladium icosahedral clusters has been reported [17]. Silver icosahedral and
decahedral clusters have been synthesized in a chemical procedure [18]. Copper icosahedral
and decahedral clusters have also been fabricated [19]. Also, of relevance to our analysis, the
melting temperatures of gold [14], silver [20,21] and copper [22,23] as a function of cluster
size are all above 600K, either experimentally, or by molecular dynamics (MD) calculations.
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Property Gold Silver Copper
Eb
c (eV) 3.81 [29] 2.95 [29] 3.49 [29]

Bond length (Å) 2.884 [30] 2.889 [30] 2.556 [30]
G (GPa) 26 [30] 30.3 [30] 48.3 [30]
γ (J/m2) 1.506 [31] 1.248 [31] 1.8075 [31]
Ei
v (eV) 0.94 [4] 1.09 [5] 1.17 [6]

Eσ
v (eV) 0.494 [32,33] 0.514 [32,33] 0.564 [32,33]
r (nm) 0.134 [30] 0.134 [30] 0.117 [30]

Table 1: Physical properties of the noble metals used in our simulations and references
listing these values of the constants.

Metal clusters containing small numbers of atoms N also show catalytic performances of
applicative interest. Stable metal particles with enhanced catalytic activity strongly depend
on the presence of single atoms or, vice-versa, of single vacancies. Investigations of non-
magic-number clusters in noble metals with ‘with low atomicity’ have just begun, i.e., by
exploiting new synthesis methods promising the required single-atom precision in platinum
clusters [24]. The results presented here substantially augment the ability to simulate the
stability of such low-N metallic nanosystems.

2 Methods

We start with a cluster of N atoms, where the cohesive energy of the particle per atom [25]
is

Ep
c = Eb

c

(
1− Ci − Cσ

Ci

Nσ

N
µ

)
(1)

here Eb
c is the bulk cohesive energy, C is the coordination number and N the number of

atoms. The subscripts i and σ represent interior and surface sites respectively, and µ is
the ratio of surface area of the cluster compared to an icosahedron (µ = 1 by definition)
[26]. We study icosahedral clusters and decahedral clusters since they have the same surface
orientation (111), with 20 and 10 faces for the icosahedra and decahedra, respectively [27].
The surface area of an icosahedron is 5

√
3 with unit length between neighbors, while the

decahedron has faces as isosceles triangles, with the base in a ratio of about 1.018:1 to the
sides [28]. This gives a value of µ = 0.506 for decahedra. The surface and interior atoms in
icosahedra and decahedra are separated since the interior atoms have coordination 12 and
surface atoms have coordination 9 or less. Thus, as we create vacancies, we count interior
atoms as having coordination 10-12 and surface atoms at 9 and below.

For a cluster with Nv vacancies the change in energy is

∆Ej = Ep
c −

Nv

N
Ep
v −

N −Nv

N
Ep
c so for Nv = 0, ∆Ej = 0 (2)
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Figure 1: Cohesive energy as a function of cluster size for gold, silver, and copper.
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Figure 2: Plot of nanocluster diameter versus number of atoms, N .

5



However Ep
v depends on a interior or surface site, respectively as

Ep
v =


Ei
vη + η

4πr2γ2

γ + 2Gr
−

4πr2γ2p
γp + 2Gr

Eσ
v η + η

4πr2γ2

γ + 2Gr
−

4πr2γ2p
γp + 2Gr


η = 1− Ci − Cσ

Ci

Nσ

N
µ

γp
γ

= 1− 4r

R
,

(3)

where γ, R, and r denote bulk surface energy, nanocluster radius, and atomic radius, re-
spectively [25]. Also, Ei

v and Eσ
v are the bulk (interior) and surface (111) vacancy energies

of formation. Relevant constants for gold, silver, and copper are listed in Table 1. The
concentration of vacancies comes from defining a time interval as:

∆t = − ln ρ∑
i εi

, with ρ a random number in [0, 1] (4)

where the concentration is defined as:

c = 〈c(t)〉 =
1∑
i ∆ti

∑
i

N v
i

Na
i

∆ti, Na
i = N −N v

i . (5)

Our modified Metropolis (MC) algorithm for creating a vacancy is then:

0. The structure is initialized with N atoms, without vacancies.

1. Select at random a position p (1 ≤ p ≤ N).
If p is an atom then create a vacancy at p. If p is a vacancy then create an atom at p.

1.1. Compute ∆Ej as in formulas (2) and (3) and εj = exp(−∆Ej/kBT ) for the new
configuration (kB is the Boltzmann constant).

1.2. Generate a random number r ∈ [0, 1]. If a vacancy was created at p and r > εj or
an atom was created at p and r > 1− εj then reject this configuration and return
to step 1 else accept this configuration and computes ∆t and concentration c(t)
as in formulas (4) and (5).

1.3. If the new c(t) value deviates less than 0.5% from the average over the last 100
c(t) values then assume convergence and stop else go to step 1.

2. Repeat 20 times to get an average c(t) for the nanoclusters.

3 Results and discussion

The nanocluster binding energy versus cluster size is plotted for the noble metal clusters in
Figure 1. The binding energy is plotted versus magic numbers of the clusters for the two
types studied here [34]. This results in a linear relationship with N (−1/3) (the cluster size),
similar to what has been calculated from DFT calculations on gold clusters [35]. The slope
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for the icosahedra is larger than the decahedra, sinc µ = 1 versus µ = 0.506 for decahedra.
This algorithm is efficient and accurately produces the bulk cohesive energy value as the
cluster size approaches the bulk limit.

The relationship between D, the cluster diameter and number of atoms is shown in
Figure 2. We show calculated diameters, D, from the MATLAB routine, versus magic
numbers for icosahedral and decahedral clusters [29]. The curves are for gold clusters at
T = 300K. These relationships follow a power law with the decahedral clusters having a
larger coefficient due to the oblate shape of their geometry in contrast to the near sphericality
of icosahedra. The MATLAB routine calculates the largest difference between coordinates
in the cluster and an oblate shape will have a greater diameter with a fewer number of
atoms.

There are reports in the literature that a central vacancy in icosahedral structures can
stabilize metal nanoclusters [35,36]. In Figure 3 we show the energy cost of removing the
central atom in noble metal icosahedral clusters in our model according to equation (2).
Also shown is the calculation of removing a corner atom from the same clusters. The data
follows approximately a curve like 1/N , with corner atoms having a lower energy cost than
the central atom. In this model surface atoms are more easily removed but Figure 4 shows
that the energy difference between the central site (Ec) and a corner site (Es) goes to zero at
about 1500 atoms. These results indicate that any central vacancy with bulk coordination
would behave the same, since this model only takes into account the coordination of the
site. This is in contrast to some recent DFT studies, where accounting for strain effects show
that a central vacancy may be energetically favored [37]. The data in both figures shows
that the energy associated with creating a vacancy depends on the physical parameters of
the metals, and for the noble metals goes in order of gold, copper and silver, from largest to
smallest.

Figure 5 shows MATLAB plots of icosahedral and decahedral clusters of gold, silver, and
copper at T = 300K. The vacancies at surface sites are colored green, while vacancies at
interior sites are colored blue. These are generated as one possible outcome from a program
where some stochastic results are inherent to the method. In Figure 6, we plot the ratio of
surface to interior atoms and vacancies in gold clusters which follows a power law behavior
as a function of cluster size, D. Other temperatures and metals have similar behavior.
This data simply shows the relative number of surface and interior sites as the clusters get
larger, and thus changes the number of available sites for random vacancies, with the obvious
conclusion that there are more surface sites in smaller clusters.

We change the temperature T and the size of the cluster D, resulting in concentration
temperature and diameter profiles as shown in Figure 7. The temperature, T , varies from
100K to 600K, with D < 3.73 for icosahedra and D < 6.65 for decahedra. We fit the
temperature and size profiles to the following function at T = 600K:

c(T,D) = ae(T ) exp

(
−αe(T )Dβe

kBT

)
where e refers to the element modeled (gold, silver, copper). This model is similar to one
developed by Guisbiers [38], except that D is in the numerator, rather than the denominator.
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Figure 3: Plots of a single vacancy in icosahedral clusters – in the center and at a corner
site.

Figure 4: Plots of the energy difference between a central site and a corner site showing that
the difference goes to zero at about 2000 atoms.
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A B

C D

E F

Figure 5: MATLAB plots of gold (A,B), silver (C,D) and copper (E,F) icosahedral and
decahedral clusters with surface (green) vacancies and interior (blue) vacancies.

9



Figure 6: Ratio of surface to interior atoms / vacancies in gold clusters.

Figure 7: Plots of c(T,D) for gold icosahedra.
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For these temperature profiles, we choose T = 600K to fit all three parameters, ae, αe, and
βe, then fix βe for the lower temperatures and determine the best fit for the other ones.
In Figure 5, error bars show the minimum and maximum values over the 20 simulations in
the algorithm. The average value is taken for the relevant data point in the temperature
profile. The data point for T = 100K and D = 0.9, is where vacancies are being eliminated
from the cluster. The curve fit for the temperature profile T = 100K is without this data
point. If we look at the modeling in Table 2 and the variation for the metals, we see that
silver clusters have the highest concentration of vacancies, followed by copper, and gold
with the lowest. This holds for both icosahedra and decahedra. The evidence indicates
that the most important component to |DeltaEj is Eb

c from equation (1), which results in
a higher concentration of vacancies with a low Eb

c . From Table 1, we see that the order of
Eb
c is silver, copper, and gold, from low to high, and this produces a reverse order of the

vacancy concentration in the metals. Our data which shows that icosahedra have a higher
concentration of vacancies than decahedra corroborates this thought since Eb

c is lower for
icosahedra than decahedra versus cluster size from Figure 1.

We have found the concentration dependence as a function of D, and the other parameter
we vary is the temperature. The temperature analysis starts from a description of the Gibbs
energy [39,40] per atom as:

Gf = G(c) + kBT [c ln c+ (1− c) ln(1− c)]

where G(c) is the free energy of a single vacancy and the final term is the configurational
free energy of the vacancies. In thermal equilibrium, the concentration c(T ) is determined
by the condition that the Gibbs energy be a minimum, or dGf/dc = 0. Taking the derivative
leads to the following equation:

c(T ) =

[
exp

(
dG(c)

dc

1

kBT

)
+ 1

]−1
which gives the equilibrium value of the concentration versus Gibbs energy as

c(T ) = exp

(
− Gf

kBT

)
, with G(c) = G0 + cGf .

In this approximation, we use a linear model for G(c), and Gf ∼ 1 eV � kBT ∼ 1/40 eV
[40]. Now from our data plotted in Figure 8, we have that

c(T ) = bT + cT 2.

or the concentration dependence of metal nanoclusters is quadratic with temperature. We
then have our final result that

Gf
v

kBT
= − ln c(T ) = − ln(bT + cT 2) (6)

Gf
v

kBT
∼ H ′ − S ′ lnT (7)
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Icosahedra Gold Silver Copper

T = 600 ae 0.727 0.990 0.780
αe 0.111 0.103 0.105
βe 0.110 0.159 0.133

T = 500 ae 0.494 1.292 0.922
αe 0.0818 0.100 0.099

T = 400 ae 0.436 0.669 0.805
αe 0.0673 0.0659 0.0799

T = 300 ae 0.470 0.677 0.536
αe 0.056 0.054 0.055

T = 200 ae 0.739 0.572 0.862
αe 0.049 0.038 0.049

T = 100 ae 0.038 0.238 0.097
αe 0.006 0.016 0.012

Decahedra Gold Silver Copper

T = 600 ae 0.765 0.987 0.860
αe 0.111 0.098 0.104
βe 0.098 0.141 0.123

T = 500 ae 0.785 1.333 0.871
αe 0.099 0.099 0.091

T = 400 ae 0.470 0.906 0.651
αe 0.069 0.073 0.0702

T = 300 ae 0.407 1.032 0.694
αe 0.053 0.062 0.0589

T = 200 ae 0.106 0.462 0.254
αe 0.020 0.034 0.028

T = 100 ae 0.432 0.411 0.798
αe 0.024 0.020 0.026

Table 2: Fitting parameters to the c(T,D) model discussed in the text.
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Icosahedra Gold Silver Copper

D = 1 nm H ′ 7.748 6.800 7.322
S ′ 0.832 0.753 0.796

D = 2 nm H ′ 7.763 6.997 7.386
S ′ 0.802 0.745 0.770

D = 3 nm H ′ 7.788 7.123 7.426
S ′ 0.795 0.740 0.754

Icosahedra Gold Silver Copper

D = 1 nm H ′ 7.395 6.920 6.829
S ′ 0.750 0.750 0.698

D = 2 nm H ′ 7.615 7.232 7.282
S ′ 0.761 0.762 0.740

D = 3 nm H ′ 7.751 7.429 7.566
S ′ 0.768 0.769 0.767

Table 3: Modified enthalpy and entropy for icosahedral and decahedral clusters for gold,
silver, and copper.

where H ′ and S ′ are independent of T and we have plotted the logarithm of the concentration
versus temperature in Figure 9 for gold nanoclusters. The constant diameter values for the
data points comes from the curve fitting we have done in Figure 7. Plots of equations
(6) and (7) will produce nearly overlapping functional dependencies, if the generated curve
fits are used, and we use the simpler equation (7) for modeling purposes. We emphasize
here that this is strictly a fitted model without a physical derivation. Additionally, this fit
only holds for T ≥ 0K, which should not be a problem, as absolute zero is not actually
physically reached. In Table 3, we list the values of the modified enthalpy, H ′, and entropy
S ′, which are dimensionless, for the two types of clusters and the three noble metals we
have studied. Since gold has the lowest concentration from Table 2, it has the highest
value for H ′ and S ′. The linear Arrhenius model assumes a functional form for the Gibbs
energy as Gf (T ) = Hf −SfT , with Hf and Sf the temperature independent experimentally
determined enthalpy and entropy, respectively, but this does not fit our data or model. We
mention here that non-linearity of the Gibbs energy has been seen in bulk behavior, where
a quadratic model was used [41]. Our model has determined the complete temperature
dependence from 100K to 600K, and thus there are no gaps in the data, as is seen from
DFT calculations of bulk behavior [41].

The melting entropy and enthalpy can be calculated in this coordination type model as
follows:

Spm − Sbm +
3R

2
ln η, Hp

m = η

(
Hb
m +

3R

2
T bm ln η

)
where T bm, S

b
m and Hb

m are the bulk melting temperature, entropy and enthalpy, R is the
universal gas constant, and η is defined as in equation (3) [40]. The constants for silver and
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A B

Figure 8: Quadratic plots of concentration versus temperature for gold clusters. A. Icosa-
hedra B. Decahedra.

A B

Figure 9: Plots of the logarithm of concentration as a function of temperature for gold
clusters. A. Icosahedra B. Decahedra.
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A B

Figure 10: Calculated melting entropy and enthalpy data for A. Silver and B. Copper
clusters, plotted with MD results. MD results for silver are from [41] and copper from [22].

copper are given in Table 4. In Figure 8, we plot the melting entropy and enthalpy versus
cluster diameter for silver icosahedral, decahedral, and MD calculations [41]. The curves are
fit using equations as

Spm = Sbm +
3R

2
ln

(
1−

(
a

b+D

))
Hp
m = Hb

m

(
1−

(
a

b+D

))(
1 +

3R

2Sbm
ln

(
1−

(
a

b+D

)))
where a and b are fitting parameters and the relationship in parentheses represents η [44].
We see from Figure 8A that the melting entropy is closely modeled for D < 4 nm, while
the calculated melting enthalpy overestimates the MD results. The results for copper are
plotted in Figure 10B. The calculated entropy underestimates the MD results [22], while
the calculated enthalpy overestimates the MD results. For both the silver and copper cases,
the calculated results are better for icosahedra than decahedra. Table 5 lists the fitting
parameters for the MD and calculated entropy and enthalpy data. We are not aware of
entropy and enthalpy MD data for gold as a function of diameter.

In this model, random vacancies are frozen into the nanoclusters, making detection of
these defects difficult. Recently, three-dimensional imaging of gold clusters [45-48] has been
realized and these may well be model systems for detection of defects in the clusters. One
of these references showed the existence of adatoms on gold nanocluster surfaces [44]. If
adatoms are created through the formation of a vacancy – adatom pairs, then such clusters
may have vacancies below the surface. Another possibility is to study the nano behavior
of the clusters between an STM tip, the cluster, and a substrate, in an attempt to study
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Element Melting T bm Melting Sbm Melting Hb
m

Silver 1234.93 K 9.148 J/(mol K) 11.297 (kJ/mol)
Copper 1357.77 9.768 J/(mol K) 13.263 (kJ/mol)

Table 4: Bulk melting thermodynamic data for silver and copper

Thermo Data Ag a Ag b Cu a Cu b

Entropy MD 0.3033 −0.6790 0.2109 −0.4320
Entropy Icos 0.3489 0.2652 0.3119 0.2372
Entropy Deca 0.3572 0.6473 0.3215 0.5944

Enthalpy MD 0.6294 0.1265 0.3676 0.1318
Enthalpy Icos 0.3528 0.2768 0.3118 0.2365
Enthalpy Deca 0.3623 0.6677 0.3214 0.5932

Table 5: Fitting parameters for MD and calculated entropy and enthalpy data.

defects. Such approaches could well lead to new insights into the defects in these systems.

Conclusion

In summary, we have determined the size and temperature dependence of the concentration
of Schottky defects in noble metal nanoclusters. We have modeled this behavior using a
kinetic Monte Carlo approach, producing new equations in both the size and temperature
profiles. According to this model, silver icosahedra should have the highest concentration
of vacancies in the noble metal clusters studied. The Gibbs energy is shown to have a
logarithmic dependence, and we have extracted modified enthalpy and entropy coefficients
for the clusters. Reasonable agreement of the calculated melting entropy and enthalpy is
found with molecular dynamics data. Gold nanoclusters may well be ideal systems for
observing these defects, with progress being made to study these clusters.
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