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1 Introduction

The rich and fascinating theory of polynomials orthogonal on the unit circle is well known. These
polynomials are named after Szegő since his pioneering work on them. His book on orthogonal
polynomials [57] was first published in 1939 but the ideas were already published in several papers in
the twenties. It is also in Szegő’s book that the notion of a reproducing kernel is clearly introduced.

Szegő’s interest in these polynomials was inspired by coefficient problems that were investigated
by among others Carathéodory, Fejér [11, 12, 13], F. Riesz [50, 51], and Schur [54, 55, 56]. The
Schur algorithm and the Schur coefficients were named after the continued fraction like algorithm
designed by Schur to actually check if the given coefficients (moments) correspond to a bounded
analytic function. It was observed later that these Schur coefficients were exactly the complex
conjugates of the coefficients that appeared in the recurrence relation for the orthogonal polynomials
as formulated by Szegő.

It was Pick who first considered an interpolation problem as a generalization of the coefficient
problems of Carathéodory [46, 47, 48]. Independently, Nevanlinna developed the same theory in a
long memoir in 1919 [43]. The Pick-Nevanlinna algorithm is a direct generalization of the Schur
algorithm.

Since then, these problems played an important role in several books, like in Akhiezer [1], Krĕın
and Nudel’man [36], Walsh [58] and more recently in Donoghue [21], Garnett [27], Rosenblum and
Rovnyak [52] etc.

Among the many applications of the theory, we should mention the prediction theory of station-
ary stochastic processes first discussed by Kolmogorov [35] and Wiener [59]. The book by Wiener
contained a reprint from Levinson’s celebrated paper [38], which is in fact a reformulation of the
Szegő recursions. See also the classic book of Grenander en Szegő [32]. Other engineering appli-
cations are network theory (see e.g. Belevitch [3] and Youla and Saito [60]), spectral estimation
(see Papoulis [45] for an excellent survey), maximum entropy analysis as formulated by Burg [10]
(see the survey paper [37]), transmission lines and scattering theory as studied by Arov, Redheffer
[49], Dewilde, Viera, Kailath [19] and Dewilde and Dym [17, 18], digital filtering (see the survey of
Kailath [33]), speech processing (see [42] or the tutorial paper by Makhoul [41]), etc. See also the
survey of Genin [28] for more applications. All of these applications can be described by the same
mathematical basics.

In all these papers on theory and applications, the approach of the Pick-Nevanlinna theory
from the point of view of the orthogonal functions has not always been fully put forward, although
many interesting results have been obtained implicitly or explicitly. Unfortunately, except for the
papers of Djrbashian (see the survey paper [20]), and more recently, [5, 7, 9, 24, 44] most of these
results are burried in publications mainly written for an engineering audience. To the best of our
knowledge, in none of these publications, not even in the applied papers, there has been given a
direct rational generalization of the so called polynomials of the second kind, as they are known
in the classical theory. It is the subject of this paper to describe these functions of the second
kind. They satisfy the same recurrence relation as the orthogonal functions, but with opposite sign
for the recurrence coefficients which generalize the Schur-Szegő parameters. We shall describe the
recurrence, give two algorithms to compute the recursion coefficients and discuss the interpolation
properties related to these functions.

We try to give in this paper an approach to the theory which is an immediate generalization
of the Szegő theory for orthogonal polynomials. This theory is supposed to be related to the
interpolation theory of Pick and Nevanlinna like the Szegő theory was related to the Schur and
Carathéodory-Fejér coefficient problems. In fact, this paper is roughly a generalization to the
rational case of the first chapter of Geronimus book [29].

Note that at any point in the discussion we can replace all the interpolation points αk by zero
and recover at any moment the corresponding result of the polynomial case. In this respect it is a
natural generalization of the Szegő theory.

The outline of the paper is as follows. In section 2, we start with some general definitions
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and properties from complex analysis that we shall need in the sequel of the paper. Section 3
introduces the fundamental spaces of rational functions. In section 4 we derive the Szegő type
recurrence relation for the orthogonal rational functions and in the next section, the so called
functions of the second kind are introduced and it is shown how they play a role in a rational
interpolation problem of Pick-Nevanlinna type. The J-unitary and J-contractive matrices, defined
in section 6 can be brought into the recurrence and they are important to derive properties for
the interpolants like being positive real functions (i.e., Carathéodory functions). The interpolating
properties that were derived before inspired the derivation in section 7 of an algorithm of the Pick-
Nevanlinna type to find the recursion coefficients. In the last section, we prove a convergence result
when the Blaschke product based on the interpolation points diverges.

2 Complex analysis and notations

We shall be concerned with complex function theory on the unit circle. We start with the intro-
duction of some notation.

The complex number field is denoted by C, while R is the real axis. We use the following
notations for the unit circle, the open unit disc and the exterior of the unit circle:

T = {z : |z| = 1}, D = {z : |z| < 1}, E = {z : |z| > 1}.

The unit on the imaginary axis is denoted by i.
Let µ be a positive measure on T, whose support is an infinite set. It is characterized by

a distribution function
∫
dµ which has an infinite number of points of increase. The function

classes Lp(µ), 0 < p ≤ ∞ are well known. The normalized Lebesgue measure is denoted by
λ : dλ = (2π)−1dθ. If µ = λ, we just write Lp instead of Lp(λ). The inner product in L2(µ) is
denoted by

〈f, g〉µ =
∫
f(eiθ)g(eiθ)dµ(θ)

The integration will always be over the unit circle in one form or another and we shall take the
freedom to write the previous integral in different forms

〈f, g〉µ =
∫
fgdµ =

∫
f(eiθ)g(eiθ)dµ(θ) =

∫
f(z)g(z)dµ(z).

The Hardy spaces of Lp functions analytic in D are denoted by Hp. They are Banach spaces
for 1 ≤ p ≤ ∞.

The Nevanlinna class N is defined by

f ∈ N ⇐⇒ f = g/h; g, h ∈ H∞.

It contains all spaces Hp for 0 < p ≤ ∞ [23, p.16]. It is known that each function f ∈ N , not
vanishing identically, has a nontangential limit to T a.e. and log |f | ∈ L1 [23, p.17].

The operation of taking the complex conjugate on the unit circle is extended to the whole
complex plane C by the involution operation

f∗(z) = f(1/z).

Note that on T, f∗(z) is just f(z). Hence, it is obvious that 〈f, g〉µ = 〈g∗, f∗〉µ. One can also see
immediately that if f is rational, then f∗ has a pole/zero in α ∈ C = C∪ {∞} if and only if f has
a pole/zero in 1/α.

If µ is absolutely continuous w.r.t. the Lebesgue measure λ, then dµ = dµa = µ′dλ, for some
weight function µ′ ∈ L1, but in general, there is also a singular part µs: µ = µa + µs.

Define the moments as the Fourier coefficients

ck =
∫
e−ikθdµ(θ) , k ∈ Z. (2.1)
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Clearly c−k = ck and |ck| ≤ c0 for a real measure µ. Without loss of generality, we suppose the
measure to be normalized: c0 =

∫
dµ = 1.

With the positive measure µ, we can associate

Ωµ(z) = ic+
∫
eiθ + z

eiθ − z
dµ(θ) , c ∈ R, z ∈ D. (2.2)

It belongs to Hp for all p < 1 ([23, p.34]).
The kernel in (2.2) shall be denoted as D(t, z).

D(t, z) =
t+ z

t− z

with “real part”

P (t, z) =
1
2
[D(t, z) +D(t, z)∗]

(substar conjugate for t) that reduces to the Poisson kernel (1 − |z|2)/(|t − z|2) for t ∈ T. Thus
the real part of Ωµ

< Ωµ(z) =
∫
< t+ z

t− z
dµ(t) =

∫
1− |z|2

|t− z|2
dµ(t) (2.3)

is positive in D. Therefore we call Ωµ a positive real function. The radial limit gives

lim
r→1−

< Ωµ(reiθ) = µ′(eiθ) a.e. (2.4)

See [23, p.4]. The class of positive real functions, analytic in D is denoted by P. This class
is often refered to as the Carathéodory class. Every positive real function has a Riesz-Herglotz
representation of the form (2.2). A Cayley transform maps the right half plane into the unit circle,
so that the Cayley transform of the class P is the class B of analytic functions in D, which are
bounded by 1 in modulus: the so called Schur class.

If logµ′ ∈ L1, then we can define a spectral factor

σ(z) = c exp{1
2

∫
D(t, z) log µ′(t)dλ(t)} , z ∈ D, |c| = 1. (2.5)

It is an outer function in H2. See e.g. [53]. Furthermore

|σ(z)|2 = exp{
∫
P (t, z) log µ′(t)dλ(t)}

has a radial limit which satisfies µ′(eiθ) = |σ(eiθ)|2 a.e.
From the Szegő theory of orthogonal polynomials, we know that 1/σ vanishes dµs a.e. if logµ′ ∈

L1 [26, p. 202].
The condition log µ′ ∈ L1 is fundamental in the theory of Szegő for orthogonal polynomials on

the unit circle. We shall therefore call it the Szegő condition.
Douglas, Shapiro and Shields [22] showed that a general function f ∈ H2 has a pseudo-

meromorphic extension across T if f can be factored as f = h∗/U∗ on T with h ∈ H2 and U
inner in H2. Again, the left hand side has an extension to D and the right hand side to E, which
defines f in the sphere C.

We suppose that the spectral factor σ has such a pseudo-meromorphic extension in the sense
of Douglas, Shapiro and Shields [22] (see also [17]), then the relations

µ′ = σσ∗ =
1
2
[Ω + Ω∗] (2.6)

which hold on T can be extended to the whole Riemann sphere C.
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3 The spaces Ln
In this section we shall introduce the spaces Ln which are the fundamental spaces that most sections
of this paper will be dealing with. Define for αi ∈ D a Blaschke factor as

ζi(z) =
αi

|αi|
αi − z

1− αiz
if αi 6= 0 and ζi(z) = z if αi = 0. (3.1)

In what follows we shall use only the first notation and suppose by convention that αi/|αi| is equal
to −1 for αi = 0. Note also the useful property ζi∗(z) = 1/ζi(z).

These factors appear in finite Blaschke products

B0 = 1 and Bn = Bn−1ζn for n ≥ 1 (3.2)

which span the fundamental spaces

Ln = span{Bk : k = 0, 1, . . . , n} = {pn

πn
: πn =

n∏
i=1

(1− αiz); pn ∈ Πn} (3.3)

where Πn denotes the space of polynomials of degree at most n. Thus Ln is a space of rational
functions with prescribed poles 1/αi, i = 1, . . . , n which are all in E.

Note that Ln is isometric with Πn in the following sense

〈pn

πn
,
qn
πn
〉µ = 〈pn, qn〉µn , pn, qn ∈ Πn

where dµn = |πn|−2dµ. Thus instead of studying the spaces of rational functions with respect to
a fixed measure, one could also study spaces of polynomials with respect to a varying measure, an
approach which was used by G. Lopéz in [39, 40].

It can be shown [58, p.227] that Ln is the orthogonal complement in H2 of the shift invariant
subspace

Mn = zBnH2

which is a consequence of Beurling’s theorem [27, p.82].
If fn ∈ Ln, then we define its superstar conjugate as

f∗n(z) = Bn(z)fn∗(z).

Note that this transformation depends on n. It must be clear from the context what n is.
In analogy with the polynomial case where αi = 0, i = 0, . . . , n, Bn(z) = zn and p∗(0) the

leading coefficient, we shall also call here f∗n(αn) the leading coefficient of fn ∈ Ln.
The superstar conjugate is the direct generalization of what is used by Freud [26, p. 194],

Geronimus [29, p. 6] and many others in the polynomial case. One has in general the relation

fn(z) =
n∑

k=0

akBk(z) ↔ f∗n(z) = Bn(z)
n∑

k=0

ak

Bk(z)

so that the leading coefficient of fn is f∗n(αn) = an.
We can orthonormalize the basis {Bk}k in the space L2(µ) with a Gram-Schmidt procedure to

find the rational basis functions which will be denoted in the sequel as {φk}k. They are uniquely
defined if we require that their leading coefficient κn = φ∗n(αn) is positive.

The function

kn(z, w) =
n∑

k=0

φk(z)φk(w)

is called the reproducing kernel for Ln since it holds that fn(w) = 〈fn(z), kn(z, w)〉µ for every
fn ∈ Ln.

The following properties have been proved e.g., in [8, 9]
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Theorem 3.1 Let kn(z, w) be the reproducing kernel for Ln which is based on the points An =
{αi : i = 1, . . . , n} and {φk} a set of orthonormal basis functions in L2(µ) with leading coefficients
κk > 0. Then

1. kn(z, w) = Bn(z)Bn(w)kn(1/w, 1/z)

2. kn(z, αn) = κnφ
∗
n(z)

3. kn(αn, αn) = κ2
n

4. and the following Christoffel-Darboux relations hold

kn(z, w) =
φ∗n+1(z)φ

∗
n+1(w)− φn+1(z)φn+1(w)

1− ζn+1(z)ζn+1(w)

=
φ∗n(z)φ∗n(w)− ζn(z)ζn(w)φn(z)φn(w)

1− ζn(z)ζn(w)
.

It is an easy consequence of the first Christoffel-Darboux relation that φn+1(z)/φ∗n+1(z) ∈ D for
z ∈ D. You need to observe that kn(z, z) > 0 and that ζn+1(z) ∈ D for all z ∈ D to find that
|φ∗n+1|2− |φn+1|2 > 0 in D. Similarly it follows that φn+1(z)/φ∗n+1(z) ∈ E (or T) for z ∈ E (or T).
We can therefore conclude that φ∗n(z) has no zeros in D.

4 Recursions for the orthogonal functions

Because of the importance of the recurrence relations for the orthogonal polynomials as studied by
Szegő, it is a natural question to ask whether it is possible to find such a recurrence relation also for
the rational case. In [8], there were some recursions that were derived from the recursions for the
reproducing kernels. The trick is that by setting w = αn, the reproducing kernel essentially gives (a
superstar of) an orthonormal function (up to a constant). Here, we want to give a direct recursion
for the orthonormal functions, which should reduce to the Szegő recursion for the polynomials if
all αk = 0. This is done in the following theorem. Note that when all αk are zero, this reduces to
the matrix notation for the Szegő recursion for polynomials.

Theorem 4.1 For the orthonormal basis functions in Ln, a recursion of the following form exists[
φn(z)
φ∗n(z)

]
= Nn

1− αn−1z

1− αnz

[
1 λn

λn 1

] [
ζn−1(z) 0

0 1

] [
φn−1(z)
φ∗n−1(z)

]
(4.1)

where the matrix Nn is a constant en > 0 times a unitary matrix

Nn = en

[
η1

n 0
0 η2

n

]
with η1

n and η2
n ∈ T. The constant η1

n is chosen such that κn = φ∗n(αn) > 0. The other constant η2
n

is related to η1
n by

η2
n = η1

n

αn−1

|αn−1|
αn

|αn|
.

The parameter λn is given by

λn = η
φn(αn−1)
φ∗n(αn−1)

∈ D with η =
1− αnαn−1

1− αnαn−1

αn

|αn|
αn−1

|αn−1|
∈ T.

The value of en follows from the proof below, but a simpler expression is given in Theorem 4.2
below.

The formula (4.1) holds from n = 1 on if we define α0 = 0.
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Proof. First we prove the existence of constants cn and dn such that

1− αnz

z − αn−1
φn − dnφn−1 − cn

1− αn−1z

z − αn−1
φ∗n−1 ∈ Ln−2 (4.2)

Let us define as before πk(z) =
∏k

i=1(1− αiz) and the polynomials pk are defined by φk = pk/πk.
Note that we can rewrite (4.2) as

pn − dn(z − αn−1)pn−1 − cn(1− αn−1z)p∗n−1ηn−1

(z − αn−1)πn−1(z)
=
N(z)
D(z)

where we have used

ηk =
k∏

i=1

−αi

|αi|
∈ T.

If this has to be in Ln−2, then we should require that N(αn−1) = N(1/αn−1) = 0 or, which is
the same, N(αn−1) = N∗(αn−1) = 0. If so, we can drop the factors (z − αn−1)(1 − αn−1z) from
numerator and denominator.

The first condition N(αn−1) = 0 gives (p∗n−1 is the reverse polynomial in the Freud sense:
p∗n−1(z) = zn−1pn−1(1/z) = zn−1pn−1∗(z))

cn =
ηn−1

1− |αn−1|2
pn(αn−1)
p∗n−1(αn−1)

.

The second condition N(1/αn−1) = 0 defines dn:

dn =
1

1− |αn−1|2
p∗n(αn−1)
p∗n−1(αn−1)

.

Note that p∗n−1(αn−1) = φ∗n−1(αn−1)πn−1(αn−1)ηn−1 = κn−1πn−1(αn−1)ηn−1 6= 0. We can there-
fore also write

cn =
1− αnαn−1

1− |αn−1|2
φn(αn−1)
κn−1

and
dn = −1− αnαn−1

1− |αn−1|2
αn

|αn|
φ∗n(αn−1)
κn−1

. (4.3)

Thus we have proved that with the previous choices of cn and dn, the expression in (4.2) is in Ln−2.
However, at the same time it is orthogonal to Ln−2. To check this, we note that for every k ≤ n−2,
φk is orthogonal to the first term in (4.2) because

〈 1− αnz

z − αn−1
φn, φk〉µ = 〈φn,

z − αn

1− αn−1z
φk〉µ

and this is zero because the right factor is in Ln−1. φk is trivially orthogonal to the second term
in (4.2). Finally, it is also orthogonal to the third term since

〈1− αn−1z

z − αn−1
φ∗n−1, φk〉µ = 〈φ∗n−1,

z − αn−1

1− αn−1z
φk〉µ

and this is zero because φ∗j is orthogonal to any function from Lj which vanishes at z = αj . We
may thus conclude that the expression in (4.2) is zero. Hence

φn = dn
z − αn−1

1− αnz
φn−1 + cn

1− αn−1z

1− αnz
φ∗n−1 (4.4)

= dn
−αn−1

|αn−1|
1− αn−1z

1− αnz
[ζn−1(z)φn−1 + λnφ

∗
n−1]
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with
λn = − cn

dn

αn−1

|αn−1|
(4.5)

Note that we can write λn as

λn = η
φn(αn−1)
φ∗n(αn−1)

with η =
1− αnαn−1

1− αnαn−1

αn

|αn|
αn−1

|αn−1|
∈ T

We then know from the remark at the end of the previous section that λn ∈ D as a consequence
of the Christoffel-Darboux relation. Taking the superstar conjugate, we can find the recurrence as
claimed. One can choose en = |dn| > 0. The values of η1

n and η2
n can readily be computed to be

η1
n = − dn

|dn|
αn−1

|αn−1|
and η2

n = − dn

|dn|
αn

|αn|

which are indeed on T.
It remains to check the initial conditions of the recurrence, i.e., for n = 1. Now, since φ0 =

φ∗0 = 1, we can always put

φ1(z) = e1η
1
1

1
1− α1z

[zφ0 + λ1φ
∗
0]

where e1 ∈ R and η1
1 ∈ T. Hence the constants η1

1 and λ1 should satisfy

φ1(0) = e1η
1
1λ1 and φ∗1(0) = −e1η1

1α1/|α1|.

These can be solved for η1
1 and λ1, and as you can easily check, the result corresponds to the general

formula if you take α0 = 0 and use α0/|α0| = −1.
This gives the first of the two coupled recursions of (4.1). The other recurrence is found by

taking the superstar conjugate of the first one. They are equivalent to each other. �

The previous expressions for the recursion coefficients λn are not very practical, since they use
function values of φn and φ∗n to compute these. The following theorem gives, at least in principle,
more reasonable expressions.

Theorem 4.2 The recursion coefficient λn from the previous theorem can also be expressed as

λn =
αn−1

|αn−1|
〈φk,

z−αn−1

1−αnz φn−1〉µ
〈φk,

1−αn−1z
1−αnz φ∗n−1〉µ

, k = 0, 1, . . . , n− 1

and the value of en > 0 can be obtained as the positive square root of

e2n =
1− |αn|2

1− |αn−1|2
1

1− |λn|2
.

Proof. Use the relation (4.4) for φn and express that it is orthogonal to φk. Then you get.

〈φk,
z − αn−1

1− αnz
φn−1〉µ dn + 〈φk,

1− αn−1z

1− αnz
φ∗n−1〉µ cn = 0

Use then the defining relation of (4.5) and the expression for the ratio of cn/dn that you can get
from the previous relation. Then you will find the expression for λn.

To find the expression for e2n, we should prove that

e2n(1− |λn|2) =
1− |αn|2

1− |αn−1|2
. (4.6)
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Fill in e2n = |dn|2 with dn given by (4.3) and the expression for λn to find

e2n(1− |λn|2) =
|1− αnαn−1|2

(1− |αn−1|2)2
|φ∗n(αn−1)|2

|φ∗n−1(αn−1)|2

(
1− |φn(αn−1)|2

|φ∗n(αn−1)|2

)
=

|1− αnαn−1|2

(1− |αn−1|2)2
1

|φ∗n−1(αn−1)|2
(
|φ∗n(αn−1)|2 − |φn(αn−1)|2

)
=

|1− αnαn−1|2

(1− |αn−1|2)2
(
1− |ζn(αn−1)|2

)
where for the third line we used the Christoffel-Darboux relation. It is just a matter of writing
ζn(αn−1) explicitly and simplification to find that you get indeed the right hand side of (4.6). �

Note that from a numerical point of view, the most interesting choice is probably to take k = 0
in the previous expression for λn, thus to use φ0 = 1 instead of an arbitrary φk with 0 ≤ k < n.
However, further research should decide on the numerical performance of the computation of the λn

by the formula of Theorem 4.2 and compare it with the stability of the Nevanlinna-Pick algorithm
or the algorithm implicit in Theorem 7.1 to obtain these parameters. For a numerical stability
analysis in the polynomial case, see e.g. [14, 6].

The presence of the η1
n and η2

n are a bit cumbersome to deal with in certain circumstances.
They are needed because of our choice of the orthonormal functions to satisfy φ∗n(αn) = κn > 0. It
is possible to get rid of the η’s by rotating the orthonormal functions. That is, we multiply them by
some number εn ∈ T. This number can be chosen to avoid the rotations needed in the recurrence
(4.1). Therefore we define

ε0 = 1 and εn = −εn−1
dn

|dn|
αn

|αn|
for n ≥ 1. (4.7)

where dn is as in (4.1) and use this as a rotation for φn. The rotated orthonormal functions, which
are still orthonormal, will be denoted by Φn = εnφn. These basis functions now satisfy a recurrence
relation as given in the next theorem.

Theorem 4.3 Let φn be the orthonormal functions satisfying the recurrence relation of Theorem
4.1 and denote by Φn the rotated orthonormal functions Φn = εnφn as introduced above. Then
these satisfy the recurrence relation[

Φn(z)
Φ∗

n(z)

]
= en

1− αn−1z

1− αnz

[
1 Λn

Λn 1

] [
Zn−1(z) 0

0 1

] [
Φn−1(z)
Φ∗

n−1(z)

]
(4.8)

where

Λn = ε2n−1

αn

|αn|
αn−1

|αn−1|
λn

= ε2n−1

1− αnαn−1

1− αnαn−1

Φn(αn−1)
Φ∗

n(αn−1)

and
Zn−1 =

αn

|αn|
αn−1

|αn−1|
ζn−1.

Proof. You can start with the recurrence (4.1) and express the φn in terms of the Φn, which results
in the relation [

Φn(z)
Φ∗

n(z)

]
= en

1− αn−1z

1− αnz
Mn

[
ζn−1(z) 0

0 1

] [
Φn−1(z)
Φ∗

n−1(z)

]
with the matrix Mn defined by

Mn =
[

εnη
1
nεn−1 εnη

1
nεn−1λn

εnη
2
nεn−1λn εnη

2
nεn−1

]
.

9



Use in this matrix the definitions of εn, of ηi
n and Λn and some algebra will give the result. �

In the next sections, we still go on developing the results for the φn in the first place, but virtually
the same results hold true for the rotated functions Φn. Occasionally we shall state the result for
Φn in a remark. The rotated functions are however important for the interpolation algorithm to
be given later in section 7.

It will be useful to write an inverse form of the recursion formulas as in the next theorem.

Theorem 4.4 Given the orthonormal function φn with φ∗n(αn) = κn > 0, all the previous or-
thonormal functions φk, k < n are uniquely defined if they are normalized by φ∗k(αk) = κk > 0.
They can be found with the recursions[

φn−1(z)
φ∗n−1(z)

]
=

1
1− |λn|2

1− αnz

1− αn−1z

[
1/ζn−1(z) 0

0 1

] [
1 −λn

−λn 1

]
N−1

n

[
φn(z)
φ∗n(z)

]
(4.9)

with all the quantities appearing in this formula as in Theorem 4.1.

Proof. The formula (4.9) is evidently the inverse of the recurrence formula (4.1). Since the
coefficients λn and the matrix Nn are completely defined in terms of φn, the function φn−1 is
uniquely defined. By induction, all the previous φk are uniquely defined. �

Note that Theorem 4.4 reduces in the polynomial case, i.e. when all αk = 0, to the backward
recursion of the Szegő polynomials.

5 Functions of the second kind and interpolation

In this section we shall define some functions ψk which are the rational analogues of the polynomials
of the second kind which appear in the Szegő theory. We shall call them functions of the second
kind. They are defined first in terms of the orthogonal functions φn. We then show that they
satisfy the same recurrence relation as the orthogonal functions and that they can be used to get
rational approximants for the positive real function Ωµ. To give the definitions of these functions
of the second kind, we recall that D(t, z) = (t+ z)(t− z)−1, and introduce also the kernel

E(t, z) = D(t, z) + 1 =
2t
t− z

.

Note that when t ∈ T, then taking substar with respect to z gives D(t, z)∗ = −D(t, z) = D(z, t)
and thus E(z, t) = E(t, z)∗ = 1−D(t, z). Here are some equivalent definitions for z ∈ D

ψn(z) =
∫

[E(t, z)φn(t)− t+ z

t− z
φn(z)]dµ(t) (5.1)

=
∫
D(t, z)[φn(t)− φn(z)]dµ(t) +

∫
φn(t)dµ(t)

=

 1 , if n = 0∫
D(t, z)[φn(t)− φn(z)]dµ(t) , if n ≥ 1.

(5.2)

The last equality follows from the fact that 〈1, φn〉µ = δ0n. These definitions are for z ∈ D, but,
as we show below, these functions are rational and can therefore be defined in the whole complex
plane. Formula (5.2) can be compared with the formulas for the polynomials of the second kind in
(1.13) of Geronimus book [29, p. 10].

We shall first show that these are functions from Ln.

Lemma 5.1 The functions ψn of the second kind belong to Ln.
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Proof. This is trivially true for n = 0. For n ≥ 1, note that the integrand in (5.2) has the form

[φn(t)− φn(z)]D(t, z).

The term in square brackets vanishes for t = z, so that the integral can be written as

ψn(z) =
∫

(t− z)
∑n

k=0 ak(t)zk

(t− z)πn(z)
dµ(t) =

∑n
k=0[

∫
ak(t)dµ(t)]zk

πn(z)

and this is clearly an element in Ln. �

We can obtain more general expressions for these functions of the second kind as shown below.

Lemma 5.2 To define the functions of the second kind for n > 0, we may replace (5.2) by

ψn(z)
Bk(z)

=
∫
D(t, z)[

φn(t)
Bk(t)

− φn(z)
Bk(z)

]dµ(t) =
∫

[E(t, z)
φn(t)
Bk(t)

−D(t, z)
φn(z)
Bk(z)

]dµ(t) (5.3)

for any 0 ≤ k < n. The second formula holds also for n = 0, if you then take Bk = 1.

Proof. We only consider the case n > 0. To prove the first or the second formula, we only have to
check that ∫

D(t, z)[1− Bk(z)
Bk(t)

]φn(t)dµ(t) = 0 or
∫
E(t, z)[1− Bk(z)

Bk(t)
]φn(t)dµ(t) = 0

depending on the case. The proof is the same for both of them. Since the term in square brackets
vanishes for z = t, it follows that we can write the integral as∫

p(t)
π∗k(t)

φn(t)dµ(t)

with p a polynomial of degree at most k. The latter is of the form 〈φn, f〉µ with f ∈ Lk. Since
k < n and φn⊥Ln−1, this is zero. �

We show next an expression for ψ∗n.

Lemma 5.3 The superstar conjugate of the functions of the second kind satisfy

ψ∗n(z)
Bn\k(z)

=
∫
D(z, t)[

φ∗n(t)
Bn\k(t)

− φ∗n(z)
Bn\k(z)

]dµ(t)

=
∫

[E(z, t)
φ∗n(t)
Bn\k(t)

−D(z, t)
φ∗n(z)
Bn\k(z)

]dµ(t) (5.4)

for any 0 ≤ k < n. The second relation also holds for n = 0. As before, we set Bn\k = Bn/Bk for
n > 0 and it equals 1 for n = 0.

Proof. Note that the second expression implies that ψ∗0 = 1, since we get

ψ∗0(z) =
∫

[E(z, t)−D(z, t)]dµ(t) =
∫
dµ(t) = 1

which proves the second formula for n = 0. So, suppose that n > 0. Then the relations follow
immediately from (5.3) in Lemma 5.2 by taking the superstar conjugate. This proves the lemma.

�

Note that like in (5.3), we can give an equivalent form of (5.4) as follows.

− ψ∗n(z)
Bn\k(z)

=
∫
D(t, z)[

φ∗n(t)
Bn\k(t)

− φ∗n(z)
Bn\k(z)

]dµ(t)−
∫

φ∗n(t)
Bn\k(t)

dµ(t)

11



where, as we know, the last term is δ0n. For k = 0, this takes the even simpler form

−ψn∗(z) =
∫
D(t, z)[φn∗(t)− φn∗(z)]dµ(t)− δ0n.

Since by definition∫
D(t, z)φn(z)dµ(t) = φn(z)

∫
D(t, z)dµ(t) = φn(z)Ω(z),

we can derive the following interpolation properties.

Theorem 5.4 Let Ω = Ωµ be the positive real function with Riesz-Herglotz measure µ, normalized
by Ω(0) = 1. Then for the functions of the second kind, it holds that (B−1 = 1)

φnΩ + ψn

Bn−1
=

{
Ω + 1 ∈ H(D) , n = 0
g ∈ H(D) and g(0) = 0 , n > 0.

(5.5)

For their superstar conjugates, we find

φ∗nΩ− ψ∗n
Bn

=
{

Ω− 1 ∈ H(D),Ω(0)− 1 = 0 , n = 0
h ∈ H(D) and h(0) = 0 , n > 0.

(5.6)

Proof. For n = 0, the relation (5.5) is obvious knowing that φ0 = ψ0 = 1.
Use (5.3) for k = n− 1 and n > 0 to write the left hand side of (5.5) as∫

E(t, z)
φn(t)
Bn−1(t)

dµ(t) (5.7)

where as before E(t, z) = D(t, z) + 1. For z = 0, the integral equals

2
∫

φn

Bn−1
dµ = 2〈φn, Bn−1〉µ = 0.

This implies that φn/Bn−1 ∈ L1(µ). Therefore (5.7) is analytic in D as a Cauchy-Stieltjes integral.
For the relation (5.6), one can similarly check the case n = 0 and for n > 0, use (5.4) with

k = 0 to see that the left hand side equals∫
D(t, z)

φ∗n(t)
Bn(t)

dµ(t) (5.8)

which for z = 0 equals 〈φ∗n, Bn〉µ and this is zero because φ∗n⊥ζnLn−1. Thus φ∗n/Bn ∈ L1(µ). We
can also rewrite (5.8) as∫

D(t, z)
φ∗n(t)
Bn(t)

dµ(t) =
∫
D(t, z)

φ∗n(t)
Bn(t)

dµ(t) +
∫

φ∗n(t)
Bn(t)

dµ(t)

=
∫

[D(t, z) + 1]
φ∗n(t)
Bn(t)

dµ(t)

=
∫
E(t, z)

φ∗n(t)
Bn(t)

dµ(t)

and this is again analytic for z in D as a Cauchy-Stieltjes integral.
This proves the theorem. �

The previous theorem should be compared with the corresponding properties in the polynomial
case as given e.g. in (1.19) of Geronimus book [29, p. 11].

Like in the polynomial case, these functions of the second kind satisfy the same recurrence
relations as the orthogonal functions but with opposite sign for the parameters λk. Taking this
sign outside the transition matrix of the recursion, gives formula (5.9) as shown in the following
theorem.
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Theorem 5.5 For the functions of the second kind a recursion of the following form exists[
ψn(z)
−ψ∗n(z)

]
= Nn

1− αn−1z

1− αnz

[
1 λn

λn 1

] [
ζn−1(z) 0

0 1

] [
ψn−1(z)
−ψ∗n−1(z)

]
(5.9)

where the recurrence matrix is exactly as in theorem 4.1.

Proof. As in the case of theorem 4.1, it is sufficient to prove only one of the two associated
recursions. The other one follows by applying the superstar operation. We shall prove the second
one. First note that by our previous lemma’s we can write for n > 1[

ψn−1(z)
−ψ∗n−1(z)

]
= −Ω(z)

[
φn−1(z)
φ∗n−1(z)

]
+

∫
D(t, z)

[
φn−1(t)

ζn−1(z)
ζn−1(t)φ

∗
n−1(t)

]
dµ(t).

Multiply from the left with

enη
2
n

1− αn−1z

1− αnz
[λnζn−1(z) 1]

then the right hand side becomes

−Ω(z)φ∗n(z) + enη
2
n

∫
D(t, z)f(t, z)dµ(t) (5.10)

with

f(t, z) =
1− αn−1z

1− αnz
[λnζn−1(z)φn−1(t) +

ζn−1(z)
ζn−1(t)

φ∗n−1(t)]

=
ζn−1(z)
ζn−1(t)

1− αn−1z

1− αnz
[λnζn−1(t)φn−1(t) + φ∗n−1(t)].

Using the recursion for φ∗n, we thus get that (5.10) can be replaced by

−Ω(z)φ∗n(z) +
∫
D(t, z)

αn−1 − z

αn−1 − t

1− αnt

1− αnz
φ∗n(t)dµ(t).

This will equal −ψ∗n(z) if we may replace the latter integral by∫
D(t, z)

αn − z

αn − t

1− αnt

1− αnz
φ∗n(t)dµ(t).

This can indeed be done, since the difference equals∫
D(t, z)

[
αn−1 − z

αn−1 − t
− αn − z

αn − t

]
1− αnt

1− αnz
φ∗n(t)dµ(t)

=
∫
f∗(t)φ∗n(t)dµ(t) = 〈φ∗n, f〉µ

with f ∈ ζnLn−1. This gives zero because of the orthogonality. This proves the theorem for n > 1.
For n = 1, we have to show that ψ1(z) = e1η

1
1(z − λ1)/(1− α1z). From the definition, we get

ψ1(z) =
∫
D(t, z)[φ1(t)− φ1(z)]dµ(t).

Now we replace φ1 by its expression from the recurrence relation which is φ1(z) = e1η
1
1(z+λ1)/(1−

α1z). After some computations, this results in

ψ1(z) =
e1η

1
1

1− α1z

∫
t+ z

t− z

[
(t+ λ1)(1− α1z)

1− α1t
− (z + λ1)

]
dµ(t)

=
e1η

1
1(1 + α1λ1)
1− α1z

∫
t+ z

1− α1t
dµ(t).
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Now we use the expression we get from theorem 4.1 for φ1 in terms of λ1 and use the orthogonality
relation 〈φ1, 1〉µ = 0 to find ∫

t

1− α1t
dµ(t) = −λ1

∫
1

1− α1t
dµ(t).

Fill this into the last expression and you find

ψ1(z) = e1η
1
1

z − λ1

1− α1z
(1 + α1λ1)

∫
1

1− α1t
dµ(t). (5.11)

We have to find an expression for the remaining integral. Therefore we use again the expression
for λ1 from theorem 4.2 to get∫

dµ(t)
1− α1t

= 1 + α1

∫
tdµ(t)
1− α1t

= 1− α1λ1

∫
dµ(t)

1− α1t
.

From this relation we finally get

(1 + α1λ1)
∫

dµ(t)
1− α1t

= 1.

Now the recursion for ψ1 is proved and this concludes the proof of the theorem. �

The interpolation properties cause the following theorem to be true.

Theorem 5.6 Let φn be the orthonormal functions of Ln with respect to the measure µ. Define
the absolutely continuous measure µn by dµn(t) = P (t, αn)|φn(t)|−2dλ(t) where P is the Poisson
kernel. Then on Ln, the inner product with respect to µn and µ is the same : 〈·, ·〉µ = 〈·, ·〉µn.

Proof. We prove first that the norm of φn is the same. ‖φn‖2
µn

=
∫
P (t, αn)|φn|2/|φn|2dλ =

1 = ‖φn‖2
µ.

Next we show that 〈φn, φk〉µ and 〈φn, φk〉µn is the same for k < n. They are both zero.

〈φn, φk〉µn =
∫
φk∗(t)
φn∗(t)

P (t, αn)dλ(t)

=
∫
φ∗k(t)Bn\k(t)

φ∗n(t)
P (t, αn)dλ(t)

Since φ∗n has its zeros in E, we know that Bn\kφ
∗
k/φ

∗
n is analytic in the closed unit disk and then we

may apply Poisson’s formula which gives zero because Bn\k(αn) = 0. Of course also 〈φn, φk〉µ = 0.
Hence φn is a function of norm 1 and orthogonal to Ln−1 both with respect to µn and with respect
to µ. By theorem 4.4 this φn will uniquely define all the previous φk, provided they are normalized
properly with φ∗k(αk) = κk > 0. Thus the orthonormal system in Ln for µn and for µ is the same :
〈φk, φi〉µ = 〈φk, φi〉µn = δki. Since every element from Ln can be expressed as a linear combination
of the φk, it also holds that 〈f, g〉µ = 〈f, g〉µn for every f and g ∈ Ln. �

The previous theorem was proved for orthogonal polynomials e.g. in [26, p. 198–199].

6 J-unitary, J-contractive matrices

We shall now derive some determinant formula and some other properties of the functions we
introduced. Therefore we need a J-unitary matrix which is J-contractive in D.
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We give the following definitions. Let θ be a 2× 2 matrix with entries that are functions in the
Nevanlinna class N : θ = [θij ] ∈ N2×2. We consider such matrices that are unitary with respect to
the indefinite metric

J =
[

1 0
0 −1

]
= 1⊕−1.

We mean that they satisfy
θH J θ = J on T (6.1)

where the superscript H denotes complex conjugate transpose. If we define the substar conjugate
for matrices as the elementwise substar conjugate of the transposed matrix :[

θ11 θ12
θ21 θ22

]
∗

=
[
θ11∗ θ21∗
θ12∗ θ22∗

]
,

then we can write (6.1) as
θ∗ J θ = J (6.2)

which is valid a.e. in the whole Riemann sphere C since these θ matrices have a pseudomero-
morphic extension across the unit circle. Note that the set of J-unitary matrices is closed under
multiplication. We denote the class of J-unitary matrices by

TJ = {θ ∈ N2×2 : θ∗Jθ = J a.e. in C}

The class of J-contractive matrices is denoted as

DJ = {θ ∈ N2×2 : θHJθ ≤ J a.e. in D}

By the inequality, we mean that J − θHJθ, is positive semi definite. Also the set of J-contractive
matrices is closed under multiplication.

The class of J-unitary, J-contractive matrices, which is denoted by BJ = TJ ∩DJ , could be
called the class of (matrix valued) J-inner functions as in [24].

For these J-inner matrices a number of properties can be proved. The following theorem is due
to Dewilde and Dym [17, p.448].

Theorem 6.1 For θ = [θij ] ∈ BJ the following holds.

1. θH ∈ BJ .

2. θHJθ ≥ J a.e. in E.

3. (θ11 + θ12)−1
∗ ∈ H2.

4. (θ11 + θ12)−1
∗ (θ11 − θ12)∗ ∈ P.

5. (θ22 + θ21)−1 ∈ H2.

6. (θ22 + θ21)−1(θ22 − θ21) ∈ P.

7. (θ11 + θ12)−1
∗ (θ21 − θ22)∗ is inner.

The matrix having the properties discussed above will be the Θn matrix that is obtained in the
next lemma.

Lemma 6.2 Let tn denote the recursion matrix

tn = Nn
1− αn−1z

1− αnz

[
1 λn

λn 1

] [
ζn−1(z) 0

0 1

]
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with all the parameters as defined in theorems 4.1 and 5.5. Set Tn = tntn−1 · · · t1 (recall α0 = 0).
Then

Tn =
1
2

[
φn + ψn φn − ψn

φ∗n − ψ∗n φ∗n + ψ∗n

]
. (6.3)

There exists a positive constant cn such that

Θn =
1− αnz

cn
Tn

is a J-unitary matrix which is J-contractive in D.

Proof. The first relation follows easily from[
ψn φn

−ψ∗n φ∗n

]
= Tn

[
1 1
−1 1

]
(6.4)

by solving for Tn.
Now note that tk can be written as

|dk|(1− |λk|2)1/2 1− αk−1z

1− αkz
θk

with

θk =
[
η1

k 0
0 η2

k

]
(1− |λk|2)−1/2

[
1 λk

λk 1

] [
ζk−1 0

0 1

]
,

a J-unitary matrix, which is also J-contractive in D since |λk| < 1. Multiply this out to find
Θn = θnθn−1 · · · θ1 and cn =

∏n
k=1 |dk|(1− |λk|2)1/2. �

Recall that the Poisson kernel is P (z, w) = (1− |w|2)/|z − w|2, z ∈ T. We shall generalize this for
values z 6∈ T and we shall mean then

P (z, w) =
1− |w|2

(z − w)(z − w)∗
=

z(1− |w|2)
(z − w)(1− wz)

and call this the generalized Poisson kernel.
With the previous result, we can now prove the following theorem.

Theorem 6.3 With the notation introduced in the previous lemma, we have :

1. the determinant formula 1
2 [ψnφn∗ + ψn∗φn] = P (z, αn) whence

1
2

[
ψn

φn
+
ψ∗n
φ∗n

]
=
P (z, αn)
φnφn∗

with P (z, w) the (generalized) Poisson kernel.

2. ψ∗n/φ
∗
n = ψn∗/φn∗ ∈ P. The Riesz-Herglotz measure for this positive real function is the one

given in:
ψ∗n(z)
φ∗n(z)

=
∫
D(t, z)dµn(t) with dµn(t) =

P (t, αn)
|φ∗n|2

dλ(t).

Proof. The first determinant relation follows by taking the determinant of (6.4), giving

1
2

[ψnφ
∗
n + ψ∗nφn] =

c2n
(1− αnz)2

det Θn

=
z

(1− αnz)2
Bn−1(z)

n∏
k=1

1− |αk|2

1− |αk−1|2
αk−1

|αk−1|
αk

|αk|

=
z

(1− αnz)(z − αn)
Bn(z)(1− |αn|2)

= Bn(z)P (z, αn)
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That ψ∗n/φ
∗
n ∈ P follows from theorem 6.1 because Θn is J-inner and the factor cn/(1 − αnz)

relating Θn and Tn drops out of the ratio.
If Ωn = ψ∗n/φ

∗
n ∈ P, then <Ωn = P (z, αn)/|φn|2, by the first part. Hence the Riesz-Herglotz

representation has the form

Ωn(z) =
∫
D(t, z)<Ωn(t)dλ(t).

The theorem is completely proved. �

Note that the previous theorem contains generalizations of formulas (1.17) and (1.18) of Geron-
imus book [29, p. 11].

As with the functions φn, we could rotate the functions of the second kind to give Ψn = εnψn

where the εn are as defined in (4.7). For these rotated Ψn a recurrence like in theorem 4.3 exists.
Most of the properties of ψn are transferred to Ψn.

7 Interpolation algorithm for the orthonormal functions

In this section we give an algorithm in the style of the Pick-Nevanlinna algorithm, which, based
on the idea of successive interpolation, will generate the recursion for the orthonormal functions
φn and the functions of the second kind ψn. As a matter of fact, it is difficult to do this for these
functions because of the rotating factors η1

n and η2
n in the recurrence relation. These rotations

depend on the angle that φn(αn−1) forms with the real axis and this is difficult to find without
evaluating φn(αn−1). However, the rotated functions Φn and Ψn satisfied a recurrence that got rid
of these η’s and it will be possible to find an interpolation algorithm for these rotated functions.
That is what we shall currently do.

Recall that Φn = εnφn and Ψn = εnψn with εn as defined by (4.7). Define Rn1 and Rn2 through[
Bn−1Rn1(z)
BnRn2(z)

]
=

[
Φn(z)
Φ∗

n(z)

]
Ω(z) +

[
Ψn(z)
−Ψ∗

n(z)

]
. (7.1)

Where Ω = Ωµ is the positive real function associated with the measure µ for which the orthog-
onality holds. Note that the functions in the left hand side are in fact rotated versions of the
functions g and h as defined in (5.5) and (5.6) respectively. These are indeed the remainders in
the linearized interpolation properties of the rotated functions. We shall call the functions Rn1 and
Rn2 the remainder functions. The factor B−1 has to be understood as 1 and thus R01 = Ω + 1
while R02 = Ω− 1. For n > 0, both Rn1 and Rn2 are zero in the origin.

The right hand side in the defining relation (7.1) of the remainder functions satisfies the recur-
rence for the rotated functions as in theorem 4.3. Hence, also the left hand side shall satisfy[

Bn−1Rn1(z)
BnRn2(z)

]
= en

1− αn−1z

1− αnz

[
1 Λn

Λn 1

] [
Zn−1(z) 0

0 1

] [
Bn−2Rn−1,1(z)
Bn−1Rn−1,2(z)

]
. (7.2)

This can be rewritten as given in the next theorem.

Theorem 7.1 The remainder functions as defined above satisfy the following recursion

(1− αnz)
[
Rn1(z)
Rn2(z)

]
= en

[
1 0
0 1/ζn(z)

] [
1 Λn

Λn 1

]
(1− αn−1z)

[
ηn−1Rn−1,1(z)
Rn−1,2(z)

]
(7.3)

with en > 0 and

Λn = −ηn−1 lim
z→αn

Rn−1,2(z)
Rn−1,1(z)

, ηn−1 =
αn

|αn|
αn−1

|αn−1|
and e2n =

1− |αn|2

1− |αn−1|2
1

1− |Λn|2
. (7.4)

The Λn in the previous expression are the same as the Λn of theorem 4.3.
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We can make the recursion even simpler and avoid the explicit use of the ηn−1 by introducing

rn1(z) =
αn

|αn|
Rn1(z) and rn2(z) = Rn2(z). (7.5)

With this notation, the recursion (7.3) becomes

(1− αnz)
[
rn1(z)
rn2(z)

]
= en

[
1 0
0 1/ζn(z)

] [
1 Ln

Ln 1

]
(1− αn−1z)

[
rn−1,1(z)
rn−1,2(z)

]
(7.6)

with

Ln =
αn

|αn|
Λn = − lim

z→αn

rn−1,2(z)
rn−1,1(z)

, en =
[

1− |αn|2

1− |αn−1|2
1

1− |Ln|2

]1/2

. (7.7)

Proof. We shall only prove (7.3), because (7.6) is a direct consequence. We can start from the
relation (7.2) and use Zn−1 = ηn−1ζn−1 to get

Bn−1(z)
[

Rn1(z)
ζnRn2(z)

]
= en

1− αn−1z

1− αnz

[
1 Λn

Λn 1

]
Bn−1(z)

[
ηn−1Rn−1,1(z)
Rn−1,2(z)

]
(7.8)

which now easily gives (7.3). To find the expression for Λn, you can use the last line of (7.8) for
z = αn which gives

0 = Λnηn−1Rn−1,1(αn) +Rn−1,2(αn)

from which the expression for Λn follows. The expression for en was shown in theorem 4.2. �

The previous theorem has the following consequence formulated in terms of functions from the
Schur class B.

Corollary 7.2 Define the function Γn(z) in terms of the remainder functions by

Γn(z) =
αn

|αn|
Rn2(z)
Rn1(z)

=
rn2(z)
rn1(z)

. (7.9)

Then Γ0 = (1− Ω)/(1 + Ω) and for all k ≥ 0, Γk ∈ B and Γk(0) = 0 and they are generated by

Γn =
1
ζn

(
Ln + Γn−1

1 + LnΓn−1

)
with Ln = −Γn−1(αn).

Proof. This follows immediately from the previous theorem. All the Γk are in B because Γ0 is,
while the Möbius transforms are done with Lk ∈ D and this maps B into itself. Moreover the
division by ζn respects the analyticity because the function between brackets was made zero in
z = αn by the choice of Ln. �

8 Convergence results

This section includes a result about convergence uniformly on compact subsets of the unit disk of the
approximants we obtained. It is a well known fact that an infinite Blaschke product B(z) = B∞(z)
will converge to zero uniformly on compact subsets of the unit disk if

∑∞
k=1(1 − |αk|) = ∞. See

e.g., [58, p.281 ff]. This can be used to obtain some other convergence results of the same type.

Theorem 8.1 Let φn be the orthonormal functions for Ln and ψn the functions of the second kind.
Define Ωn = ψ∗n/φ

∗
n ∈ P and let the positive real function Ω be associated with the measure µ as in

(2.2) (c = 0). Then Ωn converges to Ω uniformly on compact subsets of D if
∑∞

1 (1− |αn|) = ∞.
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Proof. First, we note that Ωn = ψ∗n/φ
∗
n = Ψ∗

n/Φ
∗
n, where Φn and Ψn are the rotated functions as

in section 7.
Let Tn be the recurrence matrix for the rotated functions, i.e., Tn = tntn−1 . . . t1 with tn the

elementary recurrence matrices as in (4.8). Then

Tn =
1
2

[
Φn + Ψn Φn −Ψn

Φ∗
n −Ψ∗

n Φ∗
n + Ψ∗

n

]
.

Hence Φ∗
n[1− Ωn 1 + Ωn] = 2[0 1]Tn and thus

[1− Ωn 1 + Ωn]
[

Ω + 1
Ω− 1

]
=

2
Φ∗

n

[0 1]Tn

[
Ω + 1
Ω− 1

]
=

2
Φ∗

n

[0 1]
[
Bn−1Rn1

BnRn2

]
= 2

Bn

Φ∗
n

Rn2

= 2(Ω− Ωn)

Thus
Ω− Ωn = BnRn2/Φ∗

n in D. (8.1)

Now define the Schur functions by Cayley transforms of Ω and Ωn

Γ =
Ω− 1
Ω + 1

∈ B and Γn =
Ωn − 1
Ωn + 1

∈ B.

Then,

Γ− Γn = 2
Ω− Ωn

(1 + Ω)(1 + Ωn)
,

which, in view of (8.1) gives

Γ− Γn

Bn
=

Rn2

Φ∗
n(1 + Ω)(1 + Ωn)

∈ H(D).

On the unit circle, we now get |Bn| = 1 a.e. and |Γ| ≤ 1 and |Γn| ≤ 1, so that∣∣∣∣Γ− Γn

Bn

∣∣∣∣ ≤ 2 on T.

The maximum modulus theorem then gives

|Γ− Γn| ≤ 2|Bn| in D.

The right hand side, and hence also the left hand side converges to zero uniformly on compact
subsets of D if

∑∞
1 (1− |αn|) = ∞. With inverse Cayley transforms we now find that

Ω− Ωn =
1 + Γ
1− Γ

− 1 + Γn

1− Γn
= 2

Γ− Γn

(1− Γ)(1− Γn)

which will converge exactly as Γ− Γn does. �

9 Conclusion

We have discussed some results about orthogonal rational functions related to the Nevanlinna-Pick
interpolation algorithm exactly like the Szegő theory of orthogonal polynomials is related to the
Schur algorithm. We preassumed that the Szegő condition log µ′ ∈ L1 was satisfied. Some ideas
about the theory without this condition can be found in [18].
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Essentially by using a Cayley transformation, it is possible to translate these results to a set of
orthogonal rational function with respect to a measure on the real axis and where the poles are for
example in the lower half plane.

We did not discuss the possibility to implement so called superfast algorithms as for the poly-
nomial case like e.g., in [4, 2], nor did we give parallel implementations like discussed in several
papers in the proceedings [31] or “split” versions similar to the split Levinson and Schur recursions
as introduced by Genin [15, 16]. Also a vast literature concerning the generalization to matrix or
operator valued functions should be mentioned here, e.g., [52, 25, 5].
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