
A quadrature formula based on Chebyshev rational

functions

J. Van Deun and A. Bultheel

Department of Computer Science, K.U.Leuven, Belgium

E-mail: {joris.vandeun–adhemar.bultheel}@cs.kuleuven.be

Abstract

Several generalisations to the classical Gauss quadrature formulas have
been made over the last few years. When the integrand has singularities
near the interval of integration, formulas based on rational functions give
more accurate results than the classical quadrature rules based on polyno-
mials. In this paper we present one such generalisation which uses results
from the theory of orthogonal rational functions. Compared to similar
existing formulas, it has the advantage of improved stability and smaller
quadrature weights.

1 Introduction

When faced with the problem of numerically integrating a given function over
the interval [−1, 1], the choice of a suitable quadrature formula will usually
depend on at least two different considerations. First there is the question of
accuracy: Which quadrature formula gives a more accurate result, for the same
number of function evaluations of the integrand? Maximising the number of
functions that is integrated exactly, we may hope to reduce the quadrature er-
ror for other functions as well. Gauss quadrature formulas then seem the most
obvious choice; for a given number of nodes, they have a maximal domain of ex-
actness. Classical Gauss rules like Gauss-Legendre or Gauss-Chebyshev choose
nodes as the zeros of orthogonal polynomials (respectively Legendre and Cheby-
shev) and are often used when the integrand is smooth (polynomial-like), since
they integrate exactly in polynomial spaces of largest possible dimension. When
there are poles present in the integrand, Gauss formulas that integrate in ra-
tional spaces will give better results. Several such generalisations are discussed
in [Gau99, VAV93, WL00].

But then we arrive at the second issue, which is equally important, i.e. that
of the actual construction of the quadrature formula. If the effort involved in
computing the nodes and weights is too large, the efficiency gained by superior
accuracy may be totally lost. The nodes and weights in the (polynomial) Gauss-
Chebyshev formula are explicitly known and have very simple expressions, but
when there is no Chebyshev weight function in the integral, this formula behaves
very poorly. For an integral without weight function, the Gauss-Legendre rule

1

is more adequate, but its nodes and weights are not known explicitly and have
to be computed, either by solving a tridiagonal eigenvalue problem [Gau99] or,
more efficiently, using Newton iterations [Swa02]. In this case the nodes are
also often precomputed (for several degrees) and hard-coded into the program.

However, for more general weights, or for the formulas based on rational
functions, the computations for the Gauss rules are even more involved. First
one has to compute the recurrence coefficients for the orthogonal functions. For
an n-point rule, this comes down to computing approximately 2n inner products
(integrals!), as explained in [Gau68, Gau99], or performing a two-dimensional
recurrence if modified moments are used [Gau70]. Then these coefficients are
gathered in a tridiagonal matrix whose eigenvalues are the quadrature nodes
(the weights are obtained from the corresponding eigenvectors).

To compute the integral of a smooth function without a weight function, a
good alternative is Fejér’s first rule [DR84, p. 84-85]. The computational effort is
minimal — both nodes and weights are known explicitly — and, using n nodes,
it integrates polynomials of degree n − 1 exactly. We recall that this formula
uses the same nodes as the Gauss-Chebyshev rule (which are the zeros of the
Chebyshev polynomials), wh ile the weights are determined to give maximal
accuracy for polynomials. Since it does not use the nodes of the Legendre rule
(corresponding to an integral with out weight function), its domain of exactness
is the space of polynomials of degree n−1, instead of 2n−1 for the true Gauss-
Legendre rule.

In the presence of singularities, quadrature formulas which integrate ratio-
nal functions with fixed poles are more accurate. In this paper we present a
new quadrature rule, a rational variant of Fejér’s rule, which requires less com-
putational effort than the formulas from [Gau99] and in some cases of interest is
more stable and gives more accurate results than the rule presented in [WL00].

In [VDBGV06] we constructed rational generalizations of the well-known
classical Gauss-Chebyshev quadrature formula. These rational quadrature rules
integrate functions with arbitrary real poles outside the interval [−1, 1], with
respect to the different Chebyshev weight functions (1 − x)α(1 + x)β , with α
and β belonging to {±1/2}. The poles are fixed in advance and there can
be poles at infinity, in which case the formulas also integrate polynomials of
a certain degree. If there are only m distinct poles (possibly repeated), then
these formulas can be constructed in order O(mn) operations, for arbitrarily
high degree n. The main reason for the efficient computation of these rules is
that we have explicit representations for the so-called Chebyshev orthogonal
rational functions. These were also introduced in the same article. Putting all
poles at infinity just gives the Chebyshev polynomials and corresponding Gauss-
Chebyshev quadrature formula, which shows that it is indeed a true rational
generalisation.

Unlike the formulas from [VDBGV06], the quadrature rule constructed in
the present paper is not a Gaussian rule, but instead a rational generalization of
Fejér’s rule. We use the nodes of the rational Gauss-Chebysh ev formula from
[VDBGV06], but there is no weight function in the integral. The quadrature
weights are determined to give maximal accuracy in certain r ational function
spaces. The reason for studying this rule instead of a rational Gauss-Legendre

2

rule, is that we do not have explicit representations for the Legendre orthogonal
rational functions, which makes the computational cost of the corresponding
Gauss rule much higher, as explained above.

Before we conclude this section, let us explain the main difference between
our rule and the rational Fejér rule from [WL00], which has the same domain
of exactness. In [WL00], the authors use the zeros of Chebyshev polynomi-
als as quadrature nodes, and then determine the weights to integrate ratio-
nal functions exactly. The computational effort is moderate, requiring a two-
dimensional recurrence. For poles close to the interval, this gives weights which
are very large and of mixed sign. We, however, use the zeros of Chebyshev ra-
tional functions, as explained in the next section. For poles close to the interval
this makes a big difference, because these zeros tend to cluster near the poles
and the quadrature weights turn out to be much smaller and not of mixed sign.
Numerical examples in section 5 will illustrate this. We further mention that
the authors in [WL00] also discuss a rational Gauss-Legendre rule. The com-
putational effort of this rule (being a Gaussian rule) is very high, as explained
above.

The outline of this paper is as follows. In the next section we present the
necessary theoretical preliminaries. The main results are given in section 3, but
since the computations are rather technical, all the proofs have been moved to
the end of the paper, in section 7. The numerical issues of constructing this
quadrature formula are discussed in section 4. In section 5, finally, we give
several numerical examples and compare our formulas to some of the above-
mentioned alternatives.

2 Preliminaries

The main concern in this paper is the computation of the integral

I(f) =

∫ 1

−1
f(x)dx ≈ In(f) =

n
∑

k=1

Ankf(xnk) (2.1)

for a function f(x) which has (real) singularities close to the interval [−1, 1]. We
will approximate I(f) by a quadrature formula In(f) which is exact for a certain
class of rational functions with prescribed poles. Therefore, let us fix in advance
a sequence of real numbers (poles) A = {α1, α2, . . .} outside the interval [−1, 1].
Some or all of these poles may be equal to infinity. The actual choice of the
poles of course depends on the location of the singularities of f(x), as illustrated
by the examples in section 5. It is important to keep in mind throughout the
entire exposition, that we can always return to the polynomial case if we fix all
poles at infinity, as will be clear from the definitions that follow.

With this sequence of poles we now associate spaces of rational functions
Ln. First define the polynomial

πn(x) =
n

∏

k=1

(

1 − x

αk

)

3

whose zeros are the first n poles, and the basis functions

b0 ≡ 1, bk(x) =
xk

πk(x)
, k = 1, 2, . . .

The rational function space Ln is the linear span of the first n+1 basis functions,

Ln = span{b0, . . . , bn}.

Note that, if all poles are at infinity, the basis functions bk(x) just become the
monomials xk and Ln = Pn, the space of polynomials of degree n.

The Chebyshev polynomials Tn(x) are well-known and we only briefly recall
some of their properties. They satisfy the orthogonality conditions

∫ 1

−1
Tn(x)xk dx√

1 − x2
= 0, k = 0, 1, 2, . . . , n − 1

and are given explicitly by Tn(x) = cos(n arccosx). From this equation we
readily obtain expressions for the zeros xnk of Tn(x),

xnk = cos

(

π
2k − 1

2n

)

, k = 1, 2, . . . , n.

Now consider the quadrature formula In(f) whose nodes are exactly these ze-
ros xnk and whose weights are determined such that the approximation (2.1)
is exact if f(x) is a polynomial of degree n − 1 or less. This is Fejér’s first
quadrature rule and the weights are known explicitly [DR84, p. 84-85].

A logical rational generalisation of Fejér’s first rule is obtained in the follow-
ing way. Consider a rational function ϕn ∈ Ln which satisfies the orthogonality
conditions

∫ 1

−1
ϕn(x)bk(x)

dx√
1 − x2

= 0, k = 0, 1, 2, . . . , n − 1.

These functions are uniquely defined, up to a normalisation factor which is irrel-
evant for our discussion, and we shall call them Chebyshev rational functions.
They were discussed in great detail in [VDBGV06], where explicit expressions
were given (which we repeat below) and a method presented to compute their
zeros. Now let xnk denote these zeros of ϕn(x) and take them as nodes in a
quadrature formula whose weights are determined such that (2.1) is exact for
any f ∈ Ln−1. This quadrature formula is the rational generalisation of Fejér’s
first rule which we will study in the rest of this paper.

Expressions for the weights Ank are given in the following theorem, which
is given in a more general setting in [VDB04]. We rephrase it according to our
discussion.

Theorem 2.1. Let {xnk}n
k=1 denote the zeros of the Chebyshev rational func-

tion ϕn(x). Define the function kn(x) as

kn(x) =
n

∑

k=0

νkϕk(x)

4

where

νk =

∫ 1

−1
ϕk(x)dx

and define the numbers λnk as

λnk =

[

n−1
∑

k=0

ϕ2
k(xnk)

]−1

, k = 1, 2, . . . , n.

Now consider the quadrature formula

In(f) =
n

∑

k=1

Ankf(xnk)

which approximates the integral

I(f) =

∫ 1

−1
f(x)dx

such that this approximation is exact for any function f ∈ Ln−1. Then the
weights Ank are given by

Ank = kn−1(xnk)λnk

for k = 1, 2, . . . , n.

As explained in [VDB04], the numbers νk are in fact modified moments and
the λnk are the quadrature weights for the rational Gauss-Chebyshev formula
studied in [VDBGV06]. For more information we refer to these articles.

Before we present the explicit expressions for the Chebyshev rational func-
tions, we briefly discuss the Joukowski transformation x = J(z), which is of
great importance in the rest of the paper. This transformation is defined as

x = J(z) =
1

2

(

z +
1

z

)

and it maps any point z inside the complex unit disc to a point x in the complex
plane outside the interval [−1, 1]. The complex unit circle is mapped to the
interval [−1, 1]. The inverse mapping is denoted by z = J−1(x) and is chosen
so that |z| < 1 for any x outside the interval [−1, 1]. Note that the point x = ∞
corresponds to z = 0 and that the set {x : x ∈ R \ [−1, 1]} corresponds to the
interval {z : z ∈ (−1, 1)}.

The following theorem can be found in [VDBGV06].

Theorem 2.2. The Chebyshev orthogonal rational functions ϕn are given by

ϕn(x) =

√

1 − β2
n

2

(

zBn−1(z)

1 − βnz
+

1

(z − βn)Bn−1(z)

)

, n = 1, 2, . . .

where x = J(z) and αk = J(βk), with J the Joukowski transform defined above.
The functions Bn(z) are defined by,

B0 ≡ 1, Bn(z) =
z − β1

1 − β1z
· z − β2

1 − β2z
· · · · · z − βn

1 − βnz
, n = 1, 2, . . .

5

Furthermore, the Chebyshev rational functions ϕn(x) are normalised such that

∫ 1

−1
ϕ2

n(x)
dx√

1 − x2
= π.

If all poles are at infinity, then all βk are equal to zero and we get ϕn(x) =
(zn + z−n)/

√
2. Apart from a constant factor which is due to our different

normalisation, this is exactly the expression for the Chebyshev polynomial Tn(x)
as given in [Sze75, p. 296].

It was shown in [VDBGV06] that the Gaussian nodes and weights {xnk}
and {λnk} can be computed very efficiently for arbitrary poles A. In fact, the
effort is perfectly comparable to that of computing the classical (polynomial)
Gauss-Legendre rule using the method from [Sze75]. The main cost in both al-
gorithms comes from n Newton iterations to determine the nodes, starting from
accurate initial values. This should be compared to the effort of constructing
the rational Gauss-Legendre quadrature rule from [WL00] or [Gau99]. As we
explained in the introduction, this requires performing a two-dimensional re-
currence starting from modified moments or evaluating 2n integrals, and then
solving an n-dimensional tridiagonal eigenvalue problem. Just to give the reader
an idea of what we are talking about, computing the rational Gauss-Chebyshev
nodes in Matlab 7 on a Pentium III with a CPU speed of 733 MHz for n = 1600
in the worst-case scenario where all poles are different, takes little more than 5
seconds. Solving the eigenvalue problem takes more than 4 minutes.

This said, the problem of computing the rational Fejér rule thus reduces to
the computation of the modified moments νk. The following section describes
two different approaches to compute these νk. Which approach is preferable,
depends on the location of the poles, as illustrated in sections 4 and 5.

3 Computing the modified moments

As we mentioned in the introduction, this section only contains the results. All
proofs can be found in section 7. Both methods are based on decomposing ϕk

into functions which can be integrated ‘exactly’.

3.1 Chebyshev polynomials

This method is based on an explicit representation of the numerator of ϕk in
terms of Chebyshev polynomials, as given in the following theorem.

Theorem 3.1. The Chebyshev rational function ϕk(x) can be written as

ϕk(x) =
√

2 ·

√

1 − β2
k

∏k
i=1(1 + β2

i)
·
∑′k

i=0

[

c
(k)
i + c

(k)
−i

]

Ti(x)

πk(x)

where
∑′

i ai = a0/2 + a1 + a2 + . . . and the coefficients c
(k)
i can be computed

recursively from

c
(k+1)
i = c

(k)
i−1 − (βk + βk+1)c

(k)
i + βkβk+1c

(k)
i+1 (3.1)

6

with the initial conditions c
(1)
0 = −β1 and c

(1)
1 = 1, and the convention that

c
(k)
i = 0 for i ≤ −k or i > k (from which it also follows that c

(k)
k = 1 for all k).

The function Ti(x) is a Chebyshev polynomial of degree i.
Furthermore, if all poles are equal to α = J(β), then explicit expressions for

the coefficients c
(k)
i are given by

c
(k)
i = (−β)k−i

(

2k − 1

k − i

)

. (3.2)

Using this theorem, the computation of the modified moments νk comes
down to computing the ‘moments’

∫ 1
−1 Ti(x)/πk(x)dx. This can be done recur-

sively, as described in [WL00] for the case where all poles are different from each
other. If there are repeated poles, some (technical) modifications are needed,
but we do not go into details.

3.2 Rational non-orthogonal basis functions

Now we decompose ϕk(x) as follows,

ϕk(x) =
k

∑

i=0

a
(k)
i fi(x) (3.3)

where f0 ≡ 1 and

fi(x) =

(

1 − αix

x − αi

)j

, i = 1, 2, . . . , j = 1, 2, . . . , #αi

and #αi denotes the multiplicity of the pole αi. Equation (3.3) can be written
in matrix form for k = 0, . . . , n − 1 as Φ = AF, where Φ = [ϕ0 · · ·ϕn−1]

T , the

lower triangular matrix A contains the coefficients a
(k)
i and F = [f0 · · · fn−1]

T .
The following theorem is needed for the computation of the matrix A.

Theorem 3.2. Put by definition B = [b
(k)
i] = A

−1. The entries b
(k)
i are given

by

b
(k)
i =

1

π

∫ 1

−1
fk(x)ϕi(x)

dx√
1 − x2

. (3.4)

It is clear that b
(0)
0 = 1. Explicit expressions for the other coefficients are

available in the following two cases.

1. If all poles are equal to α 6= ∞, we have

b
(k)
i =

√

1 − β2

2

1

2k−1

b(k−i)/2c
∑

j=0

(

k

j

)

(−β)k−2j−i, i ≥ 1, (3.5)

b
(k)
0 =

1

2k−1

bk/2c
∑

j=0

(

k

j

)

(−β)k−2j − 1

2k

(

k

k/2

)

(1 − k mod 2),

where bxc denotes the largest integer less than or equal to x. Note that
the last term in the second formula only appears when k is even.

7

2. If all poles are different from each other, we have

b
(k)
i =

√

1 − β2
i

2

1 − β2
k

1 − βiβk
Bi−1(βk), i ≥ 1,

b
(k)
0 = −βk.

In all formulas αi = J(βi) and α = J(β).

For the general case where there are both repeated and different poles, the
explicit formulas are too complicated to be of use. We come back to this in
section 4.

To be able to compute the modified moments νk, we also need the integrals
∫ 1
−1 fk(x)dx. The next theorem shows how they can be computed.

Theorem 3.3. For |α| > 1, define the integrals

I(α)
m =

∫ 1

−1

(

1 − αx

x − α

)m

dx.

They satisfy the (backward) recurrence relation

I
(α)
m−1 =

(

1 − 1

α2

)

1 − (−1)m

m
− 2

α
I(α)
m − 1

α2
I

(α)
m+1,

and the series expansions

I(α)
m =

2

m + 1
+

4m

α2

∞
∑

j=0

1

(2j + m + 3)(2j + m + 1)

1

α2j
, m even,

I(α)
m = −4m

α

∞
∑

j=0

1

(2j + m + 2)(2j + m)

1

α2j
, m odd.

As will be explained in section 4, we use the backward recurrence relation
for stability reasons. The series expansions are of course needed to start this
recurrence. If all poles are different from each other, we only need integrals of

type I
(α)
1 , which can be computed explicitly,

I
(α)
1 = (α2 − 1) log

α + 1

α − 1
− 2α.

The previous two theorems contain all the information we need to solve the
lower triangular system

∫ 1

−1
Fdx = A

−1

∫ 1

−1
Φdx,

thus providing the modified moments νk.

8

4 Numerical issues

While the previous section only presented the theoretical formulas to compute
the modified moments, in this section we discuss some numerical considerations
to determine which method is more suitable, depending on the location of the
poles. Some examples are given as illustration. All computations from this and
the following section were done in Matlab 7 on a Pentium III (Coppermine)
with a CPU speed of 733 MHz.

4.1 Chebyshev polynomials

The applicability of this method depends on the size of the coefficients d
(k)
i =

c
(k)
i + c

(k)
−i and the integrals I

(k)
i =

∫ 1
−1 Ti(x)/πk(x)dx. We first consider two

limit cases.
In the case where all poles are at infinity (corresponding to the classical

Fejér rule), we obviously have ϕk(x) =
√

2 Tk(x), which was already mentioned

before. The coefficients d
(k)
i satisfy d

(k)
i = 0 for i < k and d

(k)
k = 1, and the

values of I
(k)
i remain bounded. From a numerical point of view, computing the

modified moments νk in this case is a perfectly well-conditioned problem. It is
safe to say that this will also be true for poles far from the interval [−1, 1] (e.g.
poles tending to infinity), since in that case the rational function ϕk is still very
much ‘polynomial-like’.

The other limit case corresponds to all poles equal to α = 1. This is of
course not allowed in practice, but it is interesting to study the growth of the

coefficients d
(k)
i . It follows from equation (3.1) that in this case

d
(k+1)
i = d

(k)
i−1 − 2d

(k)
i + d

(k)
i+1.

Together with the fact that d
(k)
k = 1, it can easily be proved by induction that

we have the following explicit formula,

d
(k)
i = (−1)k−i

(

2k

k − i

)

,

which means that for large k and small i this coefficient becomes very large.
The same will be true if all poles are equal to α very close to 1 or −1, as follows
from equation (3.2). In general, since the coefficients are continuous functions
of the poles, if all poles are close to the interval (and at the same side), these

coefficients can become very large. In that case also the integrals I
(k)
i can be

very large, but the modified moments νk are typically of order O(1). It is
well-known that summing very large numbers to obtain a small number is an
ill-conditioned problem.

The previous considerations are illustrated in table 1, which shows the max-

imum absolute values of d
(n)
i , I

(n)
i and the relative error on νn for different lo-

cations of the poles when n = 15. Note that the accuracy seems to be higher
for poles which are more or less symmetric with respect to the origin. This is

due to the computation of the integrals I
(k)
i using the algorithm from [WL00].

9

Table 1: Size of coefficients and auxiliary integrals in the method based on
Chebyshev polynomials and relative error of modified moment νn when n = 15.

αk maxi |d(n)
i | maxi |I(n)

i | rel. err. νn

2k 1.68e + 00 7.96e − 17 1.95e − 09
(−1)k2k 1.00e + 00 5.15e − 17 2.89e − 12
1.001 7.47e + 07 7.14e + 40 2.87e + 34

1 + 2−k 6.44e + 06 2.81e + 31 7.74e + 18
(−1)k(1 + 2−k) 3.58e + 02 5.22e + 12 2.51e − 02

As mentioned by the authors, their algorithm seems to be unstable for poles
which are all at the same side of the interval. However, some digits are also
lost in the case of αk = (−1)k2k. It is not immediately clear what causes this
loss. Obviously, when there are many poles close to the interval (at one or both

sides), all digits are lost because the integrals I
(k)
i become too large.

4.2 Rational non-orthogonal basis functions

If there are both repeated and different poles, it is very difficult to derive explicit
formulas for the inner products (3.4). However, the functions fk and ϕi all
belong to Ln−1, so we can compute the inner products exactly using the n-point
rational Gauss-Chebyshev quadrature formula which we already computed (see
section 2), since it is exact in the space Ln · Ln−1, as explained in [VDBGV06].

In the case where all poles are equal, we can simplify the computations as
follows. If, for fixed k, we only consider the sum in (3.5) and denote it by

b̃i =

√

2

1 − β2
2k−1b

(k)
k−2i

then it is easily checked that we have the recurrence formula

b̃i = β2b̃i−1 +

(

k

i

)

and b̃0 = 1. For the other coefficients it holds that b
(k)
k−2i−1 = −βb

(k)
k−2i.

Similarly, if all poles are different, there is no need to recompute the Bi(βk)
for each i. Obviously,

Bi−1(βk) = Bi−2(βk)
βk − βi−1

1 − βkβi−1
.

Taking into account the above considerations seriously reduces the computa-
tional cost of this approach. In fact, this makes the difference between a com-
plexity of order O(n2) and O(n3).

As for the integrals I
(α)
m , we use the backward recurrence relation because

it is stable. The homogeneous solution of this recurrence consists of the two

10

Table 2: Condition number for the matrix B in the method based on rational
non-orthogonal basis functions when n = 15.

αk condB

2k 4.32e + 24
(−1)k2k 4.11e + 19
1.001 1.10e + 06

1 + 2−k 4.19e + 05
(−1)k(1 + 2−k) 1.06e + 03

modes (−1/α)k and k(−1/α)k which both remain bounded for k → ∞ because
|α| > 1. For the forward recurrence the homogeneous solution consists of (−α)k

and k(−α)k which both become unbounded. Summing the series expansion is a
well-conditioned problem, since all terms are of the same sign. The convergence
rate of course depends on both m and α. As an example, for m = 30 and α = 2,
we needed 23 terms to reach full precision. However, for poles very close to the
interval, or for small values of m, it is preferable to use the forward recurrence
since it does not need the series expansions (which converge very slowly if
|α| ≈ 1).

Finally, the applicability of this method depends on the condition number of
the matrix B, which corresponds roughly to the number of digits lost in solving
the lower triangular system. In table 2 we show the 2-norm condition number
for different locations of the poles when n = 15. Contrary to the method based
on Chebyshev polynomials, this approach fails completely when the poles are
far from the interval, and seems to work rather well for poles extremely close to
the interval. This is confirmed by figure 1, which shows the error growth (the
relative error divided by the machine precision) for the modified moments νk

and the same locations of the poles as in table 2. For poles tending to infinity,
all digits are lost very quickly. However, when the poles converge to the interval

exponentially, only a few digits are lost. Also, the integrals I
(α)
m remain bounded

as is obvious from their definition. This kind of behaviour is exactly what we
want and shows that this method is perfectly complementary to the method
based on Chebyshev polynomials. It should be mention ed, however, that the
condition number grows rather quickly with increasing n, so this method will
only work for moderate values of n, say n < 50 or so. But then again, integrals
with a high number of poles extremely close to the interval do not seem likely
to arise very often in practice.

5 Examples

In this section we apply our quadrature formula based on orthogonal rational
functions (ORF) to some test integrals and compare the accuracy and stability
with the results obtained using the formulas from [WL00]. In all examples, the
‘exact’ result was obtained from a multiprecision computation in Maple.

11

Figure 1: Error growth of modified moment νk for different locations of the
poles in the method based on rational non-orthogonal basis functions.

100

103

106

109

1012

1015

E
rr

or
gr

ow
th

of
ν k

2 4 6 8 10 12 14

k

2k

(−1)k2k

1.001

1 + 2−k

(−1)k(1 + 2−k)

Table 3: Relative error for I1 with ω = 1.1.

n ORF WL

2 4.15e − 01 1.42e − 02
4 1.76e − 03 8.87e − 04
8 1.36e − 08 4.51e − 08
12 9.41e − 14 2.36e − 13
16 < εmach 4.44e − 16

For the first example we follow [WL00] and [Gau99] and compute

I1 =

∫ 1

−1

πx/ω

sin(πx/ω)
dx, ω > 1.

The integrand has poles at the integer multiples of ω, so we choose the sequence
of poles A = {ω,−ω, 2ω,−2ω, . . .}. Table 3 shows the relative error in the
quadrature rule using our approach (ORF) based on Chebyshev polynomials
and the method from Weideman and Laurie (WL) for the case ω = 1.1. It seems
that with increasing n, our quadrature formula is a little more accurate, but
the difference is very small. For n = 16 Matlab returned a relative error of 0 for
our method, which means less than machine precision, which is approximately
2.22e − 16. In all cases the weights were positive and less than 1.

In table 4 we repeat this experiment but now with ω = 1.001. The results
are comparable to the previous case, but it seems that we cannot get more than

12

Table 4: Relative error for I1 with ω = 1.001.

n ORF WL

2 2.96e + 00 1.79e − 01
4 8.85e − 03 3.89e − 03
8 4.78e − 08 2.07e − 07
12 1.33e − 13 1.56e − 12
16 5.17e − 14 1.75e − 14

Table 5: Relative error for I2 with α = −2.5.

n ORF WL

2 2.52e − 03 4.06e − 04
4 2.26e − 06 1.86e − 06
8 6.20e − 12 2.58e − 11
12 5.55e − 16 2.86e − 12
16 2.22e − 16 3.11e − 11

approximately 14 correct digits due to roundoff errors. Again all weights were
positive and less than 1.

The next example is

I2 =

∫ 1

−1

1
√

(x + 3)(x + 2)
dx.

As noted by Van Assche in [VAV93], the integrand is in fact a Stieltjes function
and can be well approximated by a rational function with poles on the branch
cut [−3,−2]. First we take all poles equal to α = −2.5. Table 5 gives the results.
In our approach, we used the method based on rational non-orthogonal basis
functions, but the other method (Chebyshev polynomials) gave similar results.
It is worth mentioning that for n = 16, even though the condition number of the
matrix B was of order O(105), the quadrature sum is accurate up to machine
precision. It is not uncommon in numerical integration to obtain an accurate
approximation to the integral even with quadrature weights which are not very
accurate. Also note that in this case the WL formula seems to stagnate at
more or less 12 correct digits. We also noticed several negative weights in this
formula, while the weights in our formula were all positive. Next we take all
poles different from each other as in the second example of [VAV93]. They are
the zeros of successive Chebyshev polynomials T3m(x), transformed to [−3,−2]
and ordered in such a way that they are dense on this interval. For more
information we refer to the article. The results are shown in table 6. This
time we used the method based on Chebyshev polynomials for the ORF rule.
Note that with increasing n, all digits are lost in the WL rule, while this does
not occur in our method. This is very remarkable since both methods use the

integrals I
(k)
i . The loss of accuracy must therefore occur not in the computation

13

Table 6: Relative error for I2 with αk distributed over [−3,−2].

n ORF WL

2 4.72e − 03 2.51e − 04
4 7.47e − 08 6.88e − 08
8 4.67e − 14 1.20e − 10
12 3.33e − 16 2.99e − 03
16 1.11e − 16 3.42e + 01

Table 7: Relative error for I3 with ω = 1.1.

n ORF WL PF

5 4.56e − 02 5.52e − 01 1.86e − 01
10 1.18e − 04 4.34e + 00 3.84e − 02
20 3.14e − 13 5.88e + 14 7.38e − 04
30 7.33e − 15 2.04e + 28 4.66e − 06

of these integrals, but when combining these integrals to obtain the quadrature
weights. We mention that some of the weights in the WL rule were negative
and of order O(102). All weights in the ORF rule were positive and less than
1. Computing this integral with a classical (polynomial) Gauss-Legendre rule
gives approximately 9 correct digits for n = 8 and 14 for n = 12.

For the final example we look at the integral

I3 =

∫ 1

−1
sin

1

ω − x
dx, ω > 1

whose integrand has an essential singularity in ω. We take all poles equal to
α = ω and use the method based on rational non-orthogonal basis functions. In
table 7 we compare our results with the WL rule and the classical (polynomial-
based) Fejér rule (PF). This time the WL rule fails completely, not only because
of loss of accuracy in the construction of the rule, but also because the weights
are very large and of mixed sign. For n = 20 the largest weight was of order
O(1020). Note that our method performs very well (even though for n = 30 the
condition number of the matrix B was equal to 1.59e + 11). All the computed
weights were positive and less than 1.

6 Conclusion

For the cases where the WL quadrature rule from [WL00] works well, there is
not really a need to use our formulas. Although the results are a little better,
this is at the expense of considerably more computations. However, for poles
close to the interval, or at the same side of the interval, the WL rule fails,
either because of rounding errors or because the weights become very large
and of mixed sign. In this case the examples indicate that our rule performs

14

much better, especially when the computations are done using the rational
non-orthogonal basis functions. The weights remain small and the presence of
poles attract the nodes to the endpoints (we refer to [VDBGV06] for a detailed
explanation).

7 Proofs

In all proofs in this section, we use x = J(z) and αk = J(βk) where J is the
Joukowski transform.

Proof of theorem 3.1. From theorem 2.2 and the fact that

πn(x) =

∏n
k=1(1 − βkz)(z − βk)

zn
∏n

k=1(1 + β2
k)

we get that

ϕn(x) =
√

1 − β2
n

2

z−(n−1)(z − βn)
∏n−1

k=1(z − βk)
2 + z−n(1 − βnz)

∏n−1
k=1(1 − βkz)2

πn(x)
∏n

k=1(1 + β2
k)

.

If we put

z−(n−1)(z − βn)
n−1
∏

k=1

(z − βk)
2 =

n
∑

k=−(n−1)

c
(n)
k zk

then the numerator equals

z−(n−1)(z − βn)
n−1
∏

k=1

(z − βk)
2 + z−n(1 − βnz)

n−1
∏

k=1

(1 − βkz)2 =

n
∑

k=−(n−1)

c
(n)
k (zk + z−k) = 2

n−1
∑

k=1

(c
(n)
k + c

(n)
−k)Tk(x) + 2(Tn(x) + c

(n)
0).

To find the coefficients c
(n)
k write

z−n(z − βn+1)
n

∏

k=1

(z − βk)
2

= z−1(z − βn+1)(z − βn)z−(n−1)(z − βn)
n−1
∏

k=1

(z − βk)
2

= z−1(z − βn+1)(z − βn)
n

∑

k=−(n−1)

c
(n)
k zk

=
n+1
∑

k=−n

[c
(n)
k−1 − (βn + βn+1)c

(n)
k + βnβn+1c

(n)
k+1]z

k

15

if we take the convention that c
(n)
k = 0 for k ≤ −n or k > n. This yields the

recurrence relation (3.1).
If all poles are equal, formula (3.2) follows (by induction) from this recur-

rence relation using the well-known recurrence for binomial numbers.

Proof of theorem 3.2. Formula (3.4) follows from the orthogonality and the nor-
malisation of the ϕk. We only prove the explicit expressions corresponding to
all poles equal. If all poles are different, the reasoning is analogous and the
computations are easier.

If all poles are equal to α, the functions fk have the form

fk(x) =

(

1 − αx

x − α

)k

, k = 1, 2, . . .

From the definition of the Joukowski transformation it follows that

fk(x) =
1

2k

(

1 − βz

z − β
+

z − β

1 − βz

)k

so the integral becomes

b
(k)
i = 2<

{

1

2πi

√

1 − β2

2

1

2k

∮
(

1 − βz

z − β
+

z − β

1 − βz

)k (z − β)i−1

(1 − βz)i
dz

}

where < denotes the real part and the integral is over the complex unit circle.
Using the residue theorem then gives

b
(k)
i =

√

1 − β2

2

1

2k−1
Res

{

(

1 − βz

z − β
+

z − β

1 − βz

)k (z − β)i−1

(1 − βz)i
, β

}

(since β is real, the residue at β is real as well, so the real part can be omitted
from the formula). Using the binomial theorem, the integrand can be written
as

(

1 − βz

z − β
+

z − β

1 − βz

)k (z − β)i−1

(1 − βz)i
=

k
∑

j=0

(

k

j

) (

1 − βz

z − β

)k−2j−i 1

z − β

and the numerator in the summand equals

(1 − βz)k−2j−i =

k−2j−i
∑

m=0

(

k − 2j − i

m

)

(1 − β2)k−2j−i−m(−β)m(z − β)m.

Since the residue is a linear function of its argument, we finally get

b
(k)
i =

√

1 − β2

2

1

2k−1

b(k−i)/2c
∑

j=0

(

k

j

)

(−β)k−2j−i.

16

The coefficient corresponding to ϕ0 ≡ 1 can be found by similar reasoning,
starting from

b
(k)
0 =

1

2k
Res

{

(

1 − βz

z − β
+

z − β

1 − βz

)k 1

z
, β

}

+

1

2k
Res

{

(

1 − βz

z − β
+

z − β

1 − βz

)k 1

z
, 0

}

.

Some computations yield that the first residue equals

Res

{

(

1 − βz

z − β
+

z − β

1 − βz

)k 1

z
, β

}

= (−1)k

bk/2c
∑

j=0

(

k

j

) (

βk−2j − 1

βk−2j

)

while the second residue obviousely equals

Res

{

(

1 − βz

z − β
+

z − β

1 − βz

)k 1

z
, 0

}

= (−1)k

(

β +
1

β

)k

.

Adding both terms and doing some algebra finishes the proof.

Proof of theorem 3.3. To find the recurrence relation, note that we have

d

dx

(

1 − αx

x − α

)m

=
m

α2 − 1

[

(

1 − αx

x − α

)m+1

+

2α

(

1 − αx

x − α

)m

+ α2

(

1 − αx

x − α

)m−1
]

.

Integrating both sides from −1 to 1 gives

1 − (−1)m =
m

α2 − 1

(

I
(α)
m+1 + 2αI(α)

m + α2I
(α)
m−1

)

.

Rearranging terms then yields the recurrence relation.
The series expansions are much more difficult to derive. If we define the

generating function I(α)(z) as the (formal) series

I(α)(z) =
∞

∑

m=0

I(α)
m zm,

then using the recurrence relation and following the procedure outlined in
[GKP89, Chap. 7], we find the explicit expression

I(α)(z) =
(α2 − 1)z

(1 + αz)2
log

(1 + z)(α + 1)

(1 − z)(α − 1)
+

2

1 + αz
.

A Taylor series expansion for this function now gives expressions for the integrals

I
(α)
m . We omit the computations, which are cumbersome but straightforward,

and only give the result,

I(α)
m = (−α)m−1

(

(α2 − 1)m log
α + 1

α − 1
− 2α

)

+ 2(α2 − 1)c(α)
m , m = 0, 1, . . .

(7.1)

17

where the constants c
(α)
m are given by

c(α)
m =

bm/2c−1
∑

i=0

m − 2i − 1

2i + 1
(−α)m−2−2i

and an empty sum is equal to zero. These expressions, however, are not very
useful (especially for large m and α), because of heavy cancellation when sum-
ming both terms in (7.1). In fact, if we compute a Laurent series expansion for

I
(α)
m as a function of α, all terms with positive powers of α cancel against each

other (there is only a finite number of such terms) and we are left with only
powers of 1/α. This Laurent series expansion corresponds to the last formulas
in theorem 3.3. Again we omit the computations.

References

[DR84] P.J. Davis and P. Rabinowitz. Methods of numerical integration.
Academic Press, 2nd edition, 1984.

[Gau68] W. Gautschi. Construction of Gauss–Christoffel quadrature for-
mulas. Math. Comp., 22:251–270, 1968.

[Gau70] W. Gautschi. On the construction of Gaussian quadrature rules
from modified moments. Math. Comp., 24:245–260, 1970.

[Gau99] W. Gautschi. Algorithm 793: GQRAT - Gauss quadrature for
rational functions. ACM Trans. Math. Software, 25:213–139, 1999.

[GKP89] R.L. Graham, D. Knuth, and O. Patashnic. Concrete mathemat-
ics. Addison Wesley, 1989.

[Swa02] P.N. Swarztrauber. On computing the points and weights for
Gauss–Legendre quadrature. SIAM J. Sci. Comput., 24(2):945–
954, 2002.

[Sze75] G. Szegő. Orthogonal polynomials, volume 33 of Amer. Math. Soc.
Colloq. Publ. Amer. Math. Soc., Providence, Rhode Island, 4th
edition, 1975. First edition 1939.

[VAV93] W. Van Assche and I. Vanherwegen. Quadrature formulas based
on rational interpolation. Math. Comp., 16:765–783, 1993.

[VDB04] J. Van Deun and A. Bultheel. Modified moments and orthogonal
rational functions. Appl. Numer. Anal. Comput. Math., 1(3):455–
468, 2004.

[VDBGV06] J. Van Deun, A. Bultheel, and P. González-Vera. On computing
rational Gauss-Chebyshev quadrature formulas. Math. Comp.,
75:307–326, 2006.

[WL00] J.A.C. Weideman and D.P. Laurie. Quadrature rules based on
partial fraction expansions. Numer. Algorithms, 24:159–178, 2000.

18

