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Abstract. We study certain sequences of rational functions with poles outside

the unit circle. Such kind of sequences are recursively constructed based on

sequences of complex numbers with norm less than one. In fact, such sequences
are closely related to the Schur-Nevanlinna algorithm for Schur functions on

the one hand and on the other hand to orthogonal rational functions on the unit
circle. We shall see that rational functions belonging to a Schur-Nevanlinna

sequence can be used to parameterize the set of all solutions of an interpolation

problem of Nevanlinna-Pick type for Schur functions.

1. Introduction

A function g which maps the open unit disk D := {z ∈ C : |z| < 1} into the
complex plane C is a Schur function or belongs to the Schur class S (in the open
unit disk D) if g is holomorphic in D and if its values g(z) are bounded by 1 for
z ∈ D, i.e. g is a holomorphic function such that the kernel

Sg(z, ζ) :=
1− g(z)g(ζ)

1− zζ
, z, ζ ∈ D,

is non-negative Hermitian. More explicitly this kernel condition means that for
every choice of m ∈ N := {1, 2, 3, . . .} and of the m points z1, z2, . . . , zm ∈ D the
complex (m×m)-matrix

(
Sg(zj , zk)

)m
j,k=1

is non-negative Hermitian. The equiva-
lence of these conditions follows from the considerations on the classical Nevanlinna-
Pick interpolation problem (see [20], [18]).

In the present work, we study a multiple point Nevanlinna-Pick interpolation
problem for Schur functions. A multiple point interpolation problem is a problem
where not only values for the function itself, but also for its derivatives up to a
certain order are prescribed. Here we consider the following problem:
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2 A. BULTHEEL, A. LASAROW

(MNP) Given n ∈ N, mutually distinct points z1, z2, . . . , zn ∈ D, l1, l2, . . . , ln ∈ N,
and wjs ∈ C, s = 0, 1, . . . , lj − 1, j = 1, 2, . . . , n. Find necessary and
sufficient conditions for the existence of a g ∈ S such that

(1.1)
1
s!

g(s)(zj) = wjs, s = 0, 1, . . . , lj − 1, j = 1, 2, . . . , n.

Moreover, describe the set of solutions S∆ of all g ∈ S fulfilling (1.1).

Note that Problem (MNP) can be conceived as a generalization of the Schur
coefficient problem (see [23], [1]) on the one hand and on the other hand of the
classical Nevanlinna-Pick problem (see [20], [18]).

As is well-known, it is frequently the case that a finite interpolation problem of
Nevanlinna-Pick type can be reduced, in a suitable way, to the study of a truncated
trigonometric moment problem. Moreover, there exists several approaches to the
solution of such a problem and several generalizations of the problem, too (see, e.g.,
[11], [7], [16], [10], [2], [12], [24], [3], [25], [6]). In particular, it is well-known that
there is a g ∈ S satisfying (1.1) if and only if the generalized Schwarz-Pick matrix
P∆ which can be computed from the data given in Problem (MNP) is non-negative
Hermitian. In Section 2, we introduce briefly P∆. Moreover, we recall some basic
facts on the Schur-Nevanlinna algorithm for Schur functions which was introduced
by Nevanlinna [18] as an extension of the classical algorithm of Schur [23]. In fact,
we shall deduce that, starting from a g ∈ S∆, the feasibility of this algorithm for g
is closely related to the case that P∆ is even positive Hermitian. Furthermore, we
present some basics on linear fractional transformations and on rational functions.

As the main result of this note, in Section 6 we will see that, for the non-
uniqueness case, i.e. if P∆ is a positive Hermitian matrix, the set of solutions S∆

can be characterized by a linear fractional transformation which is determined by
certain rational functions, where S is the set of parameters. In fact, we obtain that
a function g belongs to S∆ if and only if there exists a Schur function h fulfilling

(1.2) g(z) =
δ
[m]
m (z) + bαm

(z)γm(z)h(z)

γ
[m]
m (z) + bαm(z)δm(z)h(z)

, z ∈ D,

where bαm
is a Blaschke factor, the rational functions δm, γm are elements of a

Schur-Nevanlinna sequence, and δ
[m]
m , γ

[m]
m denote their adjoint rational functions.

Some basic facts on Schur-Nevanlinna sequences of rational functions are ex-
plained in Section 3. In fact, such kind of sequences are connected with the Schur-
Nevanlinna algorithm for Schur functions on the one hand and on the other hand
to orthogonal rational functions on the unit circle. Similar as in the case of ortho-
gonal functions, we will see that the validity of some Christoffel-Darboux formulae
is an important property of Schur-Nevanlinna sequences of rational functions (see
Theorem 4.2 and the inverse question discussed in Section 5).

Note that already in [24] the set of solutions S∆ is characterized by a linear
fractional transformation which is determined by some polynomials (without cal-
culating these functions precise). We will also mention that in [19] a modified
Schur-Nevanlinna algorithm is discussed with respect to the real line case and a
multiple point interpolation problem for Nevanlinna functions. The essential new
feature of this paper is that the functions δm and γm which appear in (1.2) are
closely related to the orthogonal rational functions on the unit circle which were
introduced by M.M. Djrbashian [8] (see also [4] and other papers cited there). But
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the explicit interplay between Schur-Nevanlinna sequences and orthogonal rational
functions will be done in a forthcoming work.

2. Preliminaries

For Problem (MNP), we assume that the following data are given: n ∈ N,
mutually different points z1, z2, . . . , zn ∈ D, numbers l1, l2, . . . , ln ∈ N and wjs ∈ C,
s = 0, 1, . . . , lj − 1, j = 1, 2, . . . , n. We denote this data set by ∆:

(2.1) ∆ :=
{(

zj , lj , (wjs)
lj−1
s=0

)n

j=1

}
and put

(2.2) m :=
n∑

j=1

lj − 1.

For a given function g ∈ S we define similarly

∆g :=

{(
zj , lj ,

( 1
s!

g(s)(zj)
)lj−1

s=0

)n

j=1

}
.

In particular, g ∈ S∆ if and only if ∆g = ∆.
Furthermore, the generalized Schwarz-Pick matrix (with respect to the data ∆)

of size (m + 1)× (m + 1) is defined as

P∆ :=
(
Pjk

)n
j,k=1

,

where the complex (lj × lk)-matrices

Pjk :=
(
ps,t

jk

)
s=0,1,...,lj−1
t=0,1,...,lk−1

, j, k = 1, 2, . . . , n,

are determined by the entries

ps,t
jk :=

min{s,t}∑
r=0

(s + t− r)!
(s− r)!r!(t− r)!

zt−r
j zk

s−r

(1− zjzk)s+t−r+1

−
s∑

`=0

t∑
h=0

min{`,h}∑
r=0

(h + `− r)!
(`− r)!r!(h− r)!

zh−r
j zk

h−r

(1− zjzk)h+`−r+1
wj,s−`wk,t−h,

s = 0, 1, . . . , lj − 1, t = 0, 1, . . . , lk − 1.

In the sequel, 0 stands also for the zero matrix of appropriate size, and if A, B
are Hermitian matrices of the same size, then A ≥ B (resp., A > B) means that
A−B is a non-negative (resp., positive) Hermitian matrix.

Now we recall a well-known criterion for the solvability of Problem (MNP); see,
e.g., [11], [12], [3].

Theorem 2.1. For a given data set ∆ as in (2.1), Problem (MNP) has a solution
if and only if P∆≥0. The solution is unique if and only if P∆≥0 with detP∆ =0.

Since the main goal of this paper is to obtain the description of S∆ via (1.2) for
the non-uniqueness case we will always assume in the further course

P∆ > 0.

The next considerations are aimed at showing that P∆ > 0 is closely related to the
feasibility of the Schur-Nevanlinna algorithm at least m + 1 times for a g ∈ S∆.
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The algorithm presented below goes back to Nevanlinna [18] and is based on the
following version of Schwarz’s lemma (see, e.g., [4, Theorem 1.2.3] for a proof).
Here bz denotes the elementary Blaschke factor corresponding to z ∈ D, i.e.

(2.3) bz(v) :=


z

|z|
z − v

1− zv
if z 6= 0,

v if z = 0.

Remark 2.2. If g ∈ S such that g(z) = 0 then also h :=
g

bz
∈ S.

Now we recall the Schur-Nevanlinna algorithm: Given a function g ∈ S and
some points α0, α1, α2, . . . ∈ D. We set g0 := g and consider s0 := g0(α0). If s0 ∈ D
we can define

g1(z) :=
1

bα0(z)
g0(z)− s0

1− s0g0(z)
and, if the function gk, k = 0, 1, 2, . . ., is already defined and

(2.4) sk := gk(αk)

belongs to D, then

(2.5) gk+1(z) :=
1

bαk
(z)

gk(z)− sk

1− skgk(z)
, k = 0, 1, 2, . . . .

If g ∈ S and α0, α1, α2, . . . ∈ D such that the Schur-Nevanlinna algorithm can be
carried out at least r times (that is after obtaining gr and sr), then (sk)r

k=0 from
(2.4) is called the sequence of Schur parameters associated with the pair [g, (αk)r

k=0].
The algorithm (cf. (2.5)) defines Schur functions g0, g1, g2, . . . . It breaks down

after the k-th step (that is after obtaining gk and sk) if and only if sk ∈ T. In par-
ticular, the Schur-Nevanlinna algorithm breaks down after the k-th step if and only
if g is a Blaschke product of degree k (cf. [18]). Therefore, using some basic facts on
generalized Schwarz-Pick matrices one can conclude the following statement. (cf.
[14, Section 5], [17, Corollary 3.6]).

Theorem 2.3. If g∈S then the Schur-Nevanlinna algorithm can be carried out at
least m+1 times for g (and any points α0, α1, . . . , αm+1∈D ) if and only if P∆g >0.

In the sequel, we will also apply some well-known results on linear fractional
transformations (see, e.g., [22], [10], [9]). If

Θ =
(

a b
c d

)
is a complex (2× 2)-matrix and w is a complex number such that cw + d 6= 0, then
we set

(2.6) TΘ(w) :=
aw + b

cw + d
.

Note that the relation

(2.7) TΘ1

(
TΘ2 (w)

)
= TΘ1Θ2(w)

is fulfilled, and that in the case detΘ 6= 0 the inverse mapping T−1
Θ is given by

(2.8) T−1
Θ (w) = TΘ−1 (w) =

dw − b

−cw + a
.
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Note that, in view of (2.6)-(2.8), the relation (2.5) can also be written as

gk(z) =
bαk

(z)gk+1(z) + sk

skbαk
(z)gk+1(z) + 1

= TΞ̂k(z)

(
gk+1(z)

)
with

(2.9) Ξ̂k(z) :=
(

bαk
(z) sk

skbαk
(z) 1

)
=
(

1 sk

sk 1

)(
bαk

(z) 0
0 1

)
and hence

(2.10)
g(z) ≡ g0(z) = TΞ̂0(z)

(
TΞ̂1(z)

(
· · ·
(
TΞ̂k(z)

(
gk+1(z)

)
· · ·
)))

= TΞ̂0(z)Ξ̂1(z)···Ξ̂k(z)

(
gk+1(z)

)
.

In the next section, we shall treat those sequences of rational functions which
are closely related to the Schur-Nevanlinna algorithm on the one hand and on
the other hand to the orthogonal rational functions on the unit circle introduced
by M.M. Djrbashian [8] (see also [4]). Here, for fixed points α0, α1, α2, . . . ∈ D the
notation Hk, k = 0, 1, 2, . . ., stands for the space of rational functions x which admit
for some complex polynomial p of degree not greater than k the representation

x =
p

qk
,

where the complex polynomial qk of degree not greater than k + 1 is given by

qk(v) =
k∏

j=0

(1− αjv).

As suggested in [4], the following transform of a rational function into another
plays a key role. For x ∈ Hk, k = 0, 1, 2, . . ., by the adjoint rational function x[k]

of x (adjoint with respect to α0, α1, . . . , αk) we mean the rational function which
is uniquely determined via the formula

(2.11) x[k](v) =
1
v
Bk(v)x

( 1
v

)
,

where Bk stands for the Blaschke product (of degree k + 1) with respect to the
points α0, α1, . . . , αk, i.e.

Bk(v) :=
k∏

j=0

bαj (v).

Some information on the calculation of x[k], k = 0, 1, 2, . . ., can be found in [4,
Section 2.2]. Note that the results on adjoint rational function in [4] are explained
relating to the special case α0 = 0. But it is not hard to restate these with their
proofs to the present situation. For instance, if x ∈ Hk, k = 0, 1, 2, . . ., then also
x[k] ∈ Hk and (x[k])[k] = x in that case.

3. Some basics on Schur-Nevanlinna sequences of rational functions

In this section, as a rational extension of the classical considerations of Schur
[23] and Nevanlinna [18] (see also [13, Section 3] for an extension to the case of
matrix-valued polynomials) we study some sequences of rational functions formed
by given sequences of points and parameters belonging to D.
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If τ = 0 or τ ∈ N or τ = ∞, if I := {0, 1, 2, . . . , τ}, and if (αk)k∈I and (κk)k∈I are
sequences of points belonging to D, then we define sequences of rational functions
(γk)k∈I and (δk)k∈I by the relations

(3.1) γ0(v) :=

√
1− |α0|2
1− |κ0|2

1
1− α0v

, δ0(v) := κ0

√
1− |α0|2
1− |κ0|2

1
1− α0v

and, for k ∈ I \ {0}, recursively

γk(v) :=

√
1− |αk|2

(1− |αk−1|2)(1− |κk|2)
1− αk−1v

1− αkv

(
bαk−1(v)γk−1(v) + κkδ

[k−1]
k−1 (v)

)
,

δk(v) :=

√
1− |αk|2

(1− |αk−1|2)(1− |κk|2)
1− αk−1v

1− αkv

(
bαk−1(v)δk−1(v) + κkγ

[k−1]
k−1 (v)

)
,

where δ
[k−1]
k−1 and γ

[k−1]
k−1 stands for the adjoint rational function of δk−1 and γk−1

(with respect to the points α0, α1, . . . , αk−1; see (2.11)). We call [(γk)k∈I, (δk)k∈I]
the Schur-Nevanlinna pair of rational functions corresponding to (αk, κk)k∈I.

With the matrix function

(3.2) Θk :=

(
bαk

γk δ
[k]
k

bαk
δk γ

[k]
k

)
, k ∈ I,

the recurrence formulae above can be written, for k ∈ I \ {0}, in matricial form as

(3.3) Θk(v) =

√
1−|αk|2

1−|αk−1|2
1−αk−1v

1−αkv
Θk−1(v)Θ̂k(v),

where

(3.4) Θ̂k(v) :=
1√

1− |κk|2

(
1 κk

κk 1

)(
bαk

(v) 0
0 ηkηk−1

)
, k ∈ I \ {0},

and

(3.5) ηk :=


−1 if αk = 0,

αk

|αk|
if αk 6= 0,

k ∈ I.

Proposition 3.1. Let τ ∈ N or τ = ∞, let I := {0, 1, 2, . . . , τ}, and let (αk)k∈I
and (κk)k∈I be sequences of points belonging to D. Further, let (γk)k∈I and (δk)k∈I
be sequences of rational functions such that γ0, δ0 are defined as in (3.1) and γk, δk

belong to Hk for k ∈ I\{0}. Then [(γk)k∈I, (δk)k∈I] is the Schur-Nevanlinna pair of
rational functions corresponding to (αk, κk)k∈I if and only if, for each k ∈ I \ {0},
the following backward recurrence relations hold:

ηkηk−1γk(v)− κkδ
[k]
k (v) =

(1−αkαk−1)
√

1−|κk|2√
(1−|αk|2)(1−|αk−1|2)

(
bαk

(v)− bαk
(αk−1)

)
γk−1(v),

ηkηk−1δk(v)− κkγ
[k]
k (v) =

(1−αkαk−1)
√

1−|κk|2√
(1−|αk|2)(1−|αk−1|2)

(
bαk

(v)− bαk
(αk−1)

)
δk−1(v).
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Proof. Let k ∈ I \ {0}. Evidently, the identity(
1 κk

κk 1

)(
1 −κk

−κk 1

)
=
(

1− |κk|2 0
0 1− |κk|2

)
is satisfied. Therefore, (3.3) is equivalent to the relation(

γk(v) ηkηk−1δ
[k]
k (v)

δk(v) ηkηk−1γ
[k]
k (v)

)(
1 −κk

−κk 1

)
=

√
(1−|αk|2)(1−|κk|2)

1−|αk−1|2
1−αk−1v

1−αkv
Θk−1(v).

Hence, by considering the first column of Θk−1(v) and using

(3.6) ηkηk−1
1− αkαk−1

1− |αk|2
(
bαk

(v)− bαk
(αk−1)

)
=

1− αk−1v

1− αkv
bαk−1(v),

one can finally conclude the assertion. �

In the further course of this section, [(γk)k∈I, (δk)k∈I] stands always for the Schur-
Nevanlinna pair of rational functions corresponding to (αk, κk)k∈I, where (αk)k∈I
and (κk)k∈I are some sequences of points belonging to D.

By combination of the forward recursions defining the Schur-Nevanlinna pair
of rational functions [(γk)k∈I, (δk)k∈I], the backward recursions stated in Proposi-
tion 3.1, and (3.6) one can see that the pair [(γk)k∈I, (δk)k∈I] fulfills also the follow-
ing three-term recurrence relations.

Corollary 3.2. For each k ∈ I \ {0, 1},

κk−1γk(v) =
√

1−|αk|2
(1−|αk−1|2)(1−|κk|2)

1−αk−1v
1−αkv

(
κk−1bαk−1(v) + κkηk−1ηk−2

)
γk−1(v)

−κkηk−1ηk−2

√
(1−|αk|2)(1−|κk−1|2)
(1−|αk−2|2)(1−|κk|2)

1−αk−2v
1−αkv bαk−2(v)γk−2(v)

and

κk−1δk(v) =
√

1−|αk|2
(1−|αk−1|2)(1−|κk|2)

1−αk−1v
1−αkv

(
κk−1bαk−1(v) + κkηk−1ηk−2

)
δk−1(v)

−κkηk−1ηk−2

√
(1−|αk|2)(1−|κk−1|2)
(1−|αk−2|2)(1−|κk|2)

1−αk−2v
1−αkv bαk−2(v)δk−2(v),

where γ0(v), δ0(v) are given as in (3.1) and

γ1(v) =
√

1−|α1|2
(1−|κ0|2)(1−|κ1|2)

1
1−α1v

(
bα0(v)− η0κ1κ0

)
,

δ1(v) =
√

1−|α1|2
(1−|κ0|2)(1−|κ1|2)

1
1−α1v

(
κ0bα0(v)− η0κ1

)
.

A key tool in the proof of the description (1.2) for the set S∆ is an application
of some well-known results on Potapov’s J-theory (see, e.g., [21, 22]). Hereby, the
special choice of the (2× 2)-signature matrix

J :=
(

1 0
0 −1

)
will be essential in the considerations below. Recall that a complex (2× 2)-matrix
Θ(v) is said to be J-contractive (resp., J-unitary), if

J ≥ Θ(v)∗JΘ(v)
(
resp., J = Θ(v)∗JΘ(v)

)
,

where Θ(v)∗ denotes the adjoint matrix of Θ(v).
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Theorem 3.3. For each k ∈ I,

(3.7) Θk(v) =

√
1− |αk|2
1− αkv

Θ̂0(v)Θ̂1(v) · · · Θ̂k(v),

where Θk(v) and Θ̂`(v), ` = 1, 2, . . . , k, is given by (3.2) and (3.4) as well as

Θ̂0(v) :=
1√

1− |κ0|2

(
1 κ0

κ0 1

)(
bα0(v) 0

0 −η0

)
.

In particular, if v ∈ D (resp., v ∈ T) then the matrix 1−αkv√
1−|αk|2

Θk(v) is J-contractive

(resp., J-unitary).

Proof. Let k ∈ I. The alleged representation (3.7) of Θk(v) is an easy consequence
of (3.3) and the choice of γ0 and δ0. It remains to prove that if v ∈ D (resp., v ∈ T)
then the matrix 1−αkv√

1−|αk|2
Θk(v) is J-contractive (resp., J-unitary). But this follows

immediately from (3.7) and the fact that, for all ` ∈ {0, 1, . . . , k},

(3.8) J =
1

1− |κ`|2

(
1 κ`

κ` 1

)∗

J
(

1 κ`

κ` 1

)
as well as that if v ∈ D (resp., v ∈ T) then

(3.9)

J ≥
(

bα`
(v) 0
0 u

)∗

J
(

bα`
(v) 0
0 u

)
(

resp., J =
(

bα`
(v) 0
0 u

)∗

J
(

bα`
(v) 0
0 u

))
for a u ∈ T, i.e. the fact that Θ̂`(v) is J-contractive (resp., J-unitary). �

By forming the determinants of both sides in (3.7), it follows that:

Corollary 3.4. For each k ∈ I,

bαk
(v)
(
γk(v)γ[k]

k (v)− δk(v)δ[k]
k (v)

)
= −ηk

1−|αk|2

(1−αkv)2
Bk(v).

Because of Bk(α`) = 0, ` = 0, 1, . . . , k−1 (cf. (2.3)), the equality in Corollary 3.4
implies particularly:

Corollary 3.5. For each k ∈ I \ {0} and each ` ∈ {0, 1, . . . , k − 1},

γk(α`)γ
[k]
k (α`) = δk(α`)δ

[k]
k (α`).

In view of some well-known results on J-contractive matrices (see, e.g., [9, The-
orem 1.6.1]), Theorem 3.3 yields also that:

Corollary 3.6. For each k ∈ I and each v ∈ D ∪ T, the relations

γ
[k]
k (v) 6= 0,

1

|γ[k]
k (v)|

≤ |1− αkv|√
1− |αk|2

,

∣∣∣∣∣ δ[k]
k (v)

γ
[k]
k (v)

∣∣∣∣∣ < 1, and

∣∣∣∣∣bαk
(v)δk(v)

γ
[k]
k (v)

∣∣∣∣∣ < 1

are satisfied.

Since Corollary 3.6 includes a localization of the zeros of γ
[k]
k , k ∈ I \ {0}, the

next Corollary is an easy conclusion of Proposition 3.1 and (3.3) with v = αk−1.
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Corollary 3.7. For each k ∈ I \ {0}, we have γ
[k]
k (αk−1) 6= 0,

κk = ηkηk−1
δk(αk−1)

γ
[k]
k (αk−1)

,

√
1−|κk|2 = ηkηk−1

√
(1− |αk|2)(1− |αk−1|2)

1− αkαk−1

γ
[k−1]
k−1 (αk−1)

γ
[k]
k (αk−1)

,

and, in particular, κk = 0 ⇐⇒ δk(αk−1) = 0.

Note that, if we put α−1 := 0, η−1 := −1, and γ
[−1]
−1 (α−1) := 1 then the relations

in Corollary 3.7 hold also in the case k = 0.
In spite of the symmetry of the recurrence relations, one can not easily inter-

change the roles of γk and δk in Corollary 3.7. In fact, the condition δ
[k]
k (αk−1) 6= 0

is not true in general.

Remark 3.8. For each k ∈ I \ {0}, if δ
[k]
k (αk−1) 6= 0 then Proposition 3.1 and (3.3)

yield

κk = ηkηk−1
γk(αk−1)

δ
[k]
k (αk−1)

,

√
1−|κk|2 = ηkηk−1

√
(1− |αk|2)(1− |αk−1|2)

1− αkαk−1

δ
[k−1]
k−1 (αk−1)

δ
[k]
k (αk−1)

,

and, in particular, κk = 0 ⇐⇒ γk(αk−1) = 0 on the one hand. On the other hand
from (3.3), γ

[k]
k (αk−1) 6= 0, and Corollary 3.5, one can see

δ
[k−1]
k−1 (αk−1) = 0 ⇐⇒ δ

[k]
k (αk−1) = 0 =⇒ γk(αk−1) = 0, k ∈ I \ {0},

but κk = 0 implies also γk(αk−1) = 0 and the condition γk(αk−1) = 0 supplies
conversely δ

[k]
k (αk−1) = 0 or κk = 0.

Remark 3.9. If κ0 = 0 then obviously

δ
[0]
0 (α0) = 0

and, by an application of γ
[k−1]
k (α0) 6= 0 and Corollary 3.5, one can inductively

derive from the recurrence relations of a Schur-Nevanlinna pair of rational functions
(use, e.g., (3.3)) that

δ
[k]
k (α0) = 0, γk(α0) = 0, k ∈ I \ {0}.

4. Christoffel-Darboux formulae

In the present section, we shall show that, similar as in the case of orthogonal
rational functions (cf. [4, Theorem 3.1.3]), arbitrary Schur-Nevanlinna pairs of
rational functions [(γk)k∈I, (δk)k∈I] fulfill also some Christoffel-Darboux formulae.
To prove these, we remark at first the following identities for [(γk)k∈I, (δk)k∈I]. Here
and in the sequel [(γk)k∈I, (δk)k∈I] stands again for the Schur-Nevanlinna pair of
rational functions corresponding to (αk, κk)k∈I, where (αk)k∈I and (κk)k∈I are some
sequences of points belonging to D.
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Lemma 4.1. For each k ∈ I \ {0}, the following relations hold:(
1− bαk−1(v)bαk−1(w)

)(
δ
[k]
k (v)δ[k]

k (w)− γk(v)γk(w)
)

=
(
1− bαk

(v)bαk
(w)

)(
δ
[k−1]
k−1 (v)δ[k−1]

k−1 (w)− bαk−1(v)γk−1(v)bαk−1(w)γk−1(w)
)
,

(
1− bαk−1(v)bαk−1(w)

)(
γ

[k]
k (v)γ[k]

k (w)− δk(v)δk(w)
)

=
(
1− bαk

(v)bαk
(w)

)(
γ

[k−1]
k−1 (v)γ[k−1]

k−1 (w)− bαk−1(v)δk−1(v)bαk−1(w)δk−1(w)
)
,

and(
1− bαk−1(v)bαk−1(w)

)(
δ
[k]
k (v)γ[k]

k (w)− γk(v)δk(w)
)

=
(
1− bαk

(v)bαk
(w)

)(
δ
[k−1]
k−1 (v)γ[k−1]

k−1 (w)− bαk−1(v)γk−1(v)bαk−1(w)δk−1(w)
)
.

Proof. Note that, in view of (2.3), for z ∈ D and complex numbers v, w (6= 1
z ) it

follows that

(4.1) 1− bz(v)bz(w) =
(1− |z|2)(1− vw)
(1− vz)(1− zw)

.

Let k ∈ I \ {0}. Considering the first row of the matrix function Θk, from (3.3),
(3.8), and (3.9) one can see

δ
[k]
k (v)δ[k]

k (w)− γk(v)γk(w)

= −
(

γk(v) ηkηk−1δ
[k]
k (v)

)
J
(

γk(w) ηkηk−1δ
[k]
k (w)

)∗
= −

(√
1−|αk|2

1−|αk−1|2
1−αk−1v
1−αkv

(
bαk−1(v)γk−1(v) δ

[k−1]
k−1 (v)

)
1√

1−|κk|2

(
1 κk

κk 1

))
J(√

1−|αk|2
1−|αk−1|2

1−αk−1w
1−αkw

(
bαk−1(w)γk−1(w) δ

[k−1]
k−1 (w)

)
1√

1−|κk|2

(
1 κk

κk 1

))∗

= − 1−|αk|2
1−|αk−1|2

1−αk−1v
1−αkv

1−αk−1w
1−αkw

(
bαk−1(v)γk−1(v) δ

[k−1]
k−1 (v)

)( bαk−1(w)γk−1(w)

−δ
[k−1]
k−1 (w)

)

= 1−|αk|2
1−|αk−1|2

1−αk−1v
1−αkv

1−αk−1w
1−αkw

(
δ
[k−1]
k−1 (v)δ[k−1]

k−1 (w)− bαk−1(v)γk−1(v)bαk−1(w)γk−1(w)
)

and, hence, an application of (4.1) yields the first identity. Similarly, observing the
second row (resp., the first and the second row) of Θk, in view of (3.3), (3.8), (3.9),
and (4.1), one can obtain the second (resp., the third) identity. �

Theorem 4.2. For k ∈ I, the following Christoffel-Darboux formulae hold:

(
1− bαk

(v)bαk
(w)

) k∑
`=0

γ`(v)γ`(w)

= δ
[k]
k (v)δ[k]

k (w)− bαk
(v)γk(v)bαk

(w)γk(w) +
1− |αk|2

(1− αkv)(1− αkw)
,
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(
1− bαk

(v)bαk
(w)

) k∑
`=0

δ`(v)δ`(w)

= γ
[k]
k (v)γ[k]

k (w)− bαk
(v)δk(v)bαk

(w)δk(w)− 1− |αk|2

(1− αkv)(1− αkw)
,

and

(
1− bαk

(v)bαk
(w)

) k∑
`=0

γ`(v)δ`(w) = δ
[k]
k (v)γ[k]

k (w)− bαk
(v)γk(v)bαk

(w)δk(w).

Proof. According to the definition, we have

γ0(v) =

√
1− |α0|2
1− |κ0|2

1
1− α0v

, δ0(v) = κ0

√
1− |α0|2
1− |κ0|2

1
1− α0v

.

Hence, in view of (4.1),

(1− |α0|2)(1− vw)

= 1− α0v − α0w + |α0|2vw − (|α0|2 − α0v − α0w + vw)

= (1− α0v)(1− α0w)− (α0 − v)(α0 − w),

(2.11), and (2.3), we get

(
1− bα0(v)bα0(w)

) 0∑
`=0

γ`(v)γ`(w)

=
(1− |α0|2)(1− vw)
(1− α0v)(1− α0w)

1− |α0|2

1− |κ0|2
1

(1− α0v)(1− α0w)

=
(1− |α0|2)(1− α0v)(1− α0w)

(1− |κ0|2)(1− α0v)2(1− α0w)2
− (1− |α0|2)(α0 − v)(α0 − w)

(1− |κ0|2)(1− α0v)2(1− α0w)2
(4.2)

=
(|κ0|2 − |κ0|2 + 1)(1− |α0|2)
(1− |κ0|2)(1− α0v)(1− α0w)

− (1− |α0|2)(α0 − v)(α0 − w)
(1− |κ0|2)(1− α0v)2(1− α0w)2

= δ
[0]
0 (v)δ[0]

0 (w)− bα0(v)γ0(v)bα0(w)γ0(w) +
1− |α0|2

(1− α0v)(1− α0w)
.

Thus, for the case k = 0 the first identity is verified. Now we assume that, for
k ∈ I \ {0}, the formula

(
1− bαk−1(v)bαk−1(w)

) k−1∑
`=0

γ`(v)γ`(w)

= δ
[k−1]
k−1 (v)δ[k−1]

k−1 (w)− bαk−1(v)γk−1(v)bαk−1(w)γk−1(w) +
1−|αk−1|2

(1−αk−1v)(1−αk−1w)
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is already proved. Therefore, an application of the first equality in Lemma 4.1 and
(4.1) implies(

1− bαk
(v)bαk

(w)
) k∑

`=0

γ`(v)γ`(w)

=
1− bαk

(v)bαk
(w)

1− bαk−1(v)bαk−1(w)

(
1− bαk−1(v)bαk−1(w)

) k−1∑
`=0

γ`(v)γ`(w)

+ γk(v)γk(w)− bαk
(v)γk(v)bαk

(w)γk(w)

=
1− bαk

(v)bαk
(w)

1− bαk−1(v)bαk−1(w)

(
δ
[k−1]
k−1 (v)δ[k−1]

k−1 (w)− bαk−1(v)γk−1(v)bαk−1(w)γk−1(w)
)

+

(
1− bαk

(v)bαk
(w)

)(
1− |αk−1|2

)(
1− bαk−1(v)bαk−1(w)

)(
1− αk−1v

)(
1− αk−1w

)
+ γk(v)γk(w)− bαk

(v)γk(v)bαk
(w)γk(w)

= δ
[k]
k (v)δ[k]

k (w)− γk(v)γk(w) +
1− |αk|2

(1− αkv)(1− αkw)

+ γk(v)γk(w)− bαk
(v)γk(v)bαk

(w)γk(w)

= δ
[k]
k (v)δ[k]

k (w)− bαk
(v)γk(v)bαk

(w)γk(w) +
1− |αk|2

(1− αkv)(1− αkw)
.

Consequently, for each k ∈ I, the first formula is inductively shown. Similarly, the
second and third formulae can be verified by using Lemma 4.1 and (4.1). �

Obviously, the formulae in Theorem 4.2 can be restated as follows:

Corollary 4.3. For k ∈ I \ {0}, the following Christoffel-Darboux formulae hold:(
1−bαk

(v)bαk
(w)

)k−1∑
`=0

γ`(v)γ`(w) = δ
[k]
k (v)δ[k]

k (w)−γk(v)γk(w)+
1−|αk|2

(1−αkv)(1−αkw)
,

(
1−bαk

(v)bαk
(w)

)k−1∑
`=0

δ`(v)δ`(w) = γ
[k]
k (v)γ[k]

k (w)−δk(v)δk(w)− 1−|αk|2

(1−αkv)(1−αkw)
,

and (
1− bαk

(v)bαk
(w)

)k−1∑
`=0

γ`(v)δ`(w) = δ
[k]
k (v)γ[k]

k (w)− γk(v)δk(w).

Using the same strategy as in the case of orthogonal rational functions (cf. [4,
Corollary 3.1.4]), from the (first and second) Christoffel-Darboux formulae with
v = w one can conclude the following statement (cf. Corollary 3.6).

Corollary 4.4. For k ∈ I \ {0}, if w ∈ C with |κ0| > |bα0(w)| then δ
[k]
k (w) 6= 0 and∣∣∣∣∣ γk(w)

δ
[k]
k (w)

∣∣∣∣∣ < 1

as well as for each v ∈ D ∪ T we have γ
[k]
k (v) 6= 0 and∣∣∣∣∣ δk(v)

γ
[k]
k (v)

∣∣∣∣∣ < 1.
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Remark 4.5. Let k ∈ I \ {0}. Since x[k](αk) = 0 ⇐⇒ x ∈ Hk−1 for each x ∈ Hk,
Corollary 4.4 includes particularly that γk ∈ Hk \Hk−1 and that if |κ0| > |bα0(αk)|
then also δk ∈ Hk \ Hk−1. Furthermore, the case δk ∈ Hk−1 is possible in general
(cf. Remark 3.8, Remark 3.9) and Theorem 4.2 implies

δk ∈ Hk−1 ⇐⇒
k∑

`=0

γ`(v)γ`(αk) =
1

1− αkv
⇐⇒

k∑
`=0

|γ`(αk)|2 =
1

1− |αk|2

⇐⇒
k∑

`=0

γ`(v)δ`(αk) = 0 ⇐⇒
k∑

`=0

γ`(αk)δ`(αk) = 0.

5. A characterization of Schur-Nevanlinna sequences

In the previous section (see, e.g., Theorem 4.2), we have explained that Schur-
Nevanlinna sequences of rational functions fulfill some Christoffel-Darboux formu-
lae. Referring to this, in the present section we study now an inverse problem.
Roughly speaking, we shall see that (similar as in the case of orthogonal rational
functions) the realization of Christoffel-Darboux formulae is in a way also a suffi-
cient condition for rational functions to be a Schur-Nevanlinna pair.

Remark 5.1. Let τ ∈ N or τ = ∞, let I := {0, 1, 2, . . . , τ}, and let (αk)k∈I be a
sequence of points belonging to D. Further, let k ∈ I \ {0} and let γ`, δ` ∈ H`,
` = 0, 1, . . . , k. Clearly, the following statements are equivalent:

(i) The first (resp., second or third ) identity of Theorem 4.2 is satisfied.
(ii) The first (resp., second or third ) identity of Corollary 4.3 is satisfied.

Lemma 5.2. Let τ ∈ N or τ = ∞, let I := {0, 1, 2, . . . , τ}, and let (αk)k∈I be a
sequence of points belonging to D. Further, let k ∈ I \ {0} and let γk, δk ∈ Hk as
well as γk−1, δk−1 ∈ Hk−1. The following statements are equivalent:

(i) The first identity of Lemma 4.1 is satisfied.
(ii) The second identity of Lemma 4.1 is satisfied.

Proof. If we fix the complex number w then, in view of (2.11) and forming the
adjoint with respect to the k + 2 points α0, α1, . . . , αk, αk−1, the first identity of
Lemma 4.1 is equal to(

bαk−1(v)− bαk−1(w)
)(

δk(v)δ[k]
k (w)− γ

[k]
k (v)γk(w)

)
=
(
bαk

(v)− bαk
(w)
)(

bαk−1(v)δk−1(v)δ[k−1]
k−1 (w)− γ

[k−1]
k−1 (v)bαk−1(w)γk−1(w)

)
.

Since, by fixing now the point v and adjoining, this relation is equal to(
bαk−1(v)bαk−1(w)− 1

)(
δk(v)δk(w)− γ

[k]
k (v)γ[k]

k (w)
)

=
(
bαk

(v)bαk
(w)− 1

)(
bαk−1(v)δk−1(v)bαk−1(w)δk−1(w)− γ

[k−1]
k−1 (v)γ[k−1]

k−1 (w)
)
,

we obtain finally the equivalence of (i) and (ii). �

Lemma 5.3. Let τ ∈ N or τ = ∞, let I := {0, 1, 2, . . . , τ}, and let (αk)k∈I be a
sequence of points belonging to D. Further, let (γk)k∈I and (δk)k∈I be sequences of
rational functions such that γ0, δ0 are given as in (3.1) for some κ0 ∈ D and that
γk, δk belong to Hk, k ∈ I \ {0}. The following statements are equivalent:
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(i) For each k ∈ I\{0}, the first (resp., second or third ) identity of Lemma 4.1
is fulfilled.

(ii) For each k ∈ I\{0}, the first (resp., second or third ) identity of Theorem 4.2
is fulfilled.

Proof. By using the same arguments as in the proof of Theorem 4.2, one can
inductively show that (i) implies (ii). It remains to verify that (ii) implicates also
(i). For each k ∈ I \ {0}, from (4.1), Remark 5.1, the first identity of Corollary 4.3,
(4.2), and the first identity of Theorem 4.2 it follows(

1− bαk−1(v)bαk−1(w)
)(

δ
[k]
k (v)δ[k]

k (w)− γk(v)γk(w)
)

=
(
1− bαk−1(v)bαk−1(w)

)(
δ
[k]
k (v)δ[k]

k (w)− γk(v)γk(w) +
1−|αk|2

(1−αkv)(1−αkw)

)
− (1−|αk|2)(1−|αk−1|2)(1−vw)

(1−αkv)(1−αkw)(1−αk−1v)(1−αk−1w)

=
(
1− bαk−1(v)bαk−1(w)

)(
1− bαk

(v)bαk
(w)

)k−1∑
`=0

γ`(v)γ`(w)

− (1−|αk|2)(1−|αk−1|2)(1−vw)
(1−αkv)(1−αkw)(1−αk−1v)(1−αk−1w)

=
(
1− bαk

(v)bαk
(w)

)(
δ
[k−1]
k−1 (v)δ[k−1]

k−1 (w)− bαk−1(v)γk−1(v)bαk−1(w)γk−1(w)
)
.

Consequently, with respect to the first kind of identities it is shown that (ii) yields
(i). Similarly, one can prove by a straightforward calculation that the implication
referring to the second (resp., third) kind of identities is fulfilled. �

Theorem 5.4. Let τ =0 or τ ∈ N or τ =∞, let I := {0, 1, 2, . . . , τ}, and let (αk)k∈I
be a sequence of points belonging to D. Further, for each k ∈ I, let γk, δk be rational
functions belonging to Hk such that the following three conditions are fulfilled:

(I) The first (resp., second ) identity of Theorem 4.2 is fulfilled.
(II) The third identity of Theorem 4.2 is fulfilled.

(III) arg
[
γ

[k]
k (αk−1)

]
=arg

[
ηkηk−1

1−αkαk−1
γ

[k−1]
k−1 (αk−1)

]
, where α−1 := 0, η−1 :=−1,

and γ
[−1]
−1 (α−1) := 1.

The relation γ
[k]
k (αk−1) 6= 0 holds and if we put

κk := ηkηk−1
δk(αk−1)

γ
[k]
k (αk−1)

, k ∈ I,

then (κk)k∈I is a sequence of points belonging to D and [(γk)k∈I, (δk)k∈I] is the
Schur-Nevanlinna pair of rational functions corresponding to (αk, κk)k∈I.

Proof. First, we consider the case k = 0. From (I) and (II) we get

(5.1) γ0(v)γ0(w) = δ
[0]
0 (v)δ[0]

0 (w) +
1−|α0|2

(1−α0v)(1−α0w)

(5.2)
(
resp., δ0(v)δ0(w) = γ

[0]
0 (v)γ[0]

0 (w)− 1−|α0|2

(1−α0v)(1−α0w)

)
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and

(5.3) γ0(v)δ0(w) = δ
[0]
0 (v)γ[0]

0 (w).

Since (5.1) (resp., (5.2)) implies |γ0(v)|2 6= 0 (resp., |γ[0]
0 (v)|2 6= 0), in view of (2.11)

it follows at any rate
γ

[0]
0 (0) 6= 0

and, hence, (5.3) and the definition of κ0 yield

δ
[0]
0 (v) = −η0κ0γ0(v).

Thus, from (5.1) (resp., (5.2)), γ0 ∈ H0, (2.11), and (III), i.e. −η0γ
[0]
0 (0) ∈ [0,∞),

one can finally conclude that κ0 belongs to D and that (3.1) is fulfilled. Particularly
for the case τ = 0 it is shown that [(γk)k∈I, (δk)k∈I] is the Schur-Nevanlinna pair of
rational functions corresponding to (αk, κk)k∈I.
Now let τ ∈ N or τ = ∞ and let k ∈ I \ {0}. Because of (I), Lemma 5.3, and
Lemma 5.2 we obtain (cf. Corollary 4.4) that

γ
[k]
k (v) 6= 0, v ∈ D ∪ T,

and, by using bαk−1(αk−1) = 0, that

γ
[k]
k (v)γ[k]

k (αk−1)− δk(v)δk(αk−1)

=
(
1−bαk−1(v)bαk−1(αk−1)

)(
γ

[k]
k (v)γ[k]

k (αk−1)− δk(v)δk(αk−1)
)

(5.4)

=
(
1−bαk

(v)bαk
(αk−1)

)
γ

[k−1]
k−1 (v)γ[k−1]

k−1 (αk−1).

In particular, we have
γ

[k]
k (αk−1) 6= 0

as well as, by the choice of κk, (4.1), and (III), therefore κk ∈ D and

√
1−|κk|2 =

√√√√1−

∣∣∣∣∣ δk(αk−1)

γ
[k]
k (αk−1)

∣∣∣∣∣
2

=

√
(1− |αk|2)(1− |αk−1|2)

|1− αkαk−1|

∣∣∣∣∣γ
[k−1]
k−1 (αk−1)

γ
[k]
k (αk−1)

∣∣∣∣∣(5.5)

= ηkηk−1

√
(1− |αk|2)(1− |αk−1|2)

1− αkαk−1

γ
[k−1]
k−1 (αk−1)

γ
[k]
k (αk−1)

.

In view of (2.11), the relation (5.4) implies

γk(v)γ[k]
k (αk−1)− δ

[k]
k (v)δk(αk−1) =

(
bαk

(v)−bαk
(αk−1)

)
γk−1(v)γ[k−1]

k−1 (αk−1).

Consequently, an application of (5.5) yields

ηkηk−1γk(v)− κkδ
[k]
k (v) = ηkηk−1γk(v)− ηkηk−1

δk(αk−1)

γ
[k]
k (αk−1)

δ
[k]
k (v)

= ηkηk−1

γ
[k−1]
k−1 (αk−1)

γ
[k]
k (αk−1)

(
bαk

(v)−bαk
(αk−1)

)
γk−1(v)(5.6)

=
(1−αkαk−1)

√
1−|κk|2√

(1−|αk|2)(1−|αk−1|2)
(
bαk

(v)− bαk
(αk−1)

)
γk−1(v).
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Furthermore, from (II), Lemma 5.3, and bαk−1(αk−1) = 0 it follows

δ
[k]
k (v)γ[k]

k (αk−1)− γk(v)δk(αk−1)

=
(
1− bαk−1(v)bαk−1(αk−1)

)(
δ
[k]
k (v)γ[k]

k (αk−1)− γk(v)δk(αk−1)
)

=
(
1− bαk

(v)bαk
(αk−1)

)
δ
[k−1]
k−1 (v)γ[k−1]

k−1 (αk−1).

By forming the adjoint rational functions, we get

δk(v)γ[k]
k (αk−1)− γ

[k]
k (v)δk(αk−1) =

(
bαk

(v)− bαk
(αk−1)

)
δk−1(v)γ[k−1]

k−1 (αk−1).

Accordingly, the equality (5.5) provides

ηkηk−1δk(v)− κkγ
[k]
k (v) = ηkηk−1δk(v)− ηkηk−1

δk(αk−1)

γ
[k]
k (αk−1)

γ
[k]
k (v)

= ηkηk−1

γ
[k−1]
k−1 (αk−1)

γ
[k]
k (αk−1)

(
bαk

(v)−bαk
(αk−1)

)
δk−1(v)(5.7)

=
(1−αkαk−1)

√
1−|κk|2√

(1−|αk|2)(1−|αk−1|2)
(
bαk

(v)− bαk
(αk−1)

)
δk−1(v).

In the end, by virtue of (5.6), (5.7), and Proposition 3.1 one can conclude that
[(γk)k∈I, (δk)k∈I] is the Schur-Nevanlinna pair of rational functions corresponding
to (αk, κk)k∈I. �

6. Solution of Problem (MNP) in the non-uniqueness case

In this section, we shall show that the set S∆ of solutions of Problem (MNP) can
be parameterized by the linear fractional transformation (1.2), where γm and δm

are some elements of a Schur-Nevanlinna pair of rational functions with m defined
as in (2.2), if a data set ∆ (as in (2.1)) is given such that P∆ > 0.

With the points z1, z2, . . . , zn in ∆ we form here a sequence (αk)m
k=0 in which zj

appears according to its multiplicity lj . For instance, we can choose αk := βk with

βk := zj if
j−1∑
r=1

lr ≤ k <

j∑
r=1

lr, j = 1, 2, . . . , n.

But in fact, the order that equal points are successors is not essential in the fol-
lowing, i.e. for an arbitrary bijective mapping p of {0, 1, . . . ,m} onto itself we can
put

(6.1) αk := βp(k), k = 0, 1, . . . ,m.

In the sequel, then [(γk)k∈I, (δk)k∈I] stands for the Schur-Nevanlinna pair of rational
functions corresponding to (αk, κk)k∈I, where I := {0, 1, . . . ,m} and (κk)k∈I is a
certain sequence of points belonging to D.

Note that, Corollary 3.6 implies, for all h ∈ S,

(6.2) γ[m]
m (z) + bαm

(z)δm(z)h(z) 6= 0, z ∈ D,

and, moreover, that the function g0:

(6.3) g0(z) :=
δ
[m]
m (z)

γ
[m]
m (z)

, z ∈ D,
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belongs to S.

Lemma 6.1. For each h ∈ S, the function g :

(6.4) g(z) :=
δ
[m]
m (z) + bαm

(z)γm(z)h(z)

γ
[m]
m (z) + bαm(z)δm(z)h(z)

, z ∈ D,

belongs to S and ∆g = ∆g0 .

Proof. Let z ∈ D. In view of (2.6), with

Θ(z) :=
1−αmz√
1− |αm|2

 bαm(z)γm(z) δ
[m]
m (z)

bαm(z)δm(z) γ
[m]
m (z)


the relation (6.4) can be written as

g(z) = TΘ(z)

(
h(z)

)
.

From Theorem 3.3 we see that the matrix Θ(z) is J-contractive. Therefore, Θ is
a J-contractive holomorphic matrix function and, as a well-known result on linear
fractional transformations (cf. [9, Theorem 1.6.1]), TΘ maps the class S into the
class S. Hence, it follows that according to (6.4) we have g ∈ S if h ∈ S.
Now let the function g0 be defined as in (6.3). Consequently, by virtue of (6.2),
(6.4), and Corollary 3.4 we obtain that

g(z)− g0(z) =
δ
[m]
m (z) + bαm

(z)γm(z)h(z)

γ
[m]
m (z) + bαm

(z)δm(z)h(z)
− δ

[m]
m (z)

γ
[m]
m (z)

=
bαm

(z)h(z)
(
γm(z)γ[m]

m (z)− δm(z)δ[m]
m (z)

)(
γ

[m]
m (z) + bαm

(z)δm(z)h(z)
)
γ

[m]
m (z)

(6.5)

=
−ηm(1−|αm|2)h(z)

(1−αmz)2
(
γ

[m]
m (z) + bαm

(z)δm(z)h(z)
)
γ

[m]
m (z)

Bm(z).

Since the Blaschke product Bm has a zero of order lj at the point zj , j = 1, 2, . . . , n,
one can finally conclude

g(s)(zj) = g
(s)
0 (zj), s = 0, 1, . . . , lj − 1, j = 1, 2, . . . , n,

i.e. ∆g = ∆g0 . �

Lemma 6.2. If [(γ̃k)k∈I, (δ̃k)k∈I] is a Schur-Nevanlinna pair of rational functions
corresponding to (αk, κ̃k)k∈I with some κ̃k ∈ D, k ∈ I, such that ∆g̃0 = ∆g0 , where
g0 is defined as in (6.3) and the function g̃0 similarly by

(6.6) g̃0(z) :=
δ̃
[m]
m (z)

γ̃
[m]
m (z)

, z ∈ D,

then for each k ∈ I the equality κ̃k = κk holds, i.e. [(γ̃k)k∈I, (δ̃k)k∈I] is the Schur-
Nevanlinna pair of rational functions corresponding to (αk, κk)k∈I.

Proof. Since (3.1) and (2.11) imply

(6.7) κ̃0 =
δ̃
[0]
0 (z)

γ̃
[0]
0 (z)

, κ0 =
δ
[0]
0 (z)

γ
[0]
0 (z)

,
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in the case m = 0 it follows evidently κ̃0 = κ0, i.e. that [(γ̃k)k∈I, (δ̃k)k∈I] is the
Schur-Nevanlinna pair of rational functions corresponding to (αk, κk)k∈I.
Now let m > 0. In view of the recursions defining a Schur-Nevanlinna pair of
rational functions, (2.11), and ∆g̃0 = ∆g0 we obtain that the values of the functions

δ̃
[m]
m−1(z) + bαm−1(z)γ̃m−1(z)κ̃m

γ̃
[m]
m−1(z) + bαm−1(z)δ̃m−1(z)κ̃m

,
δ
[m]
m−1(z) + bαm−1(z)γm−1(z)κm

γ
[m]
m−1(z) + bαm−1(z)δm−1(z)κm

, z ∈ D,

and their derivatives up to the order lj−1 at the points zj , j = 1, 2, . . . , n coincide.
Because of Lemma 6.1, a successive continuation of this procedure yields that, for
each k ∈ I \ {0}, the values of the functions

(6.8)
δ̃
[k−1]
k−1 (z) + bαk−1(z)γ̃k−1(z)κ̃k

γ̃
[k−1]
k−1 (z) + bαk−1(z)δ̃k−1(z)κ̃k

,
δ
[k−1]
k−1 (z) + bαk−1(z)γk−1(z)κk

γ
[k−1]
k−1 (z) + bαk−1(z)δk−1(z)κk

, z ∈ D,

and their derivatives up to the order rj − 1 at the points zj contained in the
sequence (α`)k

`=0 (where rj stands for the number how many times) coincide and,
in particular, that

(6.9)
δ̃
[0]
0 (α0)

γ̃
[0]
0 (α0)

=
δ
[0]
0 (α0)

γ
[0]
0 (α0)

.

In the following, by induction on k, we verify that κ̃k = κk, k ∈ I. For k = 0, the
equalities (6.7) and (6.9) supply immediately

κ̃0 = κ0.

Now let k ∈ I\{0} and we assume that κ̃` = κ`, ` = 0, 1, . . . , k−1. In view of (6.8)
and the induction assumption we obtain that the values of the functions

δ
[k−1]
k−1 (z) + bαk−1(z)γk−1(z)κ̃k

γ
[k−1]
k−1 (z) + bαk−1(z)δk−1(z)κ̃k

,
δ
[k−1]
k−1 (z) + bαk−1(z)γk−1(z)κk

γ
[k−1]
k−1 (z) + bαk−1(z)δk−1(z)κk

, z ∈ D,

and their derivatives up to the order rj−1 at the points zj contained in the sequence
(α`)k

`=0 (where rj stands again for the number how many times) coincide on the
one hand and on the other hand Corollary 3.4 provides

δ
[k−1]
k−1 (z) + bαk−1(z)γk−1(z)κ̃k

γ
[k−1]
k−1 (z) + bαk−1(z)δk−1(z)κ̃k

−
δ
[k−1]
k−1 (z) + bαk−1(z)γk−1(z)κk

γ
[k−1]
k−1 (z) + bαk−1(z)δk−1(z)κk

=

(
κ̃k − κk

)
bαk−1(z)

(
γk−1(z)γ[k−1]

k−1 (z)− δk−1(z)δ[k−1]
k−1 (z)

)(
γ

[k−1]
k−1 (z) + bαk−1(z)δk−1(z)κ̃k

)(
γ

[k−1]
k−1 (z) + bαk−1(z)δk−1(z)κk

)
=

−
(
κ̃k − κk

)
ηk−1

(
1− |αk−1|2

)
Bk−1(z)(

1− αk−1z
)2(

γ
[k−1]
k−1 (z) + bαk−1(z)δk−1(z)κ̃k

)(
γ

[k−1]
k−1 (z) + bαk−1(z)δk−1(z)κk

) .
Since ηk−1(1− |αk−1|2) 6= 0 and since the Blaschke product Bk−1 has only k zeros
(at the points α0, α1, . . . , αk−1), one can finally conclude κ̃k = κk. Thus, for each
k ∈ I the identity κ̃k = κk is satisfied, i.e. [(γ̃k)k∈I, (δ̃k)k∈I] is the Schur-Nevanlinna
pair of rational functions corresponding to (αk, κk)k∈I. �

Now we are able to prove the main result of this paper, i.e. that in the non-
uniqueness case the set S∆ of all solutions of Problem (MNP) is given by a linear
fractional transformation of the form stated in (1.2).
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Theorem 6.3. Let ∆ be a data set as in (2.1) whereby P∆ >0. Further, let g•∈S∆,
let (αk)m

k=0 be given as in (6.1), and let (sk)m
k=0 be the sequence of Schur parameters

associated with [g•, (αk)m
k=0]. If g ∈ S then the following statements are equivalent:

(i) g ∈ S∆.
(ii) (sk)m

k=0 is the sequence of Schur parameters associated with [g, (αk)m
k=0].

Moreover, if we put I :={0, 1, . . . ,m}, κ0 :=s0, and κk :=−skηk−1, k=1, 2, . . . ,m,
and if [(γk)k∈I, (δk)k∈I] stands for the Schur-Nevanlinna pair of rational functions
corresponding to (αk, κk)k∈I then the relation

g(z) =
δ
[m]
m (z) + bαm(z)γm(z)h(z)

γ
[m]
m (z) + bαm

(z)δm(z)h(z)
, z ∈ D,

establishes a bijective correspondence between the set S∆ of all solutions g of Prob-
lem (MNP) and the class S of all Schur functions h.

Proof. Let z ∈ D. Note that, in view of P∆ > 0 and Theorem 2.3, for any
solution of Problem (MNP) the Schur-Nevanlinna algorithm can be carried out (at
least) m + 1 times. Consequently, we can always suppose in the following a given
Schur function g for which the Schur-Nevanlinna algorithm can be carried out (at
least) m + 1 times. In particular (cf. (2.4) and (2.10)), we find Schur parameters
s̃0, s̃1, . . . , s̃m ∈ D associated with the pair [g, (αk)m

k=0] and a unique Schur function
hm+1 such that the relation

(6.10) g(z) = TΞ(z)

(
hm+1(z)

)
is satisfied, where

Ξ(z) :=

y
m∏

k=0

Ξ̃k(z)
(
:= Ξ̃0(z)Ξ̃1(z) · · · Ξ̃m(z)

)
and where

Ξ̃k(z) :=
(

bαk
(z) s̃k

s̃kbαk
(z) 1

)
, k ∈ I.

By virtue of (2.9) and (3.5), with η−1 := −1 one can also write

(6.11) Ξ(z) =

( y
m∏

k=0

(
1 −s̃kηk−1

−s̃kηk−1 1

)(
bαk

(z) 0
0 ηkηk−1

))(
1 0
0 −ηm

)
.

According to Section 3, we define now [(γ̃k)k∈I, (δ̃k)k∈I] as the Schur-Nevanlinna
pair of rational functions corresponding to (αk, κ̃k)k∈I with κ̃k := −s̃kηk−1, k ∈ I.
Thus, setting

Θ̃k(v) :=
1√

1− |κ̃k|2

(
1 κ̃k

κ̃k 1

)(
bαk

(v) 0
0 ηkηk−1

)
, k ∈ I,

Theorem 3.3 yields the identity(
bαm

(v)γ̃m(v) δ̃
[m]
m (v)

bαm(v)δ̃m(v) γ̃
[m]
m (v)

)
=

√
1−|αm|2
1−αmv

Θ̃0(v)Θ̃1(v) · · · Θ̃m(v)
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on the one hand and on the other hand from (6.11) follows

Ξ(z) =

( y
m∏

k=0

√
1− |κ̃k|2Θ̃k(z)

)(
1 0
0 −ηm

)
.

Hence, by (6.10), (6.2), (2.6), and (2.7), we see that

(6.12) g(z) =
δ̃
[m]
m (z) + bαm

(z)γ̃m(z)
(
−ηmhm+1(z)

)
γ̃

[m]
m (z) + bαm(z)δ̃m(z)

(
−ηmhm+1(z)

) .
Moreover, via the construction of the rational functions γ̃m and δ̃m, Lemma 6.1
implies that the Schur function g̃0 given as in (6.6) fulfills ∆g = ∆g̃0 . In particular,
since g• ∈ S∆, the considerations above supply that g• admits a representation

g•(z) =
δ
[m]
m (z) + bαm

(z)γm(z)
(
−ηmh•(z)

)
γ

[m]
m (z) + bαm

(z)δm(z)
(
−ηmh•(z)

)
for a unique h• ∈ S and that the Schur function g0 given as in (6.3) fulfills the
identity ∆g• = ∆g0 . Consequently, if g ∈ S∆ then

∆g̃0 = ∆g = ∆g• = ∆g0

and, hence, Lemma 6.2 yields for each k ∈ I the identity κ̃k = κk (i.e. s̃k = sk).
Therefore, (i) implicates (ii) and, in addition, (6.12) leads to (1.2). Conversely, if g
admits the representation (1.2) for some h ∈ S then from Lemma 6.1 one can get

∆g = ∆g0 = ∆g• ,

i.e. g ∈ S∆. Finally, if (ii) is fulfilled then (6.12) implies that g admits the repre-
sentation (1.2) with h(z) := −ηmhm+1(z), z ∈ D. �

Observe that the equivalence of (i) and (ii) in Theorem 6.3 is closely related to
Schur’s result that, for each l ∈ N, there is a one-to-one correspondence between the
first l Taylor coefficients of a Schur function at the point z = 0 and the first l cor-
responding Schur parameters. Clearly, applying appropriate conformal mappings
of the open unit disk D onto itself, one can obtain a similar result with respect to
arbitrarily points z1, z2, . . . , zn ∈ D. Nevertheless, it seems to be really hard and
unwieldy to derive directly from this classical result the equivalence of (i) and (ii),
since the underlying sequence (αk)m

k=0 has only to fulfill (6.1) and hence the points
α0, α1, . . . , αm are not strictly in the order as in the example before (6.1).

If in (1.2) (i.e. in the description of S∆ by the linear fractional transformation
according to Theorem 6.3) the point z ∈ D is fixed then the set

(6.13) K∆(z) := {g(z) : g ∈ S∆}

is a closed disk in the unit disk D, the boundary of which is sometimes called Weyl
circle. Using some well-known properties of linear fractional transformations (cf.
[24, Proposition 2]), it can easily be shown that the center cz and the radius rz of
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this Weyl circle are given by

cz =
δ
[m]
m (z)γ[m]

m (z)− bαm
(z)γm(z)bαm

(z)δm(z)

|γ[m]
m (z)|2 − |bαm(z)δm(z)|2

,

rz =
|bαm

(z)| |γm(z)γ[m]
m (z)− δm(z)δ[m]

m (z)|
|γ[m]

m (z)|2 − |bαm
(z)δm(z)|2

.

Consequently, in view of Theorem 4.2, (4.1), and Corollary 3.4 the parameters of
this Weyl circle can also be computed by the formulae

cz =
(1− |z|2)

m∑̀
=0

γ`(z)δ`(z)

(1− |z|2)
m∑̀
=0

|δ`(z)|2 + 1
, rz =

|Bm(z)|

(1− |z|2)
m∑̀
=0

|δ`(z)|2 + 1
,

where Bm denotes the Blaschke product (of degree m+1) with respect to the points
α0, α1, . . . , αm given via (6.1). Furthermore, (3.1) and Corollary 4.4 imply

|γ[m]
m (z)|2 − |bαm

(z)δm(z)|2 >
(
1− |bαm

(z)|2
)
|γ[m]

m (z)|2 > 0

as well as Corollary 3.6 and (4.1) yield
1

(1− |z|2)|γ[m]
m (z)|2

≤ 1
1− |bαm(z)|2

.

Summing up, we have proved the following.

Corollary 6.4. Under the assumptions of Theorem 6.3, if z ∈ D is fixed then the
set K∆(z) in (6.13) can be described by

K∆(z) = {w : |w − cz| ≤ rz}

where the parameters cz and rz are given by the relations above. In particular, if
z ∈ D \ {z1, z2, . . . , zn} is fixed, then for each g ∈ S∆ the following estimate holds

|g(z)− cz| <
|Bm(z)|

(1− |z|2)|γ[m]
m (z)|2

≤ |Bm(z)|
1− |bαm

(z)|2
.

Following the geometrical considerations, one can also see that the Weyl circle
with center cz and radius rz can be described as an Apollonius circle (cf. [15], [5]).

Corollary 6.5. Under the assumptions of Theorem 6.3, if z ∈ D is fixed then the
set K∆(z) in (6.13) can be described by

K∆(z) =
{

v :
∣∣∣∣v − a1,z

v − a2,z

∣∣∣∣ ≤ |bαm(z)|dz

}
,

where

a1,z :=
δ
[m]
m (z)

γ
[m]
m (z)

, a2,z :=
γm(z)
δm(z)

, dz :=

∣∣∣∣∣ δm(z)

γ
[m]
m (z)

∣∣∣∣∣ .
Remark 6.6. Clearly, K∆(zj), j = 1, 2, . . . , n, contains only the value wj0. But
following the idea of [24, Section 6], if we consider instead the set

K∆
′ (zj) :=

{
1
lj !

g(lj)(zj) : g ∈ S∆

}
, j = 1, 2, . . . , n,
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and if we choose just in (6.1) a sequence (αk)k∈I so that αm = zj then by a straight-
forward calculation from (6.5) it follows

K∆
′ (zj) = {w : |w − c′zj

| ≤ r′zj
},

where the Schur function g0 is defined as in (6.3) and

c′zj
=

1
lj !

g
(lj)
0 (zj), r′zj

=

n∏
k=1
k 6=j

|bzk
(zj)|lk

|γ[m]
m (zj)|2(1− |zj |2)lj+1

≤ 1
(1− |zj |2)lj

n∏
k=1
k 6=j

|bzk
(zj)|lk .

Finally, we point out that the rational functions γm and δm, which occur in
the linear fractional transformation of Theorem 6.3, can be constructed from the
interpolation data ∆, but indirectly. One needs to determine the corresponding
Schur parameters first, which is not easy to do in general. A way out is the following.
Since the definition of Schur-Nevanlinna sequences of rational functions according to
Section 3 is done with a view to orthogonal rational functions on the unit circle and
their recurrence relations presented in [4, Chapter 4], one can also use the theory
of orthogonal rational functions to compute the corresponding Schur parameters or
the functions γm and δm. This will be explained in detail in a forthcoming work.
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