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1 Introduction

In this paper we shall be mainly concerned with the estimation of integrals

I(f, µ) =

b∫
a

f(x)µ(x) dx, 0 ≤ a < b ≤ +∞ (1.1)

with µ L1−Lebesgue-integrable and f at least Riemann-integrable whose singularities can only
be the origin and/or infinity.

To approximate I(f, µ) we use quadrature rules of the form

In(f, µ) =
n∑

j=1

Ajnf(xjn) (1.2)

(which are called product integration rules — see [22]), whose nodes {xjn}n
1 are preassigned in

(a, b) and the weights or coefficients {Ajn}n
1 are determined by requiring that (1.2) is exact for

functions f in a linear space of dimension at least n. Thus, when the moment integrals

ck =

b∫
a

xkµ(x) dx, k = 0, 1, . . .

exist and are easily computed, then the weights are defined by imposing that

In(P, µ) = I(P, µ), ∀P ∈ Πn−1 (1.3)

or equivalently by requiring In(xk, µ) = I(xk, µ) = ck, k = 0, 1, . . . , n− 1 (we use the notation
Πk to denote the space of polynomials of degree at most k for k a nonnegative integer, while Π
will denote the space of all polynomials).

In fact, µ could also be a weight function on (a, b), i.e., µ(x) > 0 a.e. on (a, b). In this case,
by an appropriate choice of the nodes {xjn}, formulas of the form (1.2) can be found that
integrate exactly all polynomials up to a degree that is much higher than n − 1. When the
formulas have the highest possible degree of exactness in the set of polynomials that can be
obtained in this way, they are called Gaussian formulas. However if µ is not a “standard” weight
function (see e.g., [13]), the calculation of the Gaussian formulas requires a long computational
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process, with possible numerical instability problems. For this reason, formula (1.2) satisfying
(1.3) with “easily computable nodes” could be desirable even when µ is a weight function.
Such quadratures should exhibit some nice properties so that their accuracy and efficiency
can be assured. Concerning the latter properties, we define the following. A sequence of rules
{In(f, µ)}∞1 like (1.2) is said to be convergent in a class A iff limn→∞ In(f, µ) = I(f, µ) for all
f ∈ A. Obviously, it seems natural to make the class A as large as possible. On the other hand,
a sequence {In(f, µ)}∞1 is said to be (numerically) stable if there exists a positive constant M
(independent of n) such that

n∑
j=1

|Ajn| ≤M, n = 1, 2, . . . (1.4)

Condition (1.4) means that the possible roundoff errors in the evaluation of f(xjn) remain under
control during the computation. On the other hand, it should be also noticed that the success
of the rules (1.2) strongly depends on the smoothness of the integrand f and the appropriate
choice of the nodes {xjn}n

1 . Thus, when f is assumed to be smooth on (a, b), formulas In(f, µ)
satisfying (1.3) give excellent results by taking {xjn} as the zeros of polynomials orthogonal with
respect to an appropriate weight function (see e.g., the excellent paper [22] when dealing with
a finite interval and [23] for the unbounded case). However, the situation changes drastically
when f posseses singularities near (a, b). This is precisely the starting point of this paper where
we will assume that the integrand f may exhibit singularities at the origin and/or at infinity.
Thus it seems quite reasonable that our proposed rules integrate exactly the rational functions
with all their poles at the origin and/or at infinity, i.e., functions of the form:

L(x) =
q∑

j=p

αjx
j, p, q ∈ Z, p ≤ q.

They are called Laurent polynomials. For our purposes, it should be also assumed that now the
integrals

ck =

b∫
a

xkµ(x) dx, 0 ≤ a < b ≤ +∞ (1.5)

exist and that they can be easily computed, not only for the positive integers, but for all integers
k = 0,±1,±2, . . .. For p and q nonnegative integers, we shall write

Λ−p,q = span{xj : −p ≤ j ≤ q},
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(observe that Λ0,n = Πn), while Λ represents the space of all Laurent polynomials (L-polynomials
for short).

When taking p and q such that p + q = n − 1, (n ∈ N fixed) and since Λ−p,q is a Chebyshev
system of dimension n on (a, b) (0 ≤ a < b ≤ +∞) [20], we can, starting from n distinct nodes
x1n, . . . , xnn on (a, b), determine weights A1n, . . . , Ann such that

In(L, µ) =
n∑

j=1

AjnL(xjn) = I(L, µ), ∀L ∈ Λ−p,q. (1.6)

Furthermore, it can be seen that an equivalent definition is

In(f, µ) =

b∫
a

Ln−1(f, x)µ(x) dx (1.7)

with Ln−1(f, ·) the unique L-polynomial in Λ−p,q, interpolating f at the nodes {xjn}n
j=1. Hence,

such rules are sometimes referred to as “interpolatory rules” in Λ−p,q. Like in the polynomial
case, an adequate choice of the nodes {xjn} still remains to be a crucial problem. This is the
main aim of the paper: providing easily computable nodes {xjn} such that the rules In(f, µ)
given by (1.6) are stable and convergent in a class of functions as large as possible. In this
respect, the case of a finite interval [a, b], 0 ≤ a < b < +∞ was previously studied by the
authors [6,2,3]. So, here we will deal with integrals (1.1) on (0,∞). The paper is organized
as follows. In order to make it self contained, we shall review in Section 2 the most relevant
properties of certain sequences of orthogonal L-polynomials along with the quadrature formulas
based upon their zeros (Gauss-type formulas) providing with an extension of a previous result
about convergence of these quadratures as done in [5], which represents the first part of this
work. The main results are given in Section 3. Here some results by Sloan et al. [22,23] are
extended to the case of Laurent polynomials and unbounded intervals. An Erdős-Turán-type
theorem is also produced. In Section 4, as a consequence of the convergence results, certain
rational functions (two-point Padé-type approximants) associated with the Stieltjes-transform
of µ are studied. Finally in Section 5, some illustrative examples are discussed.

2 Preliminary results. Gauss-type quadrature formulas

Throughout this section, ϕ will denote a “strong” distribution function (see [16]) on (0,∞),
i.e., a real valued, bounded, nondecreasing function with infinitely many points of increase on
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any interval [a, b] ⊂ R+ = [0,∞) and so that the following integrals (“strong moments”) satisfy

dn =

∞∫
0

xn dϕ(x) <∞, n ∈ Z. (2.1)

From (2.1) it can be easily seen that the moment function d(t) =
∫∞
0 xt dϕ(x) associated with ϕ

is defined for any t ∈ R. As already said, the zeros of orthogonal polynomials play a fundamental
role in the construction of formulas In(f, µ), satisfying (1.3). When dealing with integrals (1.1)
so that the moments (1.5) exist for any integer k, we shall see in Section 3 that a similar
role is now played by certain sequences of Laurent polynomials orthogonal with respect to the
distribution ϕ.

For this purpose, let us start from a nondecreasing sequence {p(n)}∞n=0 of nonnegative integers
such that 0 ≤ p(n) ≤ n and s(n) = p(n) − p(n − 1) ∈ {0, 1} and let Ln = Λ−p(n),q(n) with
q(n) = n− p(n), and L = Λ−p,q =

⋃∞
n=0 Ln where p = limn→∞ p(n) and q = limn→∞ q(n). Note

that dim(Ln) = n + 1, Ln ⊂ Ln+1 and that at least one of p or q has to be infinite. Thus if
p = 0 (p(n) = 0 and q(n) = n for each n), then L = Π, while for p = q = ∞, it results in
L = Λ.

Now, from (2.1), we can define an inner product over Λ as usual:

〈f, g〉 =

∞∫
0

f(x)g(x) dϕ(x), ∀f, g ∈ Λ, (2.2)

so that by applying the Gram-Schmidt orthogonalization process to the basis {xj : −p(n) ≤ j ≤
q(n)} of Ln an orthogonal basis {V0, V1, . . . , Vn} for Ln can be obtained so that Vn ∈ Ln \Ln−1

and Vn ⊥ Ln−1 (i.e., 〈Vn, L〉 = 0, ∀L ∈ Ln−1,L−1 = ∅).

Observe that Vn is uniquely defined up to a multiplicative factor. When the process is repeated
for each n, an essentially unique sequence {Vn}∞0 is obtained that will be called a sequence
of orthogonal L-polynomials with respect to the distribution ϕ and the “ordering” induced by
{p(n)}∞0 . In the case that 〈Vn, Vn〉 = 1, {Vn}∞0 will be called “orthonormal”. Further properties
on general sequences of orthogonal L-polynomials have been recently given in [9]. As indicated
in [9] and [5], the following can be easily proved.

Theorem 2.1 Let {Vn}∞0 be a sequence of orthogonal L-polynomials as defined above. Then

(1) For each n ≥ 1, Vn has exactly n distinct zeros x1n, . . . , xnn in (0,∞).
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(2) Let In(f, dϕ) =
∑n

j=1 λjnf(xjn) be the interpolating rule in Ln−1 for I(f, dϕ) =
∫∞
0 f(x) dϕ(x)

based upon the zeros of Vn then
(a) λjn > 0, j = 1, . . . , n
(b) In(R, dϕ) = I(R, dϕ), ∀R ∈ Ln · Ln−1

Remark 2.2 Observe that dim(Ln · Ln−1) = dim Λ−(p(n)+p(n−1)),q(n)+q(n−1) = 2n. For this
reason, the quadrature formula will be called to be Gauss-type formulas and denoted by
IGT
n (f, dϕ). Furthermore, positivity of the weights automatically implies stability of the se-

quence {IGT
n (f, dϕ)}∞1 . This fact along with the property that for each n IGT

n (f, dϕ) represents
a Riemann-Stieltjes sum for I(f, dϕ), see [4], turns out to be essential when considering con-
vergence of our quadrature rules later on. For details see Theorems 2.5-2.6 and Corollary 2.7
in [5].

As clearly exposed in [5], convergence of the quadrature formulas {IGT
n (f, dϕ)}∞1 directly leads

to the so-called Strong Stieltjes Moment Problem so that it being determinate becomes essential
to guarantee convergence in the class of the Riemann-Stieltjes integrable functions with respect
to dϕ. Taking this into account the authors in [5] made use of the known Carlemans condition
for the determination of the strong moment problem [1],

∞∑
n=1

1
2n
√
dn

= ∞ if lim
n→∞

q(n) = ∞, (2.3)

or

∞∑
n=1

1
2n
√
d−n

= ∞ if lim
n→∞

p(n) = ∞. (2.4)

Thus, the class of functions for which convergence of the sequence {IGT
n (f, dϕ)} holds was

characterized in terms of the moments {dk} of the distribution function ϕ, by means of two
entire functions associated with the distribution ϕ, namely

Q(y) =
∞∑

k=0

yk

dk

, y ∈ C (2.5)

M(y) =
∞∑

k=0

yk

d−k

, y ∈ C. (2.6)
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and the set

Ch(R+) = {f : R+ → C : f is continuous and lim
x→∞

f(x)h(x) = 0},

with h being a bounded continuous function on R+. The following result (see Theorem 16 in
[19]) will be needed.

Theorem 2.3 [19] Let a positive function p(x) on R have the property that

lim sup
r→∞

E(r)

r
> 0,

where E(r) = ]{x ∈ R : |x| < r, p(x) > 0}, where as usual ]A denote cardinal of A. If the
polynomials are dense in Cp(R), then they are also dense in C(1+|t|)sp(t)(R), for any s > 0.

Remark 2.4 It can be checked immediately that the same conclusion holds for C|t|sp(t)(R), for
any s > 0. It is enough to observe that

|t|sp(t) < (1 + |t|)sp(t), t ∈ R.

Now, proceeding in a similar way as in [5] and making use of Theorem 2.3 we can prove the
following,

Theorem 2.5 Let h be given by xρ

Q(x)
or xρ̃

M(x)
, with ρ, ρ̃ > 0. Then the space Π of all polynomials

is dense in the class Ch(R+) with respect to the weighted uniform norm ‖·‖∞,h, where ‖f‖∞,h =
‖fh‖∞ = supx≥0 |f(x)h(x)|, if the conditions (2.3) or (2.4) are respectively satisfied.

Moreover, for x ∈ (0,∞), we define

H(x) =
xρ−ρ̃

Q(x)M(1/x)
, (2.7)

and set

CH(0,∞) = {f : (0,∞) → C : f is continuous and

lim
x→∞

f(x)H(x) = lim
x→0+

f(x)H(x) = 0}.
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In [5], the authors proved a result concerning density of the space of Laurent polynomials for
ρ̃ = ρ = 0. Similarly, one can obtain

Theorem 2.6 The space Λ of all L-polynomials is dense in the class CH(0,∞) with H given by
(2.7) with respect to the weighted uniform norm ‖·‖H

∞, where ‖f‖H
∞ = ‖fH‖∞ = supx≥0 |f(x)H(x)|,

if both conditions (2.3) and (2.4) are satisfied.

Theorems 2.5-2.6 are the basis to study the rate of convergence of {IGF
n (f, dϕ)} when f is

assumed to be smooth on (0,∞), which is the fundamental ingredient to be used in the sub-
sequent section. On the other hand, by analyzing more in depth Remark 4.1 in [5], we can
produce a result similar to Theorem 4.1 in [5], but now given in a more general framework and
more adjusted to the aim of this paper which consists of enlarging the class of functions where
convergence of our quadrature rules can be assured. Indeed, one has.

Theorem 2.7 Let ϕ be a strong distribution function on R+ with moment sequence dn =∫∞
0 xn dϕ(x), n ∈ Z and let {IGT

n (f, dϕ)}∞1 be the sequence of Gauss-type formulas as introduced
in Theorem 2.1. Then the following is true.

(1) Assume that limn→∞ q(n) = ∞ and
∑∞

n=1 d
− 1

2n
n = +∞. If

∞∑
k=[ρ]+1

d(k − ρ)

dk

<∞, ρ > 0 (2.8)

where d(t) is the moment function and [x] denotes the integer part of x, then

lim
n→∞

IGT
n (f, dϕ) = I(f, dϕ)

for any function f locally Riemann-Stieltjes integrable with respect to dϕ satisfying for
sufficiently large x

|f(x)| ≤ C
Q(x)

xρ
, C > 0. (2.9)

(Q as defined in (2.5).)

(2) Assume that limn→∞ p(n) = ∞ and
∑∞

n=1 d
− 1

2n
−n = +∞. If

∞∑
k=[ρ̃]+1

d(ρ̃− k)

d−k

<∞, ρ̃ > 0. (2.10)

Then

lim
n→∞

IGT
n (f, dϕ) = I(f, dϕ)
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for any function f Riemann-Stieltjes integrable with respect to dϕ on [a,∞), (a > 0)
satisfying for sufficiently small x

|f(x)| ≤ C̃M(1/x)xρ̃, C̃ > 0. (2.11)

(M as defined in (2.6).)
(3) If assumption in (1) and (2) hold simultaneously, then

lim
n→∞

IGT
n (f, dϕ) = I(f, dϕ)

for any function f Riemann-Stieltjes integrable with respect to dϕ on [a, b], 0 < a < b <∞,
satisfying (2.9)-(2.11).

PROOF. In order to deduce (1) by the Remark 4.2 in [5], it is sufficient to show that the

integral I(f, ϕ) exists, with f(x) = Q(x)
1+xρ .

Now, taking into account that Q is an entire function, it holds

∞∫
0

Q(x)

1 + xρ
dϕ(x) = lim

b→∞

b∫
0

Q(x)

1 + xρ
dϕ(x)

= lim
b→∞

b∫
0

∞∑
k=0

xk

dk

dϕ

1 + xρ

= lim
b→∞

∞∑
k=0

b∫
0

xk

dk

dϕ

1 + xρ

= lim
b→∞

 [ρ]∑
k=0

b∫
0

xk

dk

dϕ

1 + xρ
+

∞∑
k=[ρ]+1

b∫
0

xk

dk

dϕ

1 + xρ


= lim

b→∞
[I1(b) + I2(b)]

Let us first study,

I1(b) =
[ρ]∑

k=0

b∫
0

xk

dk

dϕ

1 + xρ
.
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To this end observe that hk(x) =
xk

1 + xρ
≤ hk(α), αρ = k

ρ−k
, k = 0, 1, . . . , [ρ], for any x ∈ R+.

Hence it holds

I1(b) ≤ S
[ρ]∑

k=0

d0

dk

<∞

with S a certain positive constant. Now, let us consider

I2(b) =
∞∑

k=[ρ]+1

1

dk

b∫
0

xk

1 + xρ
dϕ ≤

∞∑
k=[ρ]+1

1

dk

b∫
0

xk−ρ dϕ,

Thus, by (2.8)

I2(b) ≤
∞∑

k=[ρ]+1

d(k − ρ)

dk

<∞.

Finally, take into account that, for x > 0 sufficiently large one has,

0 < χ ≤ xρ

1 + xρ
≤ 1.

(2) This follows immediately from (1), since the negative moments {d−k}k≥0 enable us to define

the positive moments for the distribution −ϕ(
1

t
).

(3) In order to prove (3), we first consider the auxiliary functions

f0(x) =

 f(x)− L(x) x ∈ (0, 1]

0 x > 1

f∞(x) =

 0 x ∈ (0, 1]

f(x)− L(x) x > 1

where L is a L-polynomial satisfying that if f ∈ Cm(0,∞), then L ∈ Lm, and

f (k)(1) = L(k)(1), k = 0, 1, . . . ,m.
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In case f is not a continuous function in (0,∞), we proceed as in Proposition 3.9 in [5], i.e. we
have L(t) = f(1).

Therefore, f0, f∞ ∈ Cm(0,∞), so that the regularity of function f is preserved and this fact will
be required in the forthcoming estimation. Clearly, one has

f = f0 + f∞ + L,

Hence,

I(f, dϕ) = I(f0, dϕ) + I(f∞, dϕ) + I(L, dϕ),

Thus, we must prove that

I(f0, dϕ) <∞ and I(f∞, dϕ) <∞,

which can be assured taking into account that both f0 and f∞ satisfy (2.9) and (2.11), respect-
ively. �

From this theorem we can also estimate the error of the quadrature rule i.e. En(f) = I(f, dϕ)−
In(f, dϕ), when f is a continuous function. Indeed, it holds

Corollary 2.8 Under the same hypothesis as in Theorem 2.7 with f a continuous function on
(0,∞), we have.

(1) Assume that (2.8) holds and f satisfies (2.9). Then

|En(f)| ≤
(

2I(
Q(x)

xρ
, dϕ) + εn

)
mq(n)+q(n−1)(f,

xρ

Q(x)
),

where mn(f, h) = minp∈Πn ‖f − p‖∞,h and {εn}n≥0 ⊂ (0,∞) such that limn→∞ εn = 0.
(2) Assume that (2.10) holds and f satisfies (2.11). Then

|En(f)| ≤
(
2I(M(

1

x
)xρ̃, dϕ) + ε̃n

)
mp(n)+p(n−1)(f̃ ,

xρ̃

M(x)
)

where f̃(x) = f( 1
x
) and {ε̃n}n≥0 ⊂ (0,∞) such that limn→∞ ε̃n = 0.
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(3) Assume that (2.8)-(2.10) hold and f satisfies (2.9)-(2.11). Then,

|En(f)| ≤
(
2I(Q(x)M(

1

x
)xρ̃−ρ, dϕ) + νn

)
M2n−1(f,H),

where M2n−1(f,H) = minL∈L2n−1 ‖f − L‖H
∞ with H given by (2.7) and {νn}n≥0 ⊂ (0,∞)

such that limn→∞ νn = 0.

Remark 2.9 Conditions (2.8) and (2.10) are satisfied by the so-called Freud-type distributions
(weights) studied by López-Mart́ınez in [18]; which are of the form dϕ(t) = ω(t) dt such that

ω(t) = tνe−τ(t) , t ∈ (0,∞)

with ν ∈ R and τ a continuous function on (0,∞), such that there exist γ, γ̃ > 1
2

and s, s̃ > 0
fulfilling

lim
t→0+

(s̃t)γ̃τ(t) = Ã > 0,

and

lim
t→+∞

τ(t)

(st)γ
= A > 0 .

Since we are only concerned with the asymptotic behaviour of d(k−ρ)
dk

as k →∞, we can restrict

ourselves to study the behaviour of the moment function d(t) for the corresponding Freud
weights, namely

ωγ,θ(t) = tθe−rtγ , t ∈ (0,∞), r > 0, θ > −1, γ ≥ 1

2
..

yielding,

d(t) =
1

γ

Γ( t+θ+1
γ

)

r
t+1+θ

γ

, t ≥ 0,

where Γ is the Gamma function which, as is well known (see [11]), admits the following asymp-
totic expansions,

Γ(z) = e−zzz− 1
2 (2π)

1
2 [1 +

B1

z
+
B2

z
+ · · ·], z →∞, |Arg(z)| < π.
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Bk, k = 1, 2, . . . being the Bernoulli’s numbers.

Thus, for sufficiently large k, one can write

d(k − ρ)

dk

≈ γρ/γ

(
r

k + θ + 1− ρ

) ρ
γ

, k →∞.

Therefore,

∞∑
[ρ]+1

d(k − ρ)

dk

<∞ ⇔ ρ

γ
> 1,

(
and since γ ≥ 1

2

)
⇔ ρ > γ ≥ 1

2
.

Here it should be also observed that θ does not play an essential role in the convergence of the
series.

3 Convergence of the interpolatory quadratures for a possibly signed measure

In this section we shall be mainly concerned with the convergence and stability of the sequence
of quadrature formulas

In(f, µ) =
n∑

j=1

Ajnf(xjn) (3.1)

of interpolatory type in Ln−1, n = 1, 2, . . . to the integral

I(f, µ) =

∞∫
0

f(x)µ(x) dx (3.2)

where in general µ does not have a constant sign on R+ (it could even take complex values).
Clearly, in this situation it becomes meaningless to deal with Gauss-type formulas since it
can not be assured that µ generates an inner product (2.2) that enables us to speak about
orthogonality. So, a special choice of the nodes {xjn}n

1 in (3.1) will be made so that the results
by Sloan et all [22,23] for the polynomial case are to be partially extended to the L-polynomials.
On the other hand, previous results by the authors involving L-polynomials and concerning

13



integrals (1.1) but on a finite interval [a, b] 0 ≤ a < b < +∞ are now completed for the interval
(0,∞).

In the sequel we will deal with an auxiliary distribution ϕ. Furthermore, for the sake of
simplicity, we can assume without loss of generality that ϕ is absolutely continuous so that
dϕ(x) = ω(x) dx, ω being a weight function on (0,∞). Thus for the corresponding orthogonal-
ity we shall refer to ω, instead of dϕ.

We now prove the main result of this Section.

Theorem 3.1 Let us assume that µ satisfies

∞∫
0

|µ(x)|2

ω(x)
dx < +∞. (3.3)

Let In(f, µ) =
∑n

j=1Ajnf(xjn) denote the n-point interpolatory rule in Ln−1 whose nodes
{xjn}n

j=1 are the zeros of the nth orthogonal L-polynomial with respect to ω associated with
{p(n)}n≥0. Assume that either

lim
n→∞

q(n) = ∞,
∞∑

n=1

d
− 1

2n
n = +∞ and

∞∑
k=[ρ]+1

d(k − ρ)

dk

< +∞, ρ > 0, (3.4)

or

lim
n→∞

p(n) = ∞,
∞∑

n=1

d
− 1

2n
−n = +∞ and

∞∑
k=[ρ̃]+1

d(ρ̃− k)

d−k

< +∞, ρ̃ > 0, (3.5)

where for t ∈ R, d(t) =
∫∞
0 xtω(x) dx denotes the moment function associated with ω. Then if

(3.4) holds and f is any function locally Riemann-Stieltjes integrable with respect to ω, such
that

|f(x)| ≤ C

√
Q(x)

xρ
, C > 0 (3.6)

for sufficiently large x with Q given by (2.5), it follows that

∞∫
0

f(x)µ(x) dx <∞, (3.7)
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lim
n→∞

In(f) =

∞∫
0

f(x)µ(x) dx (3.8)

and

lim
n→∞

n∑
j=1

|Ajn|f(xjn) =

∞∫
0

f(x)|µ(x)| dx. (3.9)

On the other hand, if (3.5) holds, then (3.7)-(3.8)-(3.9) follow for any function f Riemann-
Stieltjes integrable with respect to ω on [a,∞), a > 0, such that

|f(x)| ≤ C̃
√
M(1/x)xρ̃, C̃ > 0, (3.10)

for sufficiently small x and M given by (2.6).

Moreover, if (3.4)-(3.5) hold, then (3.7)-(3.8)-(3.9) follow for any function f locally Riemann-
Stieltjes integrable with respect to ω on [a, b], 0 < a < b < ∞, such that (3.6) and (3.10) are
both satisfied

PROOF.

(3.7) can be easily deduced making use of Schwarz’s inequality along with (3.3) and taking into
account that by Theorem 2.7

∞∫
0

f 2(x)ω(x) dx <∞.

Now, recall that {p(n)}∞0 is a given nondecreasing sequence of nonnegative integers such that
0 ≤ p(n) ≤ n and s(n) = p(n) − p(n − 1) ∈ {0, 1}, giving rise to the nested sequence of
L-polynomial subspaces

Ln = span{xj : −p(n) ≤ j ≤ q(n)}, n = 0, 1, . . . , q(n) = n− p(n).

15



Thus if p = limn→∞ p(n) = ∞ or q = limn→∞ q(n) = ∞, then by either (3.4) or (3.5) respectively
it follows that (see [1]) the space Λ−p,q =

⋃∞
0 Ln = L is dense in

L2(ω) = {f : [0,∞) → C : f measurable and

∞∫
0

|f(x)|2ω(x) dx < +∞}

with respect to the norm induced by ω, i.e.,

〈L,D〉ω =

∞∫
0

L(x)D(x)ω(x) dx and ‖L‖ω =
√
〈L,L〉ω.

Let {Vn}∞0 be the corresponding sequence of orthonormal L-polynomials as introduced in Sec-
tion 2. Let {xjn}n

1 be the zeros of Vn and denote by Ajn(ψ) the weights of the n-point inter-
polatory quadrature formula In(f, ψ) in Ln−1 based upon these zeros for the integral I(f, ψ),
i.e.,

In(f, ψ) =
n∑

j=1

Ajn(ψ)L(xjn) = I(L, ψ) =

∞∫
0

L(x)ψ(x) dx, ∀L ∈ Ln−1.

Now taking into account (3.3), it follows that µ
ω
∈ L2(ω). Hence, it admits the Fourier expansion,

µ(x)

ω(x)
=

∞∑
k=0

bkVk(x). (3.11)

Recalling that

Ajn(µ) =

∞∫
0

Ljn(x)µ(x) dx

with Ljn ∈ Ln−1 and Ljn(xkn) = δjk, 1 ≤ j, k ≤ n, we can write

Ajn(µ) =

∞∫
0

Ljn(x)
µ(x)

ω(x)
ω(x) dx =

∞∑
k=0

bk

∞∫
0

Ljn(x)Vk(x)ω(x) dx.
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As Ljn ∈ Ln−1, by virtue of orthogonality, it follows that

Ajn(µ) =
n−1∑
k=0

bk

∞∫
0

Ljn(x)Vk(x)ω(x) dx.

On the other hand, for 0 ≤ k ≤ n− 1, LjnVk ∈ Ln · Ln−1. Hence

Ajn(µ) =
n−1∑
k=0

bkλjnVk(xjn) (3.12)

where {λjn}n
j=1 are the positive weights of the n-point Gauss-type formula for ω so that (3.12)

follows from Theorem 2.1. Thus (3.12) can be written as

Ajn(µ) = λjnS
µ/ω
n−1(xjn) (3.13)

where S
µ/ω
n−1 denotes the (n− 1)th partial sum in (3.11).

In the rest of the proof we shall assume that both conditions (3.4)-(3.5) hold and we shall prove
(3.9). The proof of (3.8) can be done in a similar way, and the same can be said when only one
of the conditions either (3.4) or (3.5) is satisfied. As a result, for a given positive number ε, we
shall see that there exists a positive integer n0(ε) so that for n > n0(ε) it holds that∣∣∣∣∣∣

∞∫
0

f(x)|µ(x)| dx−
n∑

j=1

|Ajn(µ)|f(xjn)

∣∣∣∣∣∣ < ε

for any function f satisfying (3.6) and (3.10).

For this purpose, take a function σ satisfying (3.3) which will be more precisely defined later
on, then we have

∣∣∣∣∣∣
∞∫
0

f(x)|µ(x)| dx−
n∑

j=1

|Ajn(µ)|f(xjn)

∣∣∣∣∣∣≤
∣∣∣∣∣∣
∞∫
0

f(x)|µ(x)| dx−
∞∫
0

f(x)|σ(x)| dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n∑

j=1

|Ajn(σ)|f(xjn)−
n∑

j=1

|Ajn(µ)|f(xjn)

∣∣∣∣∣∣
17



+

∣∣∣∣∣∣
∞∫
0

f(x)|σ(x)| dx−
n∑

j=1

|Ajn(σ)|f(xjn)

∣∣∣∣∣∣ .

Setting ‖f‖g
∞ = supx≥0 |f(x)g(x)| where g2(x) = xρ−ρ̃

Q(x)M( 1
x
)
and using the linearity of the weights

Ajn(µ) with respect to µ, we arrive at

∣∣∣∣∣∣
∞∫
0

f(x)|µ(x)| dx−
n∑

j=1

|Ajn(µ)|f(xjn)

∣∣∣∣∣∣
≤ ‖f‖g

∞


∞∫
0

|µ(x)− σ(x)| dx

g(x)
+

n∑
j=1

|Ajn(µ− σ)| 1

g(xjn)


+

∣∣∣∣∣∣
∞∫
0

f(x)|σ(x)| dx−
n∑

j=1

|Ajn(σ)|f(xjn)

∣∣∣∣∣∣
≤ ‖f‖g

∞


∞∫
0

∣∣∣∣∣µ(x)

ω(x)
− σ(x)

ω(x)

∣∣∣∣∣ ω(x)

g(x)
dx +

n∑
j=1

λjn

∣∣∣∣S µ
ω
− σ

ω
n−1 (xjn)

∣∣∣∣ 1

g(xjn)


+

∣∣∣∣∣∣
∞∫
0

f(x)|σ(x)| dx−
n∑

j=1

λjn|Sσ/ω
n−1(xjn)|f(xjn)

∣∣∣∣∣∣
Observe that the last inequality follows from (3.13). On the other hand, setting µ̃ = µ/ω and
σ̃ = σ/ω, then by (3.3) we see that µ̃ and σ̃ belong to L2(ω). Hence, making use of Schwarz’s
inequality, it follows that

∣∣∣∣∣∣
∞∫
0

f(x)|µ(x)| dx−
n∑

j=1

|Ajn(µ)|f(xjn)

∣∣∣∣∣∣
≤ ‖f‖g

∞

‖µ̃− σ̃‖2I(
1

g2
, ω)1/2 +

 n∑
j=1

λjn|Sµ̃−σ̃
n−1 (xjn)|2

1/2 n∑
j=1

λjn
1

g2(xjn)

1/2


+

∣∣∣∣∣∣
n∑

j=1

λjn|Sσ̃
n−1(xjn)|f(xjn)−

∞∫
0

f(x)|σ(x)| dx

∣∣∣∣∣∣ .
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Since |Sµ̃−σ̃
n−1 (x)|2 ∈ Ln−1 · Ln−1 ⊂ Ln · Ln−1, by Theorem 2.1 and Bessel’s inequality ([7]) one

has  n∑
j=1

λjn|Sµ̃−σ̃
n−1 (xjn)|2

1/2

= ‖Sµ̃−σ̃
n−1 ‖ω ≤ ‖µ̃− σ̃‖ω.

Taking into account that L is dense in L2(ω), there exists an L-polynomials R ∈ L such that
‖R− µ̃‖2 < ε. Take now σ̃ = R, i.e., σ = Rω. Then for n > ñ0 it holds that Sσ̃

n−1 = SR
n−1 = R,

and

∣∣∣∣∣∣
∞∫
0

f(x)|µ(x)| dx−
n∑

j=1

|Ajn(µ)|f(xjn)

∣∣∣∣∣∣
≤ ε‖f‖g

∞

(I(
1

g2
, ω))1/2 +

 n∑
j=1

λjn
1

g2(xjn)

1/2
 (3.14)

+

∣∣∣∣∣∣
n∑

j−1

λjn|R(xjn)|f(xjn)−
∞∫
0

f(x)|R(x)|ω(x) dx

∣∣∣∣∣∣ .

Finally, by Theorem 2.7, since |R|f and
1

g2
satisfy (2.9) and (2.11), one has

lim
n→∞

n∑
j=1

λjn
1

g2(xjn)
= I(

1

g2
, ω)

and

lim
n→∞

n∑
j=1

λjn|R(xjn)|f(xjn) =

∞∫
0

f(x)|R(x)|ω(x) dx.

Hence, the first summand in the right-hand member of inequality (3.14) remains bounded by
Dε,D being a positive constant while the second summand is smaller than ε for any nonnegative
integer n > n̂0.

Thus, our proof comes to a conclusion taking n0 = max{ñ0, n̂0}. �
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Remark 3.2 Taking f(x) = 1 in (3.9) one has

lim
n→∞

∞∑
j=1

|Ajn| =
∞∫
0

|µ(x)| dx. (3.15)

Therefore the stability of the sequence {In(f)} is guaranteed. Compare with Theorem 4.1 in
[2]. Now, the following error estimation can be easily obtained.

Corollary 3.3 Under the same assumptions as in Theorem 3.1, if conditions (3.4)-(3.5) both
hold, then

|I(f, µ)− In(f, µ)| ≤

2

∞∫
0

|µ(x)|
g(x)

dx+ ε̂n

Mn−1(f, g),

where {ε̂n}n≥0 ⊂ (0,∞) such that limn→∞ ε̂n = 0, and Mn(f, g) as given in Corollary 2.8.

Remark 3.4 Even more, taking into account Corollary 3.10 in [5], one can write

Mn(f, g) ≤ C1mp(n−1)(f̃0, h0,R+) + C2mq(n−1)(f∞, h∞,R+)

with f̃0(x) = f0(
1
x
) and where f0 and f∞ as given in the proof of Theorem 2.1. Here C1 = ‖1‖∞, h0

and C2 = ‖1‖∞, h∞ , with h2
0(t) = tρ̃

M(t)
and h2

∞(t) = tρ

Q(t)
.

We conclude this section giving an extension of the known Erdős-Turán theorem [12].

Theorem 3.5 Let Ln−1(f, ·) denote the L-polynomial in Ln−1 interpolating a function f at the
zeros {xjn}n

j=1 of the nth orthogonal L-polynomial for ω associated with {p(n)}n≥0. Then, if
(3.4) and (3.5) are both satisfied, it holds that

lim
n→∞

∞∫
0

|f(x)− Ln−1(f, x)|2ω(x) dx = 0 (3.16)

for any function f ∈ Cg(0,∞) with g2(x) = xρ−ρ̃

Q(x)M(1/x)
.
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PROOF. Let us consider the sequence of linear operators {Tn}∞1 between Banach spaces
defined by

Tn : Cg(0,∞) → L2(ω) : f 7→ Tn(f) = Ln−1(f, ·).

Then we have

(1) limn→∞ Tn(L) = L, L ∈ L.

(2) ‖Tn(f)‖2
2 =

∫∞
0 (Ln−1(f, x))

2ω(x) dx =
∑n

n=1 λjnL
2
n−1(f, xjn)

=
∑n

n=1 λjnf
2(xjn) =

∑n
n=1 λjnf

2(xjn)g2(xjn) 1
g2(xjn)

≤ (‖f‖g
∞)2 · IGT

n

(
1
g2 , ω

)
.

By virtue of Theorem 2.7,

lim
n→∞

IGT
n

(
1

g2
, ω

)
=

∞∫
0

ω(x)

g2(x)
dx <∞.

Hence, the sequence {Tn} is bounded. The proof now follows from the Banach-Steinhaus the-
orem [17], since L is dense in Cg(0,∞). �

Remark 3.6 A similar result to the one in Theorem 3.5 can be also produced for the class of
the continuous functions satisfying either (3.8) or (3.11) and when just one of the conditions
(3.4) or (3.5) holds.

Remark 3.7 Part (3.8) in Theorem 3.1 could also be obtained as a direct consequence of
Theorem 3.5. Indeed,

∣∣∣∣∣∣
∞∫
0

f(x)µ(x) dx−
n∑

j=1

Ajnf(xjn)

∣∣∣∣∣∣=
∣∣∣∣∣∣
∞∫
0

[f(x)− Ln−1(f, x)]µ(x) dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∫
0

[f(x)− Ln−1(f, x)]
√
ω(x)

µ(x)√
ω(x)

dx

∣∣∣∣∣∣
≤

 ∞∫
0

[f(x)− Ln−1(f, x)]
2ω(x) dx

1/2  ∞∫
0

|µ(x)|2

ω(x)
dx

1/2

.
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However, this is only valid for a more restrictive class of functions than the one given in
Theorem 3.1.

4 An Application to Two-Point Approximation

For a given L1-integrable function µ on (0,∞), its Stieltjes transform is defined as

Fµ(z) =

∞∫
0

µ(x)

z − x
dx, z 6∈ [0,∞). (4.1)

If we assume that

∞∫
0

xk |µ(x)| dx <∞,

for any integer k and we denote ck =
∫∞
0 xk µ(x) dx, then it is known that Fµ admits the

asymptotic expansions [16]

L0(z) = −
∞∑

j=0

c−(j+1)z
j and L∞(z) =

∞∑
j=1

cj−1z
−j (4.2)

around z = 0 and z = ∞, respectively.

The approximation of functions (4.1) (especially when µ is a weight function) by rational
functions using expansions (4.2) has been widely studied in the last decades. See e.g. [8,21,18].
In this section, we shall be concerned with certain rational approximants to Fµ closely related
to the quadrature rules analyzed in Section 3. Thus, let r and s be nonnegative integers and
assume that a quadrature rule In(f, µ) =

∑n
j=1Ajf(xj), (xj 6= 0) for the integral I(f, µ) =∫∞

0 f(x)µ(x) dx has been provided which is exact in Λ−r,s, i.e.,

In(L, µ) = I(L, µ), ∀L ∈ Λ−r,s.
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Set Fn(z) = In( 1
z−·) =

∑n
j=1

Aj

z−xj
. Then it is easily proved that

L0(z)− Fn(z) =
∞∑

j=r

c̃jz
j = O(zr), z → 0− ,

L∞(z)− Fn(z) =
∞∑

j=s+2

c∗jz
−j = O((1/z)s+2), z →∞− .

If r + s = n− 1, then the rational function Fn coincides with a so-called two-point Padé-type
approximant (2PTA) to the pair (4.2) or to Fµ of order r [10]. It will be denoted by

Fn(z) = (r/n)(L0,L∞)(z) = (r/n)Fµ(z), 0 ≤ r ≤ n− 1.

If r+ s = 2n− 1, then Fn coincides with the two-point Padé approximant (2PA) to Fµ of order
r. Clearly, if r = 0 (hence s = 2n− 1), we have

L∞(z)− Fn(z) = O((1/z)2n+1), z →∞−.

So, we see that in this case Fn coincides with the [n − 1/n]Fµ one-point Padé approximant at
infinity to Fµ.

Suppose now that we are dealing with a sequence {In(f, µ)}∞1 of quadrature rules so that for
each n, In(f, µ) =

∑n
j=1Ajnf(xjn) is of interpolatory type in Ln−1 with distinct nodes on (0,∞).

The aim of this section is to study the convergence of the sequence of 2PTA(r = p(n− 1), s =
q(n− 1))

Fn(z) = (p(n− 1)/n)Fµ(z) = In(
1

z − ·
, µ), n = 1, 2, . . . .

As in Section 3, the nodes {xjn}n
1 are to be chosen as the zeros of the nth orthogonal L-

polynomial with respect to an appropriate weight function ω and the ordering induced by the
sequence {p(n)}∞0 .

Theorem 4.1 Let µ be an L1-integrable function on (0,∞) and ω an auxiliary weight function
on (0,∞) satisfying

M =

∞∫
0

|µ(x)|2

ω(x)
< +∞ (4.3)
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and whose moments dk =
∫∞
0 xkω(x) dx exist for k ∈ Z. Let {p(n)}∞0 be a nondecreasing

sequence of nonnegative integers with 0 ≤ p(n) ≤ n and s(n) = p(n) − p(n − 1) ∈ {0, 1} and
assume that either

lim
n→∞

(n− p(n)) = lim
n→∞

q(n) = ∞ and
∞∑

j=1

d
− 1

2j

j = +∞ (4.4)

or

lim
n→∞

p(n) = ∞ and
∞∑

j=1

d
− 1

2j

−j = +∞. (4.5)

Consider the 2PTA (p(n−1)/n)Fµ with {xjn} the zeros of the nth orthogonal L-polynomial with
respect to ω associated with {p(n)}n≥0. Then {(p(n − 1)/n)Fµ}n≥1 converges uniformly to Fµ

on any compact set K ⊂ C \ [0,∞).

PROOF. Take z ∈ C \ [0,∞), then by Remark 3.7, it follows that

lim
n→∞

(p(n− 1)/n)Fµ
= lim

n→∞
In

(
1

z − ·
, µ
)

= I
(

1

z − ·
, µ
)

= Fµ(z).

Hence, pointwise convergence is assured. Let K be a compact subset in C \ [0,∞). Then for
any z ∈ K

∣∣∣(p(n− 1)/n)Fµ
(z)
∣∣∣ =

∣∣∣∣∣∣
n∑

j=1

Ajn

z − xjn

∣∣∣∣∣∣ ≤
n∑

j=1

|Ajn|
|z − xjn|

≤ 1

dist(K, [0,∞))

n∑
j=1

|Ajn|.

From (3.15) we conclude that {(p(n− 1)/n)Fµ(z)}n≥1 is a normal family in C \ [0,∞) and the
proof is a consequence of the Stieltjes-Vitali Theorem [15]. �

Set En(z) = Fµ(z) − (p(n − 1)/n)Fµ(z), z 6∈ [0,∞). Now, making use of Corollary 3.3, we can
deduce the following result that provides with an estimation for En(z).

Corollary 4.2 Under the same assumptions as in Theorem 4.1 and taking z ∈ C r R+, one
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has

(1) If we assume (4.4), then

|En(z)| ≤

2

∞∫
0

|µ(x)|
h̃0(x)

dx+ ε̃n

mp(n−1)(
t

zt− 1
, h0,R+),

with h̃0(t) = h0(
1
t
) and where h2

0(t) = tρ̃

M(t)
and {ε̃n}n≥1 ⊂ (0,∞) such that limn→∞ ε̃n = 0.

(2) If we assume (4.5), then

|En(z)| ≤

2

∞∫
0

|µ(x)|
h∞(x)

dx+ εn

mq(n−1)(
1

z − t
, h∞,R+),

where h2
∞(t) = tρ

Q(t)
and {εn}≥1 ⊂ (0,∞) such that limn→∞ εn = 0.

(3) If we assume (4.4)-(4.5), then

|En(z)| ≤
(
2
∫∞
0

|µ(x)|
h̃0(x)h∞(x)

dx+ νn

) (
C1mp(n−1)(

t
zt−1

, h0,R+) + C2mq(n−1)(
1

z−t
, h∞,R+)

)
,

where C1 = ‖1‖∞,h0 , C2 = ‖1‖∞,h∞, h̃0(t) = h0(
1
t
) where h2

0(t) = tρ̃

M(t)
, h2

∞(t) = tρ

Q(t)
and

{νn}≥1 ⊂ (0,∞) such that limn→∞ νn = 0.

Conversely, the following expression will be used later on to give an upper bound for the error
of the nth interpolatory rule In(f, µ) for an analytic integrand, in terms of the error for 2PTA.

Lemma 4.3 Let {Vn}∞1 be a sequence of orthonormal L-polynomials with respect to a weight
function ω and the ordering induced by {p(n)}n≥0. Let In(f, µ) =

∑n
j=1Ajnf(xjn) be the inter-

polatory rule in Ln−1 whose nodes are the zeros of Vn. Then, for z ∈ C\R+

En(z) = Fµ(z)− In(
1

z − ·
, µ) =

1

zs(n)Vn(z)

∞∫
0

xs(n)Vn(x)

z − x
µ(x) dx, (4.6)

where s(n) = p(n)− p(n− 1).

PROOF. Let Rn(z, x) be the L-polynomial in Ln−1 interpolating 1/(z−x) (z is a parameter)
at the above nodes. So,

(p(n− 1)/n)Fµ(z) = In(
1

z − ·
, µ) =

∞∫
0

Rn(z, x)µ(x) dx.
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On the other hand, it can be easily checked that

Rn(z, x) =
1

z − x

(
1−

(
x

z

)s(n) Vn(x)

Vn(z)

)
.

Now, the proof follows directly. �

Remark 4.4 Actually, (4.6) is valid for any L-polynomial Vn of the form Vn(x) = γn

∏n

j=1
(x−xjn)

xp(n) ,
γn 6= 0, xjn 6= 0, xjn 6= xk,n if j 6= k.

From this lemma, we can deduce the following error bound.

Theorem 4.5 Assume that µ and ω satisfy (4.3) and set δ(z) = dist(z, [0,∞)), z 6∈ [0,∞).
Then

|En(z)| = |Fµ(z)− (p(n− 1)/n)Fµ(z)| ≤
(

1 +
1

|z|

)
M1/2

δ(z)|Vn(z)|
. (4.7)

PROOF. Recall that s(n) = p(n) − p(n − 1) ∈ {0, 1}. Assume first s(n) = 0. Then by (4.6),
for z 6∈ [0,∞),

|En(z)|= 1

|Vn(z)|

∣∣∣∣∣∣
∞∫
0

Vn(x)

z − x
µ(x) dx

∣∣∣∣∣∣ ≤ 1

|Vn(z)|

∞∫
0

∣∣∣∣∣Vn(x)

z − x

∣∣∣∣∣ |µ(x)| dx

≤ 1

δ(z)|Vn(z)|

∞∫
0

|Vn(x)| |µ(x)|√
ω(x)

√
ω(x) dx

≤ 1

δ(z)|Vn(z)|

 ∞∫
0

V 2
n (x)ω(x) dx

1/2 ∞∫
0

|µ(x)|2

ω(x)
dx

1/2

≤ M1/2

δ(z)|Vn(z)|

≤
(

1 +
1

|z|

)
M1/2

δ(z)|Vn(z)|

Suppose now that s(n) = 1. Again by (4.6) for z 6∈ [0,∞),

En(z) =
1

zVn(z)

∞∫
0

xVn(x)

z − x
µ(x) dx =

1

zVn(z)

 ∞∫
0

zVn(x)

z − x
µ(x) dx−

∞∫
0

Vn(x)µ(x) dx

 .
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Proceeding as above it results in the same expression (4.7). �

Finally, from Theorem 4.5 and the Cauchy and Fubini Theorems, the following upper bound
for the error in In(f) can be found.

Theorem 4.6 Consider the same conditions as in Theorem 4.5 and let In(f, µ) =
∑n

j=1Ajnf(xjn)
be the n-point interpolatory rule in Ln−1 whose nodes are the zeros of Vn, the nth orthogonal
L-polynomial for ω associated with {p(n)}n≥0. Let f be an analytic function in a simply connec-
ted domain G which contains the half line in its interior and whose boundary Γ is a rectifiable
Jordan curve. Then

|I(f, µ)− In(f, µ)| ≤ C(f,Γ)M1/2

infz∈Γ |Vn(z)|
(4.8)

C(f,Γ) being a positive constant depending on f and Γ.

Remark 4.7 This result was earlier proved by the authors for another choice of the nodes. See
Theorem 5.1 in [3].

5 Numerical Examples

Interpolatory quadrature rules exactly integrating L-polynomials have been already considered
by the authors in a series of previous papers([2–6,9]). However, until this moment no numerical
experiment had been worked out. Thus, the aim of this Section is to numerically illustrate the
efficacy of those quadratures rules denoted by L-formulas as opposed to the usual polynomial
quadratures. Furthermore, a comparison between the interpolatory L-formulas and the Gauss-
type L-formulas will be also made. As partially indicated in Section 1, the integrand f in
(1.1) exhibits two essential features, on one hand, the existence of possible singularities at the
origin and/or infinity (as it is well known this behavior is extremely hard to be “reproduced”
by polynomials) and on the other hand, an oscillating character that is highly difficult to be
“simulated” by means of the L-polynomial interpolation. We will try to avoid this last drawback
by putting such oscillations into the weight µ.

For our purposes we shall restrict ourselves to integrals (1.1) of the form

I(f, µ) =

∞∫
0

f(x)µ(x) dx =

∞∫
0

f(x)xθe−(αx+β
x
) dx (5.1)
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where θ ∈ R, and α, β ∈ C such that <(α),<(β) > 0. Here f is an improperly Riemann-Stieltjes

real integrable function with respect to xθe−(αx+β
x
)

In order to compute (5.1) we can restrict, without loss of generality to calculate integrals like

∞∫
0

f(x)

 sin(bx)

cos(bx)

 xθ e−(ax+ c
x
) dx and

∞∫
0

f(x)

 sin( d
x
)

cos( d
x
)

 xθ e−(ax+ c
x
) dx

where α = a+ bi and β = c+ di.

Thus, we see that complex arithmetic is not any more required. We will concentrate on the
situation

∞∫
0

f(x) sin(
1

x
)
e−

1
2
(x+ 1

x
)

√
x

dx, (5.2)

where we have taken a = c = 1
2
, b = 0 and d = 1.

As a first strategy to estimate (5.2) we will use the classical Gaussian formulas,

I. Gauss-Laguerre quadrature formulas

Since (5.2) can be rewritten as,

I(f, µ) = J(g) =

∞∫
0

g(x)
e−

x
2

√
x

dx

where g(t) = f(t) sin(1
t
)e−

1
2t we can make use of the Gauss-Laguerre quadrature formula asso-

ciated with the weight function e−
t
2√
t
, denoted by

Jn(g) =
n∑

j=1

ljn g(tjn).

Here {ljn} and {tjn} are the weights and nodes corresponding to e−
t
2√
t

that have been extensively
studied.

On the other hand, as an alternative approach, we will make use of the
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II. L-quadrature formulas.

Here, two strategies will be considered. First, by writing (5.2) as

I(f, µ) = M(h) =

∞∫
0

h(t)
e−

1
2
(x+ 1

x
)

√
x

dx,

where h(t) = f(t) sin(1
t
), one can use Gauss-type L-formulas IGT

n (h) introduced in Section 2,
which are denoted by

IGT
n (h) =

n∑
j=1

λjn h(xjn),

{λjn} and {xjn} being the corresponding L-weight and L-nodes associated with e−
1
2 (t+1

t )
√

t
with

respect to the “ordering” induced by the sequence {p(n)}n∈N which throughout this Section,
will be taken as p(n) = [n+1

2
].

Secondly, we will directly consider (5.2) and use as an estimation for this integral, the interpol-
atory L-formulas In(f) given by

In(f) =
n∑

j=1

Ajn f(zjn),

where {zjn} are the zeros of the nth orthogonal L-polynomial with respect to the weight e−(t+1
t )

√
t

.

It should be observed that according to Theorem 3.1, now µ(t) = sin(1
t
) e−

1
2 (t+1

t )
√

t
and ω(t) =

e−(t+1
t )

√
t

. Hence, condition (3.3) i.e.

∞∫
0

|µ(x)|2

ω(x)
dx < +∞,

is clearly satisfied.

Now, to compute the weights Ajn one needs the “moments” of µ. Therefore we will start from
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the integrals

µn =

∞∫
0

xnxθ e−(αx+β
x
) dx, n ∈ Z.

with θ ∈ R, α, β ∈ C such that <(α),<(β) > 0. Integrating by part, one obtains

µn+2 =
n+ 2 + θ

α
µn+1 +

β

α
µn, n ∈ Z.

Hence, when making α = 1
2
, β = 1

2
+ i, θ = −1

2
and taking real and imaginary parts, it follows

c
(1)
n+2 − (2n+ 3)c

(1)
n+1 − c(1)n + 2c(2)n = 0

c
(2)
n+2 − (2n+ 3)c

(2)
n+1 − 2c(1)n − c(2)n = 0,

, n ∈ Z

where c(1)
n =

∫∞
0 xn cos( 1

x
) e−

1
2 (x+ 1

x )
√

x
dx and c(2)

n =
∫∞
0 xn sin( 1

x
) e−

1
2 (x+ 1

x )
√

x
dx, n ∈ Z. Thus, one

only needs to compute c
(1)
0 , c

(1)
1 , c

(2)
0 and c

(2)
1 .

As for the computation of the L-Gaussian weights {λjn} and the L-nodes {xjn} and {zjn} the
effort to be made is rather small since the weight functions we are dealing with belong to the
family,

ω(t) =
e−

1
2
(x+ a

x
)

√
x

, a > 0, t ∈ (0,∞),

which have been studied by Ranga [21].

Actually, both families of L-nodes {xjn} and {zjn} , n = 1, 2, . . . can be easily expressed in
terms of the nodes {tjn} i.e. in terms of the zeros of the Laguerre polynomials of the order −1/2.
Furthermore, the L-weights {λjn} can be also represented by means of the Christoffel-Laguerre
numbers {ljn} of order −1/2. For details see [21,14]. In short, the extra computational effort
to be made reduces to the calculation of the weight {Ajn}n

j=1.
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Numerical experiments have been carried out for the following integrands f ,

i fi(t)

1 exp[ 1
4t

]

2
√

1 + t

3 log[0.001 + t]

4 log[1 + 8t2]

5 log[
√
t+ 1√

t
]

In the next tables, the corresponding absolute errors for the different quadratures are exposed.
They are respectively denoted by EJn(gi) = J(gi) − Jn(gi), E

GT
n (hi) = M(hi) − IGT

n (hi) and
En(f) = I(fi)− In(fi) (recall that J(gi) = M(hi) = I(fi), i = 1, 2, . . . , 5).

As usual n denotes the number of nodes used in the quadrature.

Table 1. Absolute errors for f1(t) = e−
1
4t

n EJn(g1) EIGT
n (h1) EIn(f1)

2 0.82E − 0 0.11E − 0 0.10E − 1

4 0.66E − 0 0.14E − 0 0.79E − 3

6 0.68E − 0 0.24E − 1 0.17E − 3

8 0.13E − 1 0.40E − 1 0.88E − 4

10 0.14E − 0 0.18E − 0 0.18E − 4

12 0.22E − 1 0.14E − 1 0.37E − 7

14 0.71E − 1 0.36E − 2 0.13E − 5

16 0.18E − 0 0.41E − 2 0.43E − 6

18 0.19E − 0 0.24E − 2 0.48E − 7

20 0.15E − 0 0.10E − 2 0.18E − 7
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Table 2. Absolute errors for f2(t) =
√

1 + t

n EJn(g2) EIGT
n (h2) EIn(f2)

2 0.44E − 0 0.15E − 0 0.21E − 1

4 0.52E − 0 0.22E − 1 0.16E − 2

6 0.34E − 0 0.20E − 1 0.19E − 3

8 0.49E − 1 0.25E − 2 0.96E − 4

10 0.40E − 1 0.33E − 2 0.29E − 4

12 0.70E − 1 0.37E − 3 0.34E − 6

14 0.98E − 1 0.63E − 3 0.32E − 5

16 0.11E − 0 0.66E − 4 0.19E − 5

18 0.10E − 0 0.13E − 3 0.34E − 6

20 0.87E − 1 0.12E − 4 0.16E − 6

Table 3. Absolute errors for f3(t) = log[0.001 + t]

n EJn(g3) EIGT
n (h3) EIn(f3)

2 0.57E − 0 0.64E − 1 0.49E − 1

4 0.21E − 0 0.36E − 1 0.46E − 2

6 0.31E − 0 0.16E − 1 0.87E − 3

8 0.53E − 1 0.55E − 2 0.53E − 3

10 0.77E − 2 0.34E − 2 0.16E − 3

12 0.88E − 2 0.99E − 3 0.20E − 5

14 0.34E − 1 0.74E − 3 0.22E − 4

16 0.73E − 1 0.19E − 3 0.13E − 4

18 0.89E − 1 0.16E − 3 0.24E − 5

20 0.93E − 1 0.40E − 4 0.13E − 5
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Table 4. Absolute errors for f4(t) = log[1 + 8t2]

n EJn(g4) EIGT
n (h4) EIn(f4)

2 0.92E − 2 0.14E − 1 0.11E − 0

4 0.59E − 0 0.83E − 1 0.11E − 1

6 0.22E − 0 0.29E − 1 0.24E − 2

8 0.90E − 2 0.12E − 1 0.15E − 2

10 0.93E − 1 0.62E − 2 0.43E − 3

12 0.12E − 0 0.21E − 2 0.59E − 6

14 0.11E − 0 0.14E − 2 0.56E − 4

16 0.86E − 1 0.41E − 3 0.28E − 4

18 0.58E − 1 0.31E − 3 0.43E − 5

20 0.32E − 1 0.83E − 4 0.22E − 5

Table 5. Absolute errors for f5(t) = Log[
√
t+ 1√

t
]

n EJn(g5) EIGT
n (h5) EIn(f5)

2 0.33E − 0 0.20E − 0 0.75E − 2

4 0.30E − 0 0.45E − 1 0.87E − 3

6 0.24E − 0 0.56E − 2 0.62E − 4

8 0.30E − 1 0.99E − 4 0.26E − 4

10 0.21E − 1 0.12E − 3 0.10E − 4

12 0.30E − 1 0.65E − 4 0.32E − 6

14 0.53E − 1 0.31E − 4 0.54E − 6

16 0.69E − 1 0.30E − 4 0.45E − 6

18 0.71E − 1 0.93E − 5 0.77E − 7

20 0.65E − 1 0.29E − 5 0.14E − 7
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As it could be expected, one can see from the previous tables that the presence of singularities
at the origin and/or the infinity along with the oscillations generated by sin( 1

x
) makes the

convergence of the classical Gauss-Laguerre rule extremely slow. As for the Gauss-type L-
quadrature, the presence of an oscillating factor in the integrand make the results not to be
so good as those given in [4](see also [9]). Fortunately, these drawbacks could be overcome by
using the interpolatory L-quadrature.
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