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Abstract

We provide a fast algorithm to compute arbitrarily many nodes and weights for rational Gauss-
Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary
complex poles outside [−1, 1]. This algorithm is based on the derivation of explicit expressions
for the Chebyshev (para-) orthogonal rational functions.
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1 Introduction

A class of Gaussian quadrature formulas on [−1, 1], based on orthogonal rational functions, and their
fast and efficient computation, has been dealt with in [2]. These formulas are rational generalisations
of the Gauss-Chebyshev formulas and are exact in a maximal space of rational functions with arbitrary
but prefixed real poles outside [−1, 1]. In contrast with most existing rational quadrature formulas, the
computational effort of the algorithm in computing the nodes and weights for the Gauss-Chebyshev
quadrature formulas is very low, and under certain conditions on the poles the complexity can be
shown to be of order O (n).

Furthermore, in [1] the expressions of the nodes and weights for the Gauss-Cheby-shev quadrature
formulas, as well as the theorem on the asymptotic distribution of the nodes, are extended to the case
of complex poles, arbitrary but fixed outside [−1, 1]. The main purpose of this paper is to extend
the algorithm in [2] to this case. In Section 2 we resume the most important formulas and theorems
from [1, 2]. Then, because the nonlinear equation defining the nodes cannot be solved analytically,
we perform in Section 3 a thorough analysis of this equation based on the distribution of the poles
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optimal conditioning and stable algorithms”, grant #G.0423.05 and the Belgian Programme on Interuniversity Poles of
Attraction, initiated by the Belgian State, Prime Minister’s Office for Science, Technology and Culture. The scientific
responsibility rests with the authors.
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in the complex plane. Afterwards, in Section 4, we discuss some numerical methods to compute the
nodes. Once the nodes are known, the computation of the weights is straightforward, so we will not
discuss this in detail. Finally in Section 5 we conclude the paper with some numerical examples.

2 Preliminaries

The field of complex numbers will be denoted by C and the Riemann sphere by C = C ∪ {∞}. For
the real line we use the symbol R and for the extended real line R = R ∪ {∞}. The unit circle and
the open unit disc are denoted respectively by T = {z : |z| = 1} and D = {z : |z| < 1}. The
complement of the interval I = [−1, 1] with respect to a set X will be given by X I , e.g. C

I
= C \ I .

Furthermore, if b = bac with a ∈ R, then b is the largest integer so that b ≤ a.

Suppose a sequence of poles A = {α1, α2, . . .} ⊂ C
I

is given and define the factors

Zk(x) =
x

1 − x/αk

, k = 1, 2, . . . (1)

and the basis functions

b0 = 1, bk(x) = bk−1(x)Zk(x), k = 1, 2, . . . . (2)

Then the space of rational functions with poles in A is defined as Ln = span{b0, . . . ,
bn}. In the special case of all αk = ∞, the expression in (1) becomes Zk(x) = x and the expression
in (2) becomes bk(x) = xk. Let Pn denote the space of polynomials of degree less than or equal to n
and define πn(x) =

∏n
k=1(1 − x/αk), then we may write equivalently Ln = {pn/πn, pn ∈ Pn}.

We denote the Joukowski Transformation x = 1
2
(z+z−1) by x = J(z), mapping the open unit disc

D onto the cut Riemann sphere C
I

and the unit circle T onto the interval I . The inverse mapping is
denoted by z = J−1(x) and is chosen so that z ∈ D if x ∈ C

I
. With the sequence A = {α1, α2, . . .} ⊂

C
I

we associate a sequence B = {β1, β2, . . .} ⊂ D so that βk = J−1(αk).
Given this sequence of complex numbers B = {β1, β2, . . .} ⊂ D, we define the Blaschke factors

ζk(z) =
z − βk

1 − βkz
, k = 1, 2, . . .

and the Blaschke products

B0 = 1, Bk(z) = Bk−1(z)ζk(z), k = 1, 2, . . . .

We define the inner product of two functions f(x) and g(x) as

〈f, g〉w =

∫ 1

−1

f(x)g(x)w(x)dx,

where the weight function w(x) can be one of

w(x) =





(1 − x2)
−1/2

, i = 1(
1−x
1+x

)1/2
, i = 2

(1 − x2)
1/2

, i = 3

. (3)
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Whenever we want to refer to one of these specific weights, we shall use the index i that is mentioned
in the corresponding notation.

We define the involution operation or substar conjugate of a function f(z) as

f∗(z) = f(z)

and the superstar transformation as

f ∗(z) =
bn(z)

bn∗(z)
f∗(z).

Note that the factor bn(z)
bn∗(z)

merely replaces the poles {αk}n
k=1 of f∗(z) by the poles {αk}n

k=1 so that
L∗

n = Ln. Furthermore, we define the para-orthogonal rational functions Qn(x, τ) with respect to the
orthogonal rational function (ORF) ϕn(x) as

Qn(x, τ) = ϕn(x) + τϕ∗
n(x), τ ∈ T, n ≥ 1.

The use of these para-orthogonal rational functions lies in the fact that their zeros are simple and real
and can be used as nodes in the quadrature formulas. The quadrature formulas follow from the next
theorem.

Theorem 2.1. Assume that the para-orthogonal rational function Qn(x, τ) = qn(x,τ)
πn(x)

is regular, i.e.
none of the zeros xnk(τ) of qn(x, τ) coincides with any of the poles. Define

λnk =

(
n−1∑

j=0

[
ϕj (xnk(τ)) ϕj (xnk(τ))

])−1

.

Then the quadrature formula

∫ 1

−1

w(x)f(x)dx ≈
n∑

k=1

λnkf (xnk(τ))

is exact for f ∈ Ln−1 · Ln−1∗. In the special case in which αn is real, this quadrature formula is exact
for f ∈ Ln · Ln−1∗ (see [3, p. 490]).

The expression for the Chebyshev ORF ϕn(x) related to the ith weight in (3), as well as expressions
for the computation of the nodes and weights in the quadrature formula are given in the next theorem.
For the proof we refer to [1].

Theorem 2.2. Let x = J(z) ∈ C and αk = J (βk) ∈ C
I
. Suppose we define the numbers c, d, p and

q for i = 1, 2, 3 according to Table 1. Then the orthonormal rational functions ϕn(x) related to the
ith weight in (3), with n ≥ 1 are given by

ϕn(x) =

√
2i

π

√
1 − |βn|2

q

2zi−1 + q − 3

(
ziBn−1∗(z)

1 − βnz
− q

(z − βn) Bn−1(z)

)
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and for n = 0 by

ϕ0 =

√
p

π
.

Furthermore, the nodes xnk(τ) = cos θnk(τ) ∈ [−1, 1] of the rational Gauss-Chebyshev quadra-
ture formula are the zeros of the para-orthogonal rational function Qn(x, τ). They satisfy

Fn (θnk(τ)) = πk − d
π

2
, k = 1, 2, . . . , n, (4)

where

Fn(θ) =
n−1∑

j=1

fβj
(θ) +

1

2
fβn,τ

(θ) − (n − c) θ,

fβ(θ) = arctan
sin θ −=(β)

cos θ −<(β)
+ arctan

sin θ + =(β)

cos θ −<(β)

and

βn,τ =
βn + τβn

1 + τ

supposing τ ∈ T \ {−1} is chosen so that βn,τ ∈] − 1, 1[.
Finally, the weights λnk(τ) of the rational Gauss-Chebyshev quadrature formula are given by

λnk(τ) = 2π
1 − (1 − d)[xnk(τ)]i−1

i + gn(xnk(τ))
, k = 1, 2, . . . , n,

where

gn(x) =
n−1∑

j=1

{
P (z, βj) + P (z, βj)

}
+ P (z, βn,τ ),

P (z, β) =
1 − |β|2
|z − β|2 and x = J(z).

Note that for all poles equal to infinity, ϕn(x) becomes the Chebyshev polynomial of the first
(respectively second) kind for i = 1 (respectively i = 3). Furthermore, we have in this case that
Ln = Pn and Ln · Ln−1 = P2n−1.

The distribution of the points xnk(τ) as n → ∞ depends on the asymptotic distribution of the
poles, as shown below.

i c d p q
1 1 1 1 −1
2 3/2 0 1 1
3 2 0 2 1

Table 1: Definition of c, d, p and q in function of i.
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Theorem 2.3. Assume that the sequence of poles A = {α1, α2, . . .} is bounded away from I and
that the asymptotic distribution of the poles is given by a measure ν on (a subset of) C

I
, i.e. for any

continuous function f with compact support,

lim
n→∞

1

n

n∑

k=1

f(αk) =

∫
f(z)dν(z).

If ν = pδ∞ + (1 − p)ν0 with 0 ≤ p ≤ 1 (where δz is the unit measure whose support is the point z)
and ∫

log |t|dν0(t) < ∞,

then the asymptotic distribution of the zeros of Qn(x, τ) is given by an absolutely continuous measure
λ with weight function

λ′(x) =
1

π

1√
1 − x2

∫
<
{√

t2 − 1

t − x

}
dν(t)

where the square root is positive for t > 1 and the branch cut is [−1, 1] (see [1, p. 11–13]).

In general, Equation (4) cannot be solved analytically. Assume for the remainder of this section
that A = {α1, α2, . . .} ⊂ R

I
(and thus B = {β1, β2, . . .} ⊂ I , and the nodes and weights independent

of τ ). Then it is possible, however, to numerically calculate the nodes in the quadrature formulas
using Newton’s method. In this respect, the following properties are particularly interesting (see [2,
p. 316]).

Lemma 2.4. Suppose A = {α1, α2, . . .} ⊂ R
I
. Then the functions Fn(θ) from Theorem 2.2, with c

given by Table 1, are strictly increasing for 0 ≤ θ ≤ π. If all poles have equal sign, these functions
are concave (positive poles) or convex (negative poles) on ]0, π[. In general there can be only one
interior inflection point.

Newton’s method for finding zeros works particularly well for monotonic functions, especially
if the initial values are not too far from the exact solutions. We discuss two different methods for
determining these initial values.

The first method is based on linear extrapolation (LE). Let {θnk}n
k=1 denote the n exact zeros, then

the initial values can be determined using one of the following equations

θ
(0)
n,k+1 = θn,k + (θn,k − θn,k−1) , θ

(0)
n,1 = θn,0 = 0 (5)

or
θ

(0)
n,n−k = θn,n−k+1 + (θn,n−k+1 − θn,n−k+2) , θ(0)

n,n = θn,n+1 = π (6)

for k = 1, 2, . . . , n − 1.

The advantage of LE is that it can be used for any sequence of arbitrary poles {αk}n
k=1 ⊂ R

I
. The

disadvantage, however, is that the initial values cannot be determined all at the same time.
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The second method for determining the initial values is based on the asymptotic zero distribution
(AZD). First we assume that the poles tend to a fixed limit with increasing n, i.e. limn→∞ αn = α, so
that the zero distribution is given by a measure λ whose derivative is equal to

λ′(x) =
1

π

1√
1 − x2

√
1 − 1/α2

1 − x/α
.

The zero density on the interval [−1, x] equals

t(x) =

∫ x

−1

λ′(u)du =
1

π
arcsin

αx − 1

α − x
+

1

2
.

Solving for x gives

x =
1 − α cos (πt)

α − cos (πt)
, t ∈ [0, 1] , (7)

so if we evaluate this in n equidistant points

tnk =
2k − 1

2n
∈ [0, 1] , k = 1, 2, . . . , n, (8)

then we get an estimation for the zeros xnk.

For a more general case of a finite number of arbitrary poles {αk}n
k=1 ⊂ R

I
for which the distribu-

tion is not known, we can use the cubic interpolating spline s(t) through the points (tn (ξk) , arccos ξk),
with

tn(x) =
1

nπ

n∑

j=1

arcsin
αjx − 1

αj − x
+

1

2
(9)

and with

ξk = cos

(
π

2k − 1

2m

)
, k = 1, 2, . . . ,m, (10)

the zeros of the Chebyshev polynomial Tm(x) for a suitable value of m. Note that the spline is an
approximation for the inverse of (9) and that (9) converges pointwise to t(x) for n → ∞. The initial
values for the zeros θnk are then given by

θ
(0)
nk = s (tnk) (11)

with tnk the points from Equation (8).
The advantage of AZD is that all the initial values can be computed at the same time using vector

or matrix operations (depending on whether the sequence contains all equal poles). Of course the
estimates will be better for larger n because the method is based on the asymptotic behaviour of the
poles.

3 Analysis of the equation for the nodes in the case of complex
poles

As mentioned in Section 2, Equation (4) cannot be solved analytically, so the nodes have to be com-
puted numerically using an iterative method. An analysis of the equation for the nodes has been done
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in the case of all real poles in Lemma 2.4. The equation had some properties that justified the use of
Newton’s method in computing the nodes. In this section we will perform a thorough analysis of this
equation in the case of complex poles, to investigate whether these properties still hold.

The first property of Lemma 2.4 concerns the first derivative of Fn(θ) with respect to θ. It says that
these functions are strictly increasing for 0 ≤ θ ≤ π. We will prove in the following lemma that this
property holds in general for complex poles.

Lemma 3.1. The functions Fn(θ) are strictly increasing for 0 ≤ θ ≤ π.

Proof. Define K,L and M as

K = 1 −<(β) cos θ, L = 1 − 2<(β) cos θ + |β|2 and M = =(β) sin θ.

Then we have that

dfβ(θ)

dθ
=

2

L

(
K +

2M2(2K − L)

L2 − 4M2

)
(12)

≥ 2K

L
=

2

1 + |β|2−<(β) cos θ
1−<(β) cos θ

> 1,

where the first inequality follows from the fact that 2K − L = 1 − |β|2 > 0 and that L2 − 4M2 is
strictly positive on ]0, π[. So we have that dFn(θ)

dθ
> c − 1/2 > 0, which proves the statement.

The second property of Lemma 2.4 concerns the second derivative of Fn(θ) with respect to θ, stat-
ing that if all poles have equal sign, these functions are concave (positive poles) or convex (negative
poles) on ]0, π[. As will be proven in the next lemma, this property cannot be extended to the entire
complex plane when simply divided into two parts, but it can be extended to a part of the complex
plane.

Lemma 3.2. Suppose that all the poles satisfy the condition given by

|=(β)| ≤
√

|<(β)|
4 − |<(β)|(1 − |<(β)|) (13)

(see Figure 1). If the real parts of all the poles have equal sign, then the functions Fn(θ) are concave
(positive real part) or convex (negative real part) on ]0, π[.

Proof. First note that d2fβ(θ)

dθ2 = 2 sin(θ)f̃(θ) with

f̃(θ) = (|β|2 − 1)×
4<(β)|β|2 cos2(θ) − 4|β|2(1 + |β|2) cos(θ) + <(β)[(1 + |β|2)2 + 4=(β)2]

(L2 − 4M2)2
,
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Figure 1: Partition of D (figure on the left), respectively the complex plane (figure on the right).
Condition (13) holds for poles inside the red curve (figure on the left), respectively outside of the red
curve (figure on the right). Furthermore, the poles within the areas marked with an ’x’ and an ’o’
satisfy condition (17), while the poles within the areas marked with a ’+’ satisfy condition (16).

and L and M as in Lemma 3.1. The denominator of f̃(θ) is strictly positive on ]0, π[. If β = 0, then
the numerator equals zero. If on the other hand β 6= 0, then the zeros of the numerator are given by

cos(θ) =





sign(<(β))

[
1+|β|2

2|<(β)|
±
√

“

1+|β|2

2<(β)

”2
−1

(<(β)
=(β))

2
+1

]
, <(β) 6= 0

0 , <(β) = 0

. (14)

Note that 1 + |β|2 > 2|<(β)| so that the numerator has no zeros iff (14) has no solution for θ ∈]0, π[,
which means that

Θ(β) :=
1 + |β|2
2|<(β)| −

√√√√√√

(
1+|β|2

2<(β)

)2

− 1
(

<(β)
=(β)

)2

+ 1
≥ 1. (15)

Some computations lead to the condition given by (13). Under this condition we get that sign(f̃(θ)) =
− sign(<(β)) on ]0, π[, which ends the proof.

Finally the third property of Lemma 2.4 concerns the second derivative of Fn(θ) with respect to θ
again, stating that there can be only one interior inflection point. As before, this property cannot be
extended to the entire complex plane, but it can be extended to a part of it, as will be proven in the
next lemma.

Lemma 3.3. If all the poles satisfy the condition given by

=(β)6 − {14 + 8|<(β)| − <(β)2}=(β)4 + {(1 + |<(β)|)2(1 − 10|<(β)| − <(β)2)}=(β)2

− {<(β)2(1 + |<(β)|)4} ≥ 0, (16)
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or if they all satisfy the condition given by (13) together with

=(β)6 − {14 − 8|<(β)| − <(β)2}=(β)4 + {(1 − |<(β)|)2(1 + 10|<(β)| − <(β)2)}=(β)2

− {<(β)2(1 − |<(β)|)4} ≤ 0 (17)

(see Figure 1), then there can be only one inflection point θb ∈]0, π[. Furthermore, dFn(θ)
dθ

reaches a
maximum (respectively minimum) for θ = θb in the case that condition (16) (respectively the condi-
tions (13) and (17)) is (are) satisfied .

Proof. Differentiating f̃(θ) with respect to θ gives us

df̃(θ)

dθ
= u(θ)v(θ),

with

u(θ) =
4(1 − |β|2) sin θ

(L2 − 4M2)3
, v(θ) = −d3 cos3(θ) + d2 cos2(θ) − d1 cos(θ) + d0,

d3 = 8<(β)|β|4, d2 = 12|β|4(1 + |β|2), d1 = 6<(β)|β|2[(1 + |β|2)2 + 4=(β)2],

and d0 = (1 + |β|2)[(<(β)2 −=(β)2)(1 + |β|4) + 6|β|4 − 4(<(β)4 + =(β)4)].

Note that u(θ) > 0 for θ ∈]0, π[, that d2 ≥ 0, that sign(d3) = sign(d1) = sign(<(β)) and that v(θ)
has a global minimum in cos(θ) = sign(<(β))Θ(β) if Θ(β) ≤ 1. Evaluating v(θ) in θ = 0 and θ = π
gives us

v(0) = −d3 + d2 − d1 + d0 = s0(β)t0(β) and v(π) = d3 + d2 + d1 + d0 = sπ(β)tπ(β),

where
s0(β) = −(=2(β) + (1 −<(β))2), sπ(β) = −(=2(β) + (1 + <(β))2),

and t0(β) (respectively tπ(β)) is given by the left part of (17) (respectively (16)) omitting the absolute
values. If f̃(θ) decreases with increasing θ ∈]0, π[ for every pole in the sequence, then there can be
at most one interior inflection point in which dFn(θ)

dθ
reaches a maximum. This will be the case if v(0)

and v(π) are both negative (see the areas marked with a ’+’ on Figure 1), which is equivalent with
the condition given by (16). If, on the other hand, f̃(θ) increases with increasing θ ∈]0, π[ for every
pole in the sequence, then there can be only one interior inflection point in which dFn(θ)

dθ
reaches a

minimum. This will certainly be the case if v(0) and v(π) are both positive and Θ(β) ≥ 1 for every
pole in the sequence (see the areas marked with an ’x’ on Figure 1), which is equivalent with the
conditions given by (13) and (17).

Remark 3.4. If v(0) and v(π) are both positive and θb = arccos(sign(<(β))Θ(β)) ∈]0, π[ with
v(θb) ≥ 0, then f̃(θ) will increase with increasing θ ∈]0, π[ so that there can be only one interior
inflection point in which dFn(θ)

dθ
reaches a minimum. Although there is no analytical proof at the mo-

ment of writing, extensive observations confirm that v(θb) < 0 for every β ∈ D not satisfying the
condition given by (13). From here on we will assume that this hypothesis is correct.
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Remark 3.5. If the sequence of poles does not satisfy any of the conditions mentioned in Lemma 3.2
and 3.3, then there can be more than one interior inflection point. Based on many tests, the maximum
number of interior inflection points found was 2n − 3 (n ≥ 2), for a sequence of poles containing
n− 2 poles among the first n− 1 poles in the areas marked with an ’o’, all having different real parts,
and two real poles with different sign close to one in absolute value. One can indeed expect that the
shape of Fn(θ) becomes worse when the poles are closer to the boundary [−1, 1]. In the remainder of
the text, we will assume that this kind of distribution of the poles is the worst situation possible.

Based on the previous remark, we will investigate the behaviour of Fn(θ) if one or more poles in
the sequence tends to a value in [−1, 1] .

Lemma 3.6. Consider a finite sequence of n poles and suppose that we let one of the poles αk

in the sequence tend to a value α ∈ [−1, 1]. Then dFn(θ)
dθ

has a local maximum in θ = θbk
and

limαk→α θbk
= arccos(α).

Proof. First note that

L2 − 4M2 = 4|βk|2{(cos(θ) − αk)(cos(θ) − αk)} = 4|βk|2{(cos(θ) −<(αk))
2 + =(αk)

2},

so that for θ ∈ {z ∈ C : <(z) ∈ [0, π] and cos(z) ∈ R}, L2 − 4M2 has a minimal value for
θbo

k
= arccos(<(αk)). Plug this into (12) and simplify to give

d

dθ
fβk

(θbo
k
) =

2

1 − |βk|2
.

So, if αk → α, then θbo
k
→ arccos(α) ∈ [0, π] and d

dθ
fβk

(θbo
k
) → ∞. If θ 6= θbo

k
, then d

dθ
fβk

(θ) → 1 for
|βk| → 1. Assume now that the other poles αl in the sequence are not too close to the boundary [−1, 1].
Then

∑n
l=1,l 6=k

d
dθ

fβl
(θ) < ∞ so that dFn(θ)

dθ
will have a local maximum in θbk

→ arccos(α). Clearly
the same holds if the sequence does have a pole αl that tends to the same value α2 = α ∈ [−1, 1]. If
on the other hand α2 6= α, then d

dθ
fβl

(θ) → 1 for each θ ∈]θbk
− δ, θbk

+ δ[ with δ > 0. In this case
dFn(θ)

dθ
will have another local maximum in θbl

→ arccos(α2).

Two things are of importance here. In the first place, note that the previous lemma explains the
amount of 2n− 3 interior inflection points mentioned in Remark 3.5. If we have n− 2 complex poles
all tending to a different value in ] − 1, 1[ and two real poles tending to 1 and −1, then according to
the previous lemma this will result in dFn(θ)

dθ
having n local maxima. Between two maxima there has

to be a minimum, so we get n+(n− 1) = 2n− 1 inflection points of which 2n− 3 are in the interval
]0, π[. Secondly, note that sign(<(β))Θ(β) for |β| → 1 tends to <(β) while this in turn will tend to
<(α) ∈ [−1, 1]. Furthermore, because of the assumption in Remark 3.4 that v(θ) < 0 in the only
possible real zero of the numerator of f̃(θ), this zero is a local maximum for dfβ(θ)

dθ
, but not necessarily

a local maximum for dFn(θ)
dθ

. However, based on the previous lemma and the asymptotic behaviour of
this zero we can conclude that it will approach the exact local maximum when the related pole or all
the other poles come closer to the boundary, or when the multiplicity of the related pole increases.
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4 Computing the nodes for complex poles

We will now discuss three methods for determining the initial values for Newton’s method. Two of
them have already been briefly discussed in Section 2 for the case of all real poles, namely LE and
AZD.

4.1 Asymptotic zero distribution

Consider first the case of one multiple pole α ∈ R
I
. We can determine β in function of α as

β = α − sign(α)
√

α2 − 1 =
1

α + sign(α)
√

α2 − 1
, (18)

where the second expression, from a numerical point of view, is better because it avoids computing
the difference between two almost equal values. For α = ∞, (7) gives us

x = − cos(πt) = cos(π(1 − t)). (19)

From (18) we can deduce that β = 0 for the given value of α, which means that we can determine the
exact solution of (4) for a given multiplicity n of the pole. This gives us

θnk = πtnk, (20)

where

tnk =
k − d/2

n + c − 1
(21)

and
xnk = cos (πtnk) . (22)

So when we evaluate (7) in the points
t = 1 − tnk, (23)

with tnk given by (21) instead of by (8), the initial values will be the exact solution. When using the
same points for an arbitrary pole α ∈ R

I , this results in the following initial values

x
(0)
nk =

1 + α cos (πtnk)

α + cos (πtnk)
=

2β + (β2 + 1) cos (πtnk)

β2 + 1 + 2β cos (πtnk)
. (24)

In the case of one real pole with multiplicity n, Fn(θ) can be simplified to Fn(θ) = fn,β(θ)− (n−
c)θ, where

fn,β(θ) = (2n − 1) arctan
sin(θ)

cos(θ) − β
.

If Fn(θ) is considered a function of β instead of θ, we will use the notation Hn(β). So Hn(β) =

Fn(θ
(0)
nk ), with x

(0)
nk = cos(θ

(0)
nk ) given by (24).

As explained in Section 2, the advantage of AZD for one multiple pole is that we can compute all
the initial values at the same time using vector operations. This makes it the fastest method of all.
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A disadvantage, however, is that it can only be used if all poles are equal to each other. Clearly this
has to be a real value, because in the case of complex poles the last pole αn (if not real already) will
be replaced by αn,τ = (βn,τ + β−1

n,τ )/2 ∈ R
I

during the computations. We will now prove another
advantage of AZD for one multiple pole, but first we need the following two lemmas.

Lemma 4.1. For each β ∈] − 1, 1[ we have that

fn,β

(
θ

(0)
nk

)
= fn,−β (πtnk) , (25)

with tnk as in (21).

Proof. Using x
(0)
nk = cos θ

(0)
nk gives us

fn,β

(
θ

(0)
nk

)
= (2n − 1) arctan

√
1 −

(
x

(0)
nk

)2

x
(0)
nk − β

.

Then replacing x
(0)
nk with the expression in (24) and doing some computations proves the lemma.

Lemma 4.2. Function Hn(β) is a non-increasing function with increasing β.

Proof. From (24) and (25) we deduce that

Hn(β) = fn,−β (πtnk) − (n − c) arccos

(
2β + (β2 + 1) cos (πtnk)

β2 + 1 + 2β cos (πtnk)

)
.

Differentiating with respect to β gives us

dHn(β)

dβ
= (1 − 2c)

sin (πtnk)

(cos (πtnk) − β)2 + (sin (πtnk))
2 .

The first part is strictly negative because it follows from Table 1 that c > 1/2, while the second factor
is not negative because tnk ∈ [0, 1], which means that the derivative is not positive.

Where Fn(θ) is strictly increasing concave (respectively convex), Newton’s method converges
monotonically if θ

(0)
nk ≤ θnk (respectively θ

(0)
nk ≥ θnk). The following theorem will prove that the

initial values θ
(0)
nk = arccos

(
x

(0)
nk

)
with x

(0)
nk given by (24) satisfy this condition.

Theorem 4.3. For each β ∈] − 1, 0] (respectively β ∈ [0, 1[) we have θ
(0)
nk ≥ θnk (respectively

θ
(0)
nk ≤ θnk).

Proof. We will only prove the theorem for β ∈ [0, 1[. Proving the theorem for β ∈] − 1, 0] will be
similar but with the inequality signs reversed. With Fn(θ) a strictly increasing concave function (see
Lemma 2.4), it suffices to prove that Fn

(
θ

(0)
nk

)
≤ Fn (θnk). Because θnk is the kth exact solution

of (4), we know that
Fn (θnk) = kπ − dπ/2 = constant

12



for each β ∈ [0, 1[. For β = 0 we also have that

Fn

(
θ

(0)
nk

)
= Fn (θnk) = kπ − dπ/2

because of (19)–(23). Using Lemma 4.2 then proves the inequality.

Finally, consider the case of different poles {αk}n
k=1 with αk ∈ C

I
. Like before, we can determine

the initial values as
θ

(0)
nk = s (1 − tnk) ,

with tnk given by (21), instead of using (8) and (11), replacing (9) and (10) with

tn(x) =
1

nπ

n−1∑

j=1

<
(

arcsin
αjx − 1

αj − x

)
+ arcsin

αn,τx − 1

αn,τ − x
+

1

2
(26)

and

ξk = cos

(
π

k − d/2

m + c − 1

)
, k = 1, 2, . . . ,m.

This way, when all the poles are equal to infinity with multiplicity n = m, the initial values will again
be the exact solution.

Again, as mentioned in Section 2, the advantage of AZD for different poles is that we can compute
all the initial values at the same time using matrix operations. Theoretically, this makes it faster than
LE, but slower than AZD for one multiple pole because we first have to form the cubic interpolating
spline for the inverse of (26). In practice, however, when the matrices become too large, a bigger
but slower memory can become necessary for the computations, which means that LE would become
faster. Nevertheless, this can be solved by still determining the initial values using AZD, but com-
puting the nodes in a for-loop using vector operations instead of matrix operations. A disadvantage
of AZD for different poles is that the initial values do not necessarily converge monotonically to the
exact solution. Another disadvantage of AZD in general is that it does not work well when too many
poles in the given sequence are too close to the boundary. In this case, however, it is not excluded that
still some of the nodes can be computed using AZD.

4.2 Linear extrapolation

As we have seen in Section 2, the initial values cannot be determined simultaneously when using LE.
Not only is LE slower than AZD because of this, but also convergence while computing the previous
node is essential so that it can continue with the computation of the next node. Because of this, LE
is more interesting in combination with AZD when some but not all nodes can be computed with the
latter, rather than as a method on its own. Nevertheless, as we will prove in the next theorem, LE has
an advantage over AZD for sequences of different poles because under certain conditions it converges
monotonically to the exact solution.

Theorem 4.4. If all poles have positive (respectively negative) real parts and satisfy condition (13),
Newton’s method converges monotonically if the initial values are determined by (5) (respectively (6)).
(This statement is already mentioned for all real poles without proof in [2, p. 317]).

13



Proof. Under the conditions given by the theorem, Fn(θ) is concave (poles with positive real parts)
or convex (poles with negative real parts) on ]0, π[ (see Lemma 3.2). Therefore we only need to prove
that with (5) for poles with positive real parts (respectively (6) for poles with negative real parts),
θ

(0)
n,k ≤ θn,k (respectively θ

(0)
n,k ≥ θn,k) is satisfied for k = 1, 2, . . . , n. We will only prove the theorem

for poles with positive real parts. The proof for poles with negative real parts will be similar but with
the inequality signs reversed. For k = 1 the inequality is trivial because θ

(0)
n,1 = 0 and θn,1 ∈ ]0, π[. For

k > 1 we base ourselves on the mean value theorem on the intervals [θn,k−2, θn,k−1] and [θn,k−1, θn,k]:




∃θ1 ∈ [θn,k−2, θn,k−1] : dFn

dθ
(θ1) =

Fn(θn,k−1)−Fn(θn,k−2)
θn,k−1−θn,k−2

∃θ2 ∈ [θn,k−1, θn,k] : dFn

dθ
(θ2) =

Fn(θn,k)−Fn(θn,k−1)
θn,k−θn,k−1

.

Because Fn(θ) on the right-hand side is evaluated in two successive exact solutions of (4), we can
rewrite this as {

θn,k−1 − θn,k−2 = π
/

dFn

dθ
(θ1)

θn,k − θn,k−1 = π
/

dFn

dθ
(θ2)

. (27)

Further, because θ1 ≤ θ2 and Fn(θ) is strictly increasing concave, we have that

dFn

dθ
(θ1) ≥

dFn

dθ
(θ2) ,

or
θn,k−1 − θn,k−2 ≤ θn,k − θn,k−1,

so
θ

(0)
n,k = θn,k−1 + (θn,k−1 − θn,k−2) ≤ θn,k−1 + (θn,k − θn,k−1) = θn,k.

Finally, we remark that for k = 2 the value θn,k−2 = θn,0 = 0 is not a solution of (4). We have that
Fn(θn,0) = Fn(0) = 0 which means that here the first expression in (27) has to be replaced with

θn,k−1 − θn,k−2 =
(
π − d

π

2

)/dFn

dθ
(θ1) .

When d = 0 this does not make any difference, but when d = 1 this becomes

θn,k−1 − θn,k−2 = π

/(
2
dFn

dθ
(θ1)

)
.

In the case of poles with positive and negative real parts, we need the extra condition (17) to assure
that Fn(θ) has at most one interior inflection point θb ∈ ]0, π[, for which dFn(θ)

dθ
has a local minimum.

In this way, Fn(θ) will be strictly increasing concave on ]0, θb[ while the other part will be strictly
increasing convex (see Lemma 3.3). So, when applying (5) (respectively (6)) to the interval [0, θb]
(respectively [θb, π]), Newton’s method also converges monotonically for these kinds of sequences of
poles when using LE.

In practice it is not easy to compute the interior inflection point. Nevertheless, because convergence
is not excluded when an initial value lies on the wrong side of the exact solution, computing this is
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not necessary at all. Instead, we can start with one of both formulas (i.e. (5)) until it does not converge
anymore and then continue with the other one (i.e. (6)) if necessary. For other kinds of sequences of
poles, convergence cannot be assured with LE but is not necessarily excluded. However, for sequences
containing poles in the area marked with an ’o’ close to the boundary, it is very unlikely that all the
nodes can be computed using LE because of peak shaped interior local maxima of dFn(θ)

dθ
.

4.3 An alternative way to determine initial values

The goal is to find a method that combines the advantages of AZD (that all nodes can be computed at
the same time) and LE (assuring monotonic convergence), but works well for sequences of poles close
to the boundary. To realise this, we will base ourselves on the distribution of the inflection points of
Fn(θ).

Consider the list {θbj
}m

j=1 of inflection points of Fn(θ) with θbj
< θbj+1

. Certainly this list is not
empty because Fn(θ) always has an inflection point in θb1 = 0 and θbm

= π, so that m ≥ 2. Note that
if dFn(θ)

dθ
has a local maximum in θbj

, then it has a local minimum in θbj−1
and θbj+1

, and vice versa.
Assume now that we know the local maxima θb2j−r

, with r = 0 or r = 1 and j = 1, . . . , b(m + r)/2c.
Then we can compute the nodes {θk0 , . . . , θk1} ⊂ [θb2j−r−1

, θb2j−r+1
] starting from θb2j−r

as initial
value, assuming we can determine the indices k0 and k1 exactly. Note that this way we try to assure
monotonic convergence of the initial values rather than trying to determine initial values close to the
exact solution.

In practice we do not know the local maxima nor the indices k0 and k1. However, we can try
to estimate the local maxima and the indices using Lemma 3.6. Suppose we have a sequence of
N = b(m + r)/2c different poles αj , each with multiplicity nj so that

∑N
j=1 nj = n. Then the

local maxima can be estimated using cos(θb2j−r
) = sign(<(βj)) min(Θ(βj), 1) where Θ(β) is given

by (15). Furthermore, if αj ∈ [−1, 1],
dfβj

(θb2j−r
)

dθ
= ∞, while for every other θ we have that

dfβj
(θ)

dθ
=

1. So, with δ > 0 and ε > 0 we get that

fβj
(θb2j−r

+ δ) − fβj
(θb2j−r

− ε) =
[
fβj

(π) − (π − θb2j−r
− δ)

]

−
[
fβj

(0) + (θb2j−r
− ε)

]
= fβj

(π) − fβj
(0) − π + δ + ε = π + δ + ε.

Consequently, Fn(θ) shows a jump in θb2j−r
equal to njπ (if αj is not the last pole in the sequence,

otherwise the jump will be equal to (nj − 1/2)π), while, if θk and θk+1 are two successive exact
solutions of (4), then Fn(θk+1)−Fn(θk) = π. Because of this, we can use as a rule that the multiplicity
of θb2j−r

as initial value equals nj .
Clearly this method improves the closer the poles in the sequence are to the boundary. For this

reason, a disadvantage of this method is that it does not work well if the sequence of poles contains
too many poles away from the boundary. Like for AZD, we can combine this method with LE if not
all the nodes can be computed using this method. In the remainder of this text we will refer to this
method as the method of asymptotic inflection point distribution (AIPD).
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4.4 Some additional remarks

The main advantage of Newton’s method is that, if the iterations converge, they converge quadratically
to the exact nodes when starting from initial values close to the exact solution. Only LE and AIPD can
theoretically assure (monotonic) convergence in a part of the complex plane. But none of the methods
discussed before can assure convergence of the initial values to the exact solution for any sequence of
complex poles. In practice, however, Newton’s method always seems to converge for sequences only
containing poles away from the boundary when using AZD, as well as for sequences only containing
poles close to the boundary when using AIPD.

For sequences containing poles close to the boundary as well as poles away from the boundary,
Newton’s method does not always converge for all the nodes when using one of both methods for
determining the initial values. But in many cases, improvement is possible through combining AZD
or AIPD with LE, as mentioned before. The computations for such a combination are not difficult
to organise. However, it cannot always solve the problem of convergence so that other combinations
(like for instance combining AZD with AIPD) need to be considered, for which the computations
are more difficult to organise. Many observations strongly indicate that, when considering more
combinations of methods, Newton’s method will converge for any sequence of poles.

However, for sequences containing poles extremely close to the boundary, the results for the nodes
need to be very precise to get accurate results for the weights as well. When using a less severe
criterium of accuracy during the iterations, Newton’s method will converge but the results will be very
inaccurate. On the other hand, when using a more severe criterium of convergence, rounding errors
can cause the desirable accuracy to be unreachable. For this reason, some additional computations
using the method of bisection can be necessary to get full precision. Nevertheless, this additional
number of iterations will be negligible compared with the number of iterations needed when only
using the method of bisection.

Finally note that, when the last pole αn in the sequence is not real, it can be replaced by any
α ∈ R

I
during the computations, because one can always find a τ ∈ T so that αn,τ = α. In such

cases a proper choice of α can sometimes improve the results as well.

5 Numerical results

We shall now look at some examples of sequences of poles and compare the results for the nodes and
weights for the different methods discussed in the previous section with the results for the nodes and
weights when only using the method of bisection. With ∆x and ∆λ we denote the maximal difference
in absolute value between the resulting nodes and weights. We will also compare the largest number
of iterations, denoted by pmax, needed for the initial value that converged the slowliest, as well as
the total number of iterations, denoted by ptotal, assuming the iterations for each node were done
serially like for LE. All the computations in the examples that follow are done with τ = 1 for the first
weight function (i = 1). Furthermore, the Newton iterations are done with an absolute accuracy of
|θ(p−1)

k − θ
(p)
k | ≤ 10−10, while for the method of bisection the nodes are computed with an absolute

accuracy of |θ(p−1)
k − θ

(p)
k | ≤ 5 × 10−16. To check the accuracy of the results for each method on its

own, the absolute difference |π−
∑n

k=1 λk|, which theoretically has to equal zero, is checked as well.
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Example 5.1. Let us first consider the sequence of poles given by

A = {αk+6 = 2.005 + 1.905i + 0.001k(1 + i), k = −5, . . . , 5}∪
{αk+17 = −2.000 − 1.900i − 0.001k(1 + i), k = −5, . . . , 5}. (28)

Then Figure 2 shows the graph of Fn(θ), dFn(θ)
dθ

and d2Fn(θ)
dθ2 . Note that, although the graph of Fn(θ)

looks like a straight line, it is not as can be deduced from the graph of the first and second derivative.
The given sequence does not satisfy any of the conditions given by Lemma 3.2 and 3.3. However,
none of the poles are close to the boundary, thus we can expect that Newton’s method works well
for the given sequence. Table 2 summarises the results for Newton’s method and for the method of
bisection.
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Figure 2: The graph of Fn(θ), dFn(θ)
dθ

and d2Fn(θ)
dθ2 for the sequence of poles given by (28).

method ∆x ∆λ |π −∑n
k=1 λk| pmax ptotal

bisection 0 0 8.9 × 10−16 52 1133
AZD 5.6 × 10−16 2.8 × 10−17 8.9 × 10−16 3 66
LE 7.8 × 10−16 2.8 × 10−17 8.9 × 10−16 3 52

AIPD 7.8 × 10−16 2.8 × 10−17 8.9 × 10−16 4 84

Table 2: The results for Newton’s method and for the method of bisection for the sequence given
by (28).

Example 5.2. Next, consider the sequence of poles given by

B = {αk = 0.75 + 0.01i, k = 1, . . . , 4} ∪ {αk = 2, k = 5, 6}. (29)

Then Figure 3 shows the graph of Fn(θ), dFn(θ)
dθ

and d2Fn(θ)
dθ2 . The given sequence contains poles close

to the boundary as well as poles away from the boundary. Because of this, not all the nodes can be
computed with Newton’s method when using only one method for determining the initial values. But
all the nodes can be computed when LE is combined with one of the other two methods. Table 3
summarises the results for the two combinations and for the method of bisection. With ni we denote
the number of initial values that converged for the specific method.

Example 5.3. Finally consider the sequence of poles given by

C = {αk = −αk+5 = 0.75 + 0.01i, k = 1, . . . , 4} ∪ {α5 = −α10 = 2}. (30)
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Figure 3: The graph of Fn(θ), dFn(θ)
dθ

and d2Fn(θ)
dθ2 for the sequence of poles given by (29).

method ∆x ∆λ |π −
∑n

k=1 λk| pmax ptotal ni

bisection 0 0 1.8 × 10−15 52 309 6
AZD 2.3 × 10−15 1.3 × 10−15 1.3 × 10−15 6 26 5

and LE 5 5 1
AIPD 3.9 × 10−16 1.9 × 10−15 3.1 × 10−15 8 32 5

and LE 6 6 1

Table 3: The results for Newton’s method and for the method of bisection for the sequence given
by (29).

Then Figure 4 shows the graph of Fn(θ), dFn(θ)
dθ

and d2Fn(θ)
dθ2 . The given sequence now contains much

more poles close to the boundary than poles away from the boundary. In this case not all the nodes
can be computed when combining AZD with LE. But they can now be computed when only using
AIPD. Table 4 summarises the results for Newton’s method and for the method of bisection.
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Figure 4: The graph of Fn(θ), dFn(θ)
dθ

and d2Fn(θ)
dθ2 for the sequence of poles given by (30).

method ∆x ∆λ |π −∑n
k=1 λk| pmax ptotal

bisection 0 0 5.8 × 10−15 52 516
AIPD 1.8 × 10−15 6.7 × 10−15 0 9 60

Table 4: The results for Newton’s method and for the method of bisection for the sequence given
by (30).
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6 Conclusion

We have provided a fast algorithm to compute arbitrarily many nodes and weights for rational Gauss-
Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary com-
plex poles outside [−1, 1]. This algorithm was based on the derivation of explicit expressions for the
Chebyshev (para-)orthogonal rational functions.

Once the nodes were known, the computation of the weights was straightforward. These nodes
could not be found analytically but had to be solved numerically (using Newton’s method) from the
equation f(xk) = Ck, k = 1, . . . , n, where Ck is a constant only depending on the node xk to be
computed and f is a smooth, monotonically increasing function that depends on the first n poles. The
success of our algorithm depended on obtaining accurate initial values for the exact solutions and on
a thorough analysis of the graph of f(x), with x ∈ [−1, 1], based on the distribution of the poles in
the complex plane.

Some characteristics of this function were already given for the case of all real poles in [2] and two
methods were derived for determining a sequence of initial values for the nodes, assuring convergence
of Newton’s method. For complex poles, however, these characteristics did not hold in general and
these two methods were not sufficient to assure convergence to the exact values in every possible case.

We derived a new method to obtain more accurate initial values for the case of arbitrary complex
poles. In all cases under consideration, these values converged to the exact solutions. In some ex-
ceptional cases, a few additional iterations using the method of bisection were needed to obtain full
precision.

When combining different methods for determining the initial values for Newton’s method, we
restricted ourselves in this paper to the combinations which were easy to organise in practice. Other
combinations to improve the results (accuracy versus total number of iterations) are open for further
research. Also determining the value for the parameter τ (in case the last pole in the sequence is not
real) so that the computations of the nodes are optimal is an unresolved problem.
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