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Preface

It is very interesting to see how the same principles and techniques are de-
veloped in different fields of mathematics, quite independently from each
other. It is only after a certain maturity is reached that a result is recog-
nized as a variation on an old theme. This is not always a complete waste
of effort because each approach has its own merits and usually adds some-
thing new to the existing theory. It is virtually impossible and there is no
urgent need to stop this natural development of things. If tomorrow a new
application area is emerging with its own terminology and ways of think-
ing, it is not impossible that an existing method is rediscovered and only
later recognized as such. It will be the twist in the formulation, the slightly
different objectives, an extra constraint etc. that will revive the interest in
an old subject. The availability of new technological or mathematical tools
will force researchers to rethink theories that have long been considered as
complete and dead as far as research is concerned.

In this text we give a good illustration of such an evolution. For the
underlying principle we have chosen the algorithm of Euclid. It is probably
the oldest known nontrivial algorithm, which can be found in the most
elementary algebra textbooks. It is certainly since the introduction of digital
computers and the associated algorithmic way of thinking that it received
a new impetus by its many applications which resulted in an increasing
interest, but its simplicity in dealing with situations that are, at least in
certain problem formulations not completely trivial, explains its success.
Already in ancient times, long before modern computers became an essential
part of the scene, the algorithm has been used in many applications.

In its original form, it deals with a geometrical problem. At least, Euclid
himself describes it in his 7th book of the Flements as a way of construct-
ing the largest possible unit rule which measures the length of two given
rules as an integer times this unit rule. Nowadays we recognize the Fu-
clidean algorithm as a method to compute the greatest common divisor of
two integers or of two polynomials. This may seem a trivial step, yet, it



vi PREFACE

links geometry, algebra and number theory. Of course, the distinction be-
tween different mathematical disciplines is purely artificial and is invented
by mathematicians. Luckily, the self-regulating mathematical system main-
tains such links between the different types of mathematicians, and prevents
them from drifting too far apart. This trivial observation would not jus-
tify this text if there weren’t many more applications of this computational
method.

It was recognized with the invention of continued fractions that the algo-
rithm does not only compute the final result: the greatest common divisor,
but all the intermediate results also appear as numerators or denominators
in a (finite) continued fraction expansion of a rational number. The next,
quite natural step, is to apply the algorithm to test whether a number is ra-
tional or not and to see what happens when the number is not rational. The
algorithm will go on indefinitely, and we get an infinite continued fraction
expansion. The study of these expansions became a useful and powerful
tool in number theory.

The same technique can be applied to (infinite formal) power series,
rather than just polynomials, and again the algorithm will end after a finite
number of steps if we started from a representation of a rational fraction or
it will give an infinite (formal) expansion which might or might not converge
in a certain region e.g., of the complex plane. This hooks up the Euclidean
algorithm with (rational) approximation theory. From an algebraic point of
view, the Euclidean domains (and several of its generalizations) became a
study object in their own right. From the approximation side, the kind of
rational approximants that you get are known as Padé approximants. Al-
though this theory has celebrated its hundredth anniversary, the recognition
of the Euclidean algorithm as an elegant way of constructing approximants
in a nonnormal table came only a couple of decades ago.

Traditionally, the computation of a Padé approximant was done via the
solution of a linear system of equations. The matrix of the system has a
special structure because it contains only O(n) different elements while the
entries on an antidiagonal are all the same. It is a Hankel matrix. The
linear algebra community became interested in solving this special type of
systems because their solution can be obtained with sequential computa-
tions in O(n?) operations, rather than the O(n?) for general systems. The
Hankel matrices, and the related Toeplitz matrices, show up in numerous
applications and have been studied for a long time and that explains why
it is important to have efficient solution methods for such systems which
fully exploit their special structure. Not only the solution of such systems,
but also other, related linear algebra problems can benefit from the known
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theory of the Euclidean algorithm.

The Lanczos algorithm, which is recently rediscovered as a fashionable
research area is intimately related to the Euclidean algorithm. Again the al-
gorithm of Euclid can serve as an introduction to the fast growing literature
on fast algorithms for matrices with special structure, of which Toeplitz and
Hankel matrices are only the most elementary examples.

Connected, both to Toeplitz and Hankel matrices and to Padé approxi-
mation, are orthogonal polynomials and moment problems. Given the mo-
ments for some inner product, the problem is to find the orthogonal polyno-
mials and eventually the measure itself. For a measure with support on the
real line, the moment matrix is typically a Hankel matrix, for Szegé’s the-
ory where the support is the unit circle of the complex plane, the moment
matrix is typically Toeplitz. To have a genuine inner product, the moment
matrices should be positive definite and strongly nonsingular, that is, all
its principal leading minors are nonsingular. In Padé approximation, this
has been formally generalized to orthogonality with respect to some linear
functional and the denominators of the approximants are (related to) the
orthogonal polynomials. However, in this situation, the moment matrix is
Hankel, but in general neither positive definite nor strongly nonsingular and
then the Euclidean algorithm comes again to the rescue because it helps to
jump over the singular blocks in a nonnormal Padé table. A similar situa-
tion occurs in the problem of Laurent-Padé approximation which is related
to a Toeplitz moment matrix, and also here the matrix is neither positive
definite nor strongly nonsingular. The analogs of the Euclidean algorithm
which can handle these singular situations are generalizations of the Schur
and Szego recursions in classical moment theory.

A final cornerstone of this text that we want to mention here is lin-
ear systems theory. This is an example of an engineering application where
many, sometimes deep, mathematical results come to life. Here, both math-
ematicians and engineers are active to the benefit of both. The discipline is
relatively young. It was only since the nineteenthirties that systems theory
became a mathematical research area. In the current context we should
mention the minimal partial realization problem for linear systems. It is
equivalent with a Padé approximation problem at infinity. The minimality
of the realization is however important from a practical point of view. The
different formulation and the extra minimality condition makes it interest-
ing because classical Padé approximation doesn’t give all the answers and
a new concept of minimal Padé approximation is the natural equivalent in
the theory of Padé approximation. A careful examination of the Euclidean
algorithm will reveal that it is actually a variant of the Berlekamp-Massey
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algorithm. The latter was originally developed as a method for handling
error-correcting codes by shift register synthesis. It became known to the
engineering community as also solving the minimal partial realization prob-
lem. Another aspect that makes systems theory interesting in this aspect
is that in this area it is quite natural to consider systems with n inputs
and m outputs. When m and n are equal to 1, we get the scalar theory,
but with m and n larger than 1, the moments, which are called Markov
parameters in this context, are matrices and the denominators of the re-
alizations are square polynomial matrices and the numerators rectangular
polynomial matrices. So, many, but not all, of the previously mentioned
aspects are generalized to the matrix or block matrix case for multi-input
multi-output systems. In the related areas of linear algebra, orthogonal
polynomials and Padé approximation, these block cases are underdeveloped
to almost nonexisting at all. The translation of results from multi-input
multi-output systems theory to the fields mentioned above was one of the
main incentives for putting the present text together.

In this book we shall only consider the scalar theory and connections
that we have sketched above.

Excellent textbooks exist on each of the mentioned areas. In most of
them the Euclidean algorithm is implicitly or explicitly mentioned, but the
intimate interplay between the different fields is only partially covered. It
is certainly not our intention to replace any of these existing books, but we
want in the first place put their interconnection at the first plan and in this
way we hope to fill an empty space.

We make the text as selfcontained as possible but it is impossible to
repeat the whole theory. If you are familiar with some of the fields dis-
cussed it will certainly help in understanding our message. For the theory
of continued fractions and their application in Padé approximation as well
as in number theory, you can consult the book by Perron Die Lehre von
den Kettenbricken [202] and Wall’s Analytic theory of continued fractions
[237, 238] which are classics, but Jones and Thron’s Continued fractions,
analytic theory and applications [161] can be considered as a modern classic
in this domain. The most recent book on the subject is Continued frac-
tions with applications [183] by Lorentzen and Waadeland who include also
many applications, including orthogonal polynomials and signal processing.
For Padé approximations you may consult e.g. Baker’s classic: Fssentials of
Padé Approzimation [5], but a more recent substitute is the new edition of
the book Padé Approzimants by Baker and Graves-Morris [6, 7]. See also
[69]. The connection between Padé approximation and formal orthogonal
polynomials is explicitly discussed by Brezinski in Padé-type approzimation
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and general orthogonal polynomials [24]. And much more on formal orthog-
onal polynomials is given in A. Draux’s Polynémes orthogonauz formels -
applications [87]. For the linear algebra aspects, the book by Heinig and
Rost Algebraic methods for Toeplitz-like matrices and operators [144] is a
cornerstone that resumes many results. For the theory of linear systems
there is a vast literature, but Kailath’s book Linear systems [165] is a very
good introduction to many of the aspects we shall discuss.

First we guide the reader from the simplest formulation of the Euclidean
algorithm to a more abstract formulation in a Euclidean domain. We give
some of its variants and some of its most straightforward applications.

In a second chapter we discuss some aspects and applications in linear
algebra, mainly including the factorization of Hankel matrices.

In the third chapter, we give an introduction to the Lanczos algorithm
for unsymmetric matrices and some of its variants.

The fourth chapter on orthogonal polynomials translates the previous
results to orthogonal polynomials with respect to a general biorthogonal
form with an arbitrary moment matrix. The Hankel matrices that were
studied in previous chapters are a very special case. We also give some re-
sults about Toeplitz matrices which form another important subclass. As a
preparation for the matrix case, we give most formulations in a noncommu-
tative field which forces us to use left/right terminology. This is not really
essential, but it forces us to be careful in writing the products and inverses
so that the results reflect already (at least partially) the block case.

Chapter 5 treats Padé approximations. Perhaps the most important
results of this chapter are the formulations of minimal Padé problems and
the method to solve them.

The next chapter gives a short introduction to linear systems and il-
lustrates how the previous results can be used in this context. It includes
a survey of recent developments in stability tests of Routh-Hurwitz and
Schur-Cohn type.

Finally, Chapters 7 and 8 give some less elaborated perspectives of fur-
ther applications which are closely related to what has been presented in
the foregoing chapters.

Chapter 7 gives a general framework for solving very general rational
interpolation problems of which (scalar) Padé approximants are a special
case. It also introduces the look-ahead strategy for solving such problems
and which is most important in numerical computations. It is left to the
imagination of the reader to translate the look-ahead ideas to all the other
interpretations one can give to these algorithms in terms of rational approx-
imation, of orthogonal polynomials, iterative methods for large matrices,



X PREFACE

solution of structured systems etc.

The last chapter introduces the application of the Euclidean algorithm
in the set of Laurent polynomials to the factorization of a polyphase ma-
trix into a product of elementary continued fraction-like matrices. These
polyphase matrices occur is the formulation of wavelet transforms and the
factorization is interpreted as primal and dual lifting steps which allow for
an efficient computation of wavelet transform and its inverse.

While we were preparing this manuscript, we became aware of the Ph. D.
thesis by Marlis Hochbruck [151] which treats similar subjects. As for the
iterative solution of systems, Claude Brezinski is preparing another volume
in this series [28] which is completely devoted to this subject.

It is clear that in this monograph all the topics of the project ROLLS
are present. That is Rational approximation, Orthogonal functions, Linear
algebra, Linear systems, and Signal processing. The remarkable observa-
tion is that the Euclidean algorithm, in one form or another, is a “greatest
common divisor” of all these topics.
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