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Abstract

Graphene nanoflakes (GNFs) are predicted to possess novel magnetic, optical, and 
spintronic properties. They have recently been synthesized and a number of applications 
are being studied. Here we investigate the statistical properties of rippled GNFs 
(50 – 5000 atoms) at T=300K. An adjacency matrix is calculated from the coordinates 
and we find that the free energy, enthalpy, entropy, and atomic displacement all show 
power law behavior. The vibrational energy versus the Wiener index also shows power 
law character. We distinguish between using Euclidean topographical indices and 
compare them to topological ones. These properties are determined from atomic 
coordinates using MATLAB routines.
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1. Introduction

Graphene [1] is a 2D allotrope of carbon (diamond, graphite, fullerene, carbon 

nanotubes, (CNTs)) that illustrates the amazing chemical and structural diversity of 

element number twelve. Recently, scientists have started considering limiting the size of 

the 2D sheet form of graphene, thus defining graphene nanoribbons, GNRs, and graphene 

nanoflakes, GNFs. One experimental method of attempting this is by using catalytic 

metal nanoparticles [2] cutting along crystallographic planes. When restricting the 2D 

sheet character of graphene by two dimensions in the plane, one creates GNFs, which 

theory predicts to have unique magnetic, optical, and spintronic properties.

GNFs may have a range of magnetic character, from ferromagnetic [3,4], to 

ferrimagnetic [5,6], to antiferromagnetic [7], depending on GNF geometry and 

topological frustration. These properties have enabled the design of spintronic NOR and 

NAND gates [7], which in principle can operate at room temperature. A spin-valve type 

effect [8] has been investigated in triangular GNFs.  Additionally, hydrogenation can 

change the magnetic and electronic [9] character of the GNF. The optical properties of 

GNFs span the entire visible spectrum [10], opening the route to new nano optical 

devices. The electronic band structure as a function of increasing size [11] of triangular 

GNFs shows that semiconducting behavior exists for small GNFs.

An interesting question to consider when thinking about the thermal character of 

GNFs, is whether they are actually stable, or would they transform to another form of 

carbon, such as the fullerene or CNT shapes? This question has been modeled by density 

functional theory (DFT) and ab initio molecular dynamics (MD) calculations, with the 

result [12,13] that GNFs do not transform to a different allotrope, but neither are they 
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truly 2D, in the sense that the structure of the GNF becomes buckled and rippled at 

elevated temperatures. Annealing of the structures [12] found out-of-plane distortions as 

the temperature increased to 2400K, but no fundamental change in structure occurred.

Experimentally, the progress in creating GNFs is behind that of theoretical 

modeling. GNFs have been created using a ‘top-down’ approach from exfoliation of 

graphite [14], to chemical vapor deposition [15,16], to arc-discharged material [17]. 

Among the properties examined, electron field emission has predominated [14,16]. To 

date, a true nanoengineering ‘bottoms-up’ approach remains open to development. Thus, 

the truly exotic properties of GNFs, such as those already mentioned, remain to be 

explored.

2. Background

We employ a graph-theoretical approach, where nodes represent atoms, and an 

edge represents a bond between sites, G = (V,E). We create a graph of the GNF by 

creating bonds (links) between nearest neighbors up to 1.3 times the shortest neighbor 

distance from rippled MD models of graphene [18]. These vary from 50 to 5000 atoms 

and as created, are the asymmetric form [12] of a GNF. An adjacency matrix is created 

and may exist in two forms. The standard form is 

A 
H(rc  rij ) i  j

0              i  j





       (1)

where the Heaviside step function H(rc  rij )  = 1 if rc < 1.3*(shortest distance to rij), and i 

and j represent atomic sites, and rc is the cutoff value. Alternatively, we may consider the 

actual Euclidean distances in the adjacency matrix [19,20], so that H(rc  rij )  = eij, the 

Euclidean distance between atoms. 
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The approach to modeling the free energy, enthalpy, and entropy has been 

discussed in the literature [21,22]. These can all be determined from the appropriate 

adjacency matrix. We also calculate one of the oldest indices, the Wiener index [23], as

W  1

2
dij

j1

n


i1

n

        (2)

where n is the number of atoms and dij is the shortest path distance between atoms i and j. 

In the standard form, the distances between atoms = 1, and in the Euclidean form [19], it 

is eij, so that we calculate WE, the Euclidean 3D Wiener index. The collection of data 

starts from the atomic coordinates, and proceeds to calculating the adjacency matrix, and 

from it, all the results come from one MATLAB routine.

3. Results

In Fig.1, we show a plot of a rippled GNF with 500 atoms. In our modeling, the 

edge and corner atoms exist as shown in the figure, and as tabulated for the 50-5000 atom 

structures in Table 1. The coordination number of the GNF, NC, ranges from 2.44 to 

2.9404. The bond length varies around 1.42 Å. A histogram of the various bond lengths 

in the 500-5000 atom GNFs is shown in Fig.2, and the bond lengths range from 1.30 Å to 

1.55 Å.

Once we have created the adjacency matrix, the statistical mechanics data can be 

calculated [21,22]. The partition function is:

                                                                 Z(G, )  Tr(eA )                                             (3) 

where A is the adjacency matrix for the graph G, and   = 1/(kBT). At T=300K, we have 

=38.68173/eV. The entropy can be determined as
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S(G, )  kB  j pj  kB ln(Z) pj
j


j

        (4)

where  is an eigenvalue of A and 

                                                                  pj  e j

Z(G, )
                                                   (5)

is the probability that the ensemble occupies a microstate j. The free energy is the natural 

logarithm of the partition function,

F(G, )   lnZ(G, )

        (6)

and the enthalpy can be defined as follows:

H(G, )   1

Z(G, )
Tr(AeA).        (7)

We then plot the free energy, enthalpy, and entropy, per bond, versus the number of 

bonds in the GNF. This results in plots with good power law regression statistics as 

shown in Fig. 3. The distinction between Fig. 3(a) and (b) is that in (a), we have used an 

adjacency matrix with Euclidean distances, and in (b), we have used the standard 

adjacency matrix with zeros and ones. The best-fit equations in (a) have different leading 

coefficients, so that the entropy and enthalpy coincide (neglecting the sign difference) for 

small (< 50 atoms) GNFs, and since the slope is different, the plots diverge for larger 

GNFs. Since we use a value of the Boltzmann constant in terms of eV, the units on our 

thermodynamic calculations are: entropy (eV/K), enthalpy (eV), and free energy (eV). 

These quantities are divided by the number of bonds in the GNF and plotted versus NB, to 

give a power law plot. The asymptote of zero for large NB makes intuitive sense, since if 

we imagine the data/bond is finite, then as the number of bonds becomes large, we have 
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zero as a limit. Note that the free energy and enthalpy have their signs reversed to allow 

them to be plotted.

We now proceed to calculate some related parameters of interest. In the harmonic 

approximation [24], the frequency of the stretching vibration of a carbon-carbon bond is 

given by:

                                                                       1

2
k


                                                  (8)

where  is the force constant (about 305 N/m for graphene [25]) between nearest 

neighbor carbon atoms and  is the reduced mass. The total intramolecular energy, Eint 

can be divided into two parts; a variable term Uvar and a constant term Ucon. We conclude 

that the variable term can be written [24] as:

U  1

M1M2 / M
        (9)

where the proportionality constant depends on the force constant, but not the mass 

dependence. If we rewrite this in terms of our GNF, we have:

 U  n
Cn1n2

                                                    (10)

where n = n1 + n2, and n1 and n2 are the number of carbon atoms on the two sides of the 

vibrating bond. We may compare this to the relationship [23,24] for the Wiener index:

W  n1n2 .      (11)

Now in order to linearize U, we note that the minimum and maximum values of the 

product n1n2 are (n - 1) and (n/2)2, respectively. The middle value is
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  n2

8
 n1

2
     (12)

and we expand U as a power function about 

                                                 (Cx)1/2  f ( )  f '( )(x  )                                (13) 

where

                                            f ( )  1

C
8n

n2  4n 4
.                                                   (14)

If we write C = 12 amu, then to a first approximation we have

U  1

12
NB

8n
n2  4n 4

     (15)

Since n is the number of atoms in the GNF and we calculate NB through each iteration of 

the MATLAB program, we can determine the approximate values for U. Now both U and 

W have power law character, so we plot U versus W and WE in Figure 4. These results 

show good regression features. The only distinction is that WE has slightly larger values, 

but behaves in the same manner as W. The MATLAB code for W has been examined 

previously [26], but we have adapted it to work with an adjacency matrix.

In the harmonic approximation, we may also consider the vibrational excitation 

energy from the static position of the GNF. Previous calculations [27], show that the 

summed displacement may be calculated as:

XiXi  (xi )
2

i1

n

  W
nk

     (16)

where   = 38.68173/eV, k is the force constant between carbon atoms (305 N/m), n is 

the number of atoms, and W is the Wiener index. In Fig. 5, we show the dependence of 

NB, U, W, and <XX> on the number of carbon atoms N. The values of the summed 
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displacement range from 0.3047Å to 7.4107Å for 50 to 5000 atoms, respectively. If we 

were to consider the average displacement per bond, the values would be 0.002498Å and 

0.0005041Å, for 50 and 5000 atoms, respectively. The data all show good regression 

features.

4. Conclusions

We have determined the power law behavior of the free energy, enthalpy, 

entropy, and atomic displacement of GNFs consisting of 50-5000 atoms at T=300K. The 

vibrational energy versus the Wiener index also shows power law character. There are 

some minor distinctions when using the Euclidean Wiener index, which we have 

included for completeness.
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Tables and Captions

Table 1

N N1 N2 N3 NC Ave Bond Å 
50 5 18 27 2.44 1.4248
100 7 26 67 2.60 1.4219
500 16 62 422 2.812 1.4228
1000 22 86 892 2.87 1.4229
2500 35 138 2327 2.9168 1.4239
5000 50 198 4752 2.9404 1.4238

Table 1 Caption

N is the number of atoms in the GNF, N1, N2, and N3, are the number of one, two, and 
three fold coordinated atoms in the GNF, and NC is the coordination number. The average 
bond length is in Angstroms.

Figure Captions

Figure 1

MATLAB plot of a 3D rippled GNF with 500 atoms.

Figure 2

Histogram of the bond lengths (in Angstroms) of the 500-5000 GNFs.

Figure 3

(a) Plots of the free energy, enthalpy, and entropy / bond versus the number of bonds. 
The data clearly exhibits power law character. This plot uses a Euclidean 
adjacency matrix.

(b) Plots of the free energy, enthalpy, and entropy / bond versus the number of bonds. 
The data clearly exhibits power law character. This plot uses a standard adjacency 
matrix.

Figure 4

Vibrational energy, U, versus the standard Wiener index, W, and the 3D Euclidean 
Wiener index WE. The data follows a power law.

Figure 5

Power law plots of NB, U, W, and <XX> versus the number of carbon atoms, N. The 
statistics and regression of the data are quite good.
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Figure 1

Figure 2
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Figure 3(a)

Figure 3(b)
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Figure 4

Figure 5
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