Orthogonal rational functions and interpolatory product
rules on the unit circle.
I. Recurrence and interpolation®
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Abstract

Let R be the space of rational functions with poles among {oy,1/ax}32, with
ap = 0 and |ag| < 1, k > 1. We consider sequences {R,}>2, of nested subspaces
with US2 R, = R. This first part will be concerned with the construction of two
distinct orthogonal bases for R. We derive an intertwined recurrence relations for these
orthogonal functions which appear as denominators of certain continued fractions. By
contraction of these continued fractions, these recurrences are decoupled. It is explained
how, with the given problem, one can associate two sequences of interpolation data
and it is shown that the approximants of the continued fractions interpolate these data
in a multipoint Padé sense. In part II, interpolatory quadrature rules which are exact
for all f € R,, are constructed and their convergence is discussed as n — o0o.
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1 Introduction

Let C be the set of complex numbers and C = C U {oc}. We use the following notation
for the unit circle and the open unit disk: T={2 € C: |2/ =1},D={2€ C: |z] < 1}.
The space of polynomials of degree at most n is denoted as II,, and II is the space of all
polynomials. For any pair of nonnegative integers (m,n), we denote by A, the linear space
of all Laurent polynomials of the form L(z) = ¥J__, ¢;2?, ¢; € C, and A is the space of
all Laurent polynomials. For any complex function f, we define its substar conjugate by
f«(2) = f(1/Z). Let M be a linear funcional defined on A such that M{f} is real whenever
f is real-valued and suppose that M{f} > 0 whenever f > 0. Then we can define a positive
definite inner product on A by

(f,9) = M{fg.}. (1.1)
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For example, if i is a positive measure on T, then such a linear functional and the corres-
ponding inner product are given by

[ F@du) and (f9) = [ F@g@du(). (12)

If we now orthogonalize the basis functions 1, z, 22, . .. for IT with repect to this inner product,
then we obtain a basis of orthogonal polynomials. In the case of the inner product (1.2) we
obtain the well known polynomials orthogonal on the unit circle, studied by Szego.

In [16], Thron has studied orthogonal Laurent polynomials on the unit circle. These are
obtained by orthogonalization of the basis 1,2, 271,22 272, ... or 1,271, 2,272, 2%,... for A
with respect to the inner product (1.2). These are important for the solution of trigonometric
moment problems, two-point Padé approximation and quadrature on the unit circle.

Rational generalizations of the polynomial case can be obtained as follows. Let o = {ay, :
n=0,1,...} (ap = 0) be an arbitrary sequence in ID. We denote the Blaschke factor (j(z)
. 1 if 0

o — 2 — I O =

The Blaschke products are given by By = 1 and By(z) = (i1(2)---(x(2) for £ = 1,2,....
These generate the spaces £, = span{By, B,...,B,} and £ = U L,. L, and L are
rational generalizations of the polynomial spaces II,, and II. Indeed, if we set
mo=1 and m,(2) = [[(1 —@z) for n=1,2,...,
k=1

then obviously
En:{R:p—":pHEHn}.

n

If all o = 0, then £,, = II,,. Suppose that the linear functional M is defined on the space £
having the same properties as before. Then we can orthogonalize the basis By, By, ... and
obtain orthogonal rational functions ¢, such that £, ; L ¢, € £, — L,,_1. These are the
rational generalizations of the orthogonal polynomials. Since their poles are all outside the
unit disk, they are analytic in DUT. In the case of the inner product (1.2), they are relevant
for Nevanlinna-Pick interpolation, multipoint Padé approximation, and the construction of
optimal rational Szeg6é quadrature on the unit circle. These functions were studied in the
sixties by Djrbashian (see the survey [8]), Bultheel [2], and in a series of papers by the authors
of which we mention only some survey papers [3, 4, 6, 7, 5] which contain many references to
the literature, including recent work on this topic by K. Pan and X. Li (e.g. [14, 15, 10]) and
on the relation with orthogonal polynomials with respect to varying measures as discussed
by G. Lopez-Lagomasino [11, 12].

In this paper, we discuss the rational generalization of the orthogonal Laurent polyno-
mials. So, let us define £,, = {f : f. € L,} =span{l, Bi,...,Bp} and L, = U2 (L, If
R € L,., then R = ¢,/w, with ¢, € TI,, where

n
wo=1 and w,(2) =][[(z—0ey) for n=1,2,....
j=1

Furthermore, let R = £ + L, and for m and n nonnegative integers, denote

pEHm+n}

Rm,n = »Cm* + »Cn = {

m7Tn
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Note that B,, = 1/B, and hence R,,, = span{l/B,,,...,1/By,1,By,...,B,} and Ro, =
L,. When all o, =0, then R,,, , = Ay, and L£,, = 11,,.

We now suppose that the functional is defined on the space R - R and still has the same
properties as before, then we have an inner product (1.1) defined on R. Note that R, = R,
just like A = A,, but unlike A = A-A=A+Awehave R#ZR -R=R+R. Thus M
should be defined on R - R (and not just on R) to have an inner product in R.

The natural rational generalization of the orthogonal Laurent polynomials is then to
orthogonalize the basis

Bo,Bl,]_/Bl,BQ,]_/BQ,... or Bo,]./Bl,Bl,l/BQ,BQ,...

In the first case, this gives rise to an orthogonal basis {0, } for R and in the second case we
find an orthogonal basis {7,,}. These orthogonal bases, their recurrences, interrelations and
interpolating properties will be the subject of this paper.

2 The orthogonal rational functions

Our first concern is to show that these orthogonal rational functions o, and 7, can be
obtained from analytic (in DUT) orthogonal rational functions associated with some auxiliary
spaces L,, which are of the same type as the spaces £,, but now with respect to some auxiliary
set of points &. This is particularly interesting since it will allow us to use the now well
developed machinery for these orthogonal functions.

We first discuss the sequence of orthogonal rational functions {o,, }§° which corresponds

to the nesting
Roo CRo1 CRi1,1 CR1i2 CReo C - (2.1)

Using the notation
Rgn = Rn,n and R2n+1 = Rn,n—l—l for n= 0, 1, .. (22)

we should have o, € R, — R,,1 and 0, L R,, 1. We see that {R, }3° represents a sequence
of subspaces of R such that dim(R,) =n+1, R, C Ru41, and R = U2 R,,.
Let us now consider the table of points (& = ap = 0)

o= {do, O~!1, dg, 513, C~¥4, ey C~¥2m_1, O~!2m, .. } = {Of(), A1, 1,09, 9, ...,0n,Un, .. } (23)

Thus
Gop =, and dopi1 =y for n=0,1,... (2.4)

Let (,(2) be the Blaschke factors for the table & and B,(z) the corresponding Blaschke
products. Set £, = span{1, By,...,B,} and £ = U;’f:OLNn. Also, set £, = span{1, Bi,, ..., Bn.},
£m U b and Ry = Lo + Lon

One immediately sees that £ = £- £ and since R = £- L, =R, and R = L - L,, it also
follows that R = L-L-L,- L, =R-R =R-R,. Thus defining a linear functional M on
R =R - R, is the same as defining a linear functional on R = L - L, and we thus have an
inner product on R as well as on L.

Let {¢,}°, be the orthogonal functions in £ obtained by orthogonalizing the basis
{1, By, B,, ...} corresponding to the table & in (2.3). Note that by (2.4)

Bgn = BTQL and EQn—H = Bn—HBnu n 2 0. (25)
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Introducing the superstar conjugate as

and the functions

Ton(2) = Buu(2)03,(2)  and  0ap11(2) = Bpu(2)doni1(2), (2.6)
we have the following
Lemma 2.1 With o, as in (2.6) and R, as in (2.2), we have 0, € R,,.

Proof. For n even, we have to prove that oy, € Ry,,m. Because

_ BQm &Qm*

DPom
*
Oom = Bm*¢2m =

= Bmégm* - , DPom S H?m

Bm mtm

we have 09, € Ly - Ly = R
For n odd, we have to show that o911 € Ry m+1. We have by a similar argument

Tom+1 _ %om+1

O2m+1 = Bm*¢2m+1 = S Lm* . Em—H = 7z'm,m+1

7Tm7Tm—|—le Tm+1Wm

where 79,11 and ¢op,41 are in Iy, 1. O

This lemma says that the sequence {0, }3° spans R according to the nesting (2.1), thus that
{ok}y is a basis for R, for all n > 0.

Theorem 2.2 The sequence {0, }° defined by (2.6) is an orthogonal basis for R with respect
to the inner product induced by the linear functional M and it respects the ordering (2.1).
This means that Rp_1, L 0on, € Rpy and Ry L 09p1 € Rypy1 forn=0,1,...

Proof. First note that for f,g € L, we have (f,g) = (g., f.) = (¢*, f*). Also L, = {¢* :
g € L,}. Thus, since ¢, L L£,,_1 we have

0= <gv Q’Z;n> = <(g;kw 5ng*> , Vg€ ﬁn—l

so that (/3;'; 1 Colops.

We first prove that oo, L Ry_1n = Ln—1)« + Ly for n > 1. Therefore we prove that
oon L L, and that o9, L L,_1). separately.

Suppose that f € L,, then f = ¢, /7, with g, € II,,. Then we have polynomials p,, and
gn € 11, such that

Thus . 3 .
(O £) = (3 Bues £) = (B3 Buf ) = (B4 aBa1f) =0, Vf € Ln

because qB;n L @nﬁ%,l = angn,l. We may thus conclude that oo, is orthogonal to L,,.
Similarly we show that og, 1 L(,_1).. Again we have

<02n7 f*) = <¢~5;an*’ f*> = <¢~S;na Cnf*> =0, VfE€ ‘C(nfl)*
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because we can use the same orthogonality relation for ngn since f* € L,_1 C Lon—1. Thus
0oy is orthogonal to £, and to L,—1)«, hence orthogonal to R,,_1, = Ln—1)« + Ln.

In the same way we prove that 09,41 L R, by showing that 09,41 L £, and 09,41 L
L.

Suppose f € L, then

<U2n+1, f) = <(l;2n+1Bn*, f> = <<$2n+1, an> =0
because B, f € Egn L q~52n+1. Thus 09,41 L L,. On the other hand, for f € £,
(Oans1, fx) = (Bons1 B, for) = (Gans1, Bufi) = (Gonir, f7) =0
because f* € L, C Loy L q32n+1. Thus 09,41 L Ly« This proves the theorem. O

For the ordering
RO,O C RI,O C R1,1 C Rz,l cC--- (27)

we can derive in a completely analogous way another orthogonal basis for R which turns out
to be given by ) )
Ton = QonBne  and  Topi1 = ¢;n+1B(n+1)* (2.8)

and we have

Theorem 2.3 The sequence {7,,}° defined in (2.8) is an orthogonal basis for R with respect
to the inner product induced by the linear functional M and it respects the ordering (2.7).
This means that Rpp—1 L Ton € Ry and Ry p L Topt1 € Ryy1q forn=0,1,...

We remark that when all a, =0, then L=1, L=L - L=, L+ L, =L -L, =R =A
and L+ L, = L- L, = A. Then the ¢, are the orthogonal (Szeg6) polynomials and since
B,(z) = 2", . .

om(2) = 2 "P3(2) and  09n4a(2) = 2 "Ponsa(2)

while ~ -
Ton(2) = 27 "hoa(2) and  Tou4a(2) = 27V L (2).

These are the orthogonal Laurent polynomials given by Thron [16, Thm. 1].

3 Recurrence relations and continued fractions

Now that we have related the orthogonal bases o, and 7,, with the orthogonal basis qzn, we
can use the recurrence relations for the basis q~5n to obtain recurrence relations for the o,, and
Tn-

We first recall the recurrence relations for the orthogonal functions for the spaces £,
associated with the table &. Suppose we normalize the orthogonal functions to be “monic”.
This means that we set ®(a,) = 1 or equivalently that in ®,(z) = S7_y ax.Bx(2) we set
ann = 1. These monic rational functions are denoted with a capital greek letter.

The recurrence relations are given in [7, Thms. 3.1 and 3.4]:



and forn =1,2,...

= Z ~
(I)* - _~n0n = (I)nf - ~nNn = (I)*f
1) = =28 R () — A ()
and -
B(2) = ~Fuet B3 (2) + (10l — 152 (o)
Up " Up, 02
with
é _ (1 — Oy 1an)én(o~v/n—1)
n 1— |Gy 1]?
~ . (1 - &n lan)én(anfl)
Up T An ~
1- |a’n—1|2

and it holds that |8, < |i,|. If z, is as in (1.3), then by (2.4) we have Z, = z, and
Zom+1 = Zpy1 for n = 0,1,.... Setting also 4, = 60, and ¢, = 7, for n > 1, the recurrences
can be written in the following somewhat simpler forms which hold for n = 0,1, ...

Z— 1—-a,z

o = —Zpi109ps1 ———— By, nt1€9n 7nq>* 3.1
on+1(2) z+12+11—an+1z on(2) = Znt1€2 +11—an+1z on (2) (3.1)
- 0. . 1
Einiil2) = “Fnn 280 () + e = B Pl () (32)
2n+ €on+1 Qp412
~* Z a ot — ~*
Pont2(2) = —Zn+152n+2ﬁ¢2n+1(2) — Zn41€2n+2P3,11(2) (3.3)
= _ Oopt2 x4 1 Ant17 =,
Boni2(2) = —Fnpi— ‘I’zn+2( 2) + ——[lezns2l* — |52n+2\2]1_ - _ Doni2(2) (3:4)
€on+ €on+2
with
- 1 — oy
O2n = Pon(ann), Oon+1 = 77171;1(1’2%1 (o) (3.5)
1 — ||
- l—-aponiz—<
€n = —2n L3, (), €n+1 = T2n+1 #ﬁ;légnﬂ(a’n) . (3.6)
n

Note that, although dy and €y do not appear in (3.1)—(3.4), they are defined by (3.5)—(3.6) as
0o = €9 = 1. This will be used later. Suppose that for n =0, 1, ... we introduce the notation
(k € C is arbitrary)

C1 = —2I€, d() = K, d1 = 1, (37)
1—a, - — oy
Cin—o = —Zn52n—1#, dan—2 = _Zn62n—127(&11 (3.8)
1 -,z 1 -,z
1 « Oop_
Cin-1 = = [|62n71|2 |Oon— 1|2]7n1, dan—1 = _zn_Zn : (3.9)
€on—1 n< €on—1
N
Can = —Zn€on, d4n - _zn52n7_n (310)
1—a,z
1 Z— )
Con+1 = __[|62n‘2 - |52n‘2] _n ; d4n—|—1 = _Enﬂ (311)
€on 1—a,z €on,



and set D_; =0 and forn=0,1,...

- . . .
Dy = 5,, Duany1 = Pon, Danyo =Py, 1, Dinys = Popys,

then the previous recurrences (3.1)—(3.6) reduce to
D_1 = 0, Do = 1, Dn = ann—l + CnDn—Za n= 1, 2, Ce

In other words, the D, are the canonical denominators in the continued fraction dy +
K> (cn/d,) where ¢, and d,, are given by (3.7)-(3.11). So we can denote its approximants
as C,/D,, n > 0. Note that when all o, = 0, this is a PC fraction (Perron-Carathéodory
continued fraction) [16].

Now suppose that the orthogonal functions o, and 7, are normalized such that we have
chosen in (2.6) and (2.8) the monic functions ®,. Thus

O9op = Bn*é;n, Oop+1 — Bn*ci)Qn—i—l; n = 0, ]_, [ (312)
Ton = B« ®@op, Ton+1 = B(n+1)*¢§n+1a n=01,... (313)

We recall that B, is given by (2.5) so that
P}, = &9, B, B, and @}, = Pni1)eBuBui1, n=0,1,... (3.14)

We now want to construct a continued fraction f; + K - (e,/f,) which is equivalent to
do + K 7, (cn/d,) and whose canonical numerators and denominators are E, and F, such
that the denominators are given by

F4n = O2p, F4n—|—1 = T2n, F4n+2 = Ton+1, F4n+3 =0o;m+1, N = 0,1,.... (315)

By the formulas for equivalence transformations given in [9, 1, 13], or directly working on
the recurrence relations (compare with [16] for the polynomial case), it is seen that we then
need a sequence {p, : n =0,1,2,...} with py = 1, giving an equivalent continued fraction
with

€n = PupPn_1¢, forn>1and f, = p,d, forn >0. (3.16)

Thus to get the desired result, these p’s should satisfy

B ®5, = po--pin®3, (3.17)
Bn*(i)2n = po-- 'P4n+1(i>2n (3.18)
B(n—l—l)*&);n-q-l = pPo--- p4n+2(i§n+1 (3.19)
Bn*&)2n+1 = pPo-- 'p4n+3(i’2n+1- (3-20)

From (3.17)-(3.20) it then follows that for n =1,2,...

1—a,z
n-3 =1, n—-2=— ", > 3.21
Pan—3 Pan—2 (O — 2) ( )

Zn(Qn — 2) 1—a,2

I e Bk R e 3.22
Pan—1 1— @,z Pa (O — 2) ( )

We then conclude from (3.7)—(3.11), (3.16) and (3.21)—(3.22) that
€1 = —2I€, f() = K, fl = 1, (323)
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and forn =1,2,...

1—a, 12 - Z— Ol
€4n—9 = ggn_linl, f4n—2 = 627&—17”1 (324)
Z— Qp Z— Oy
1 9 Z— Qp_1 don—1 (2 — )
= B _ 5 - 2 771’ 4= 3.25
Can—1 62n71[|62n 1" = 1020 1—@,2 fina €1 (1 — Tn2) (329)
€4n = —Zn€on, fan = don (3-26)
z )
Cin+1 = __n[|62n|2 - ‘5271‘2]: f4n+1 = _Enﬂ (327)
€on €on

The approximants E,/F, of the continued fraction fy + K’ (e,/f.) are equal to the ap-
proximants C,/D,, and the canonical denominators F,, satisfy (3.15).
Thus we have proved

Lemma 3.1 The continued fraction fo+¥K - (€,/fn) with (e,, f,) as given by (3.23)-(3.27)
is equivalent with the continued fraction do+ Ky~ (c,/dy) with (¢, d,) given by (3.7)—(3.11)
and its canonical denominators are the F, given by (8.15) where the o, and T, are the
orthogonal rational functions for R which are given by (3.12)—(3.13).

This gives us explicit formulas for recurrence relations satisfied by the orthogonal rational
functions o, and 7,. We just have to write down the recurrence for the denominators
F,,. These are mixed relations in the sense that the recurrence for the o’s and the 7’s is
intertwined. We give them explicitly.

Theorem 3.2 The orthogonal rational functions o, and 1, for R given by (3.12)—(3.13)
satisfy the mized recurrence relations

g =T = ]_ (328)
and forn=1,2,...
~ 2 — Qty— 1l—ao,_12
Ton—1 = 5271—17”17—271—2 — EQn—17n102n—2, (3.29)
- Unp — Qp
dop—1 2 — @ Z— Qe
Om—-1 = _2n . 7_717'27171 + = HGQn—l‘Q - |52n71|2]7_n17—2n725 (3-30)
€on—1 1—- 4 €2n—1 1-— (677%2
Oop = 52n02n—1 - an2n7-2n—17 (331)
) Z
Ton = _Enﬂo-Qn - _n[|€2n‘2 - |52n‘2]7—2n—1a- (3-32)
2n €2n

where 0, and €, are given by (3.5)-(5.6).

We now try to decouple these relations and get recurrences of the form

O = honOon_1+ Gonoon—_o (3.33)

Ommt+1 = hopt109n + Gon+102n—1. 3.34)

Thus we try to find a continued fraction hy+ K’ (g,/h,) whose canonical denominators are
0. Therefore we should construct a contraction of fo+K. - (e,/f.) to ho+K ~ (g,/hn) such



that the canonical denominators are related by Fy, = Hs, and Fy, 3 = Ho,y1. In Thron’s
paper [16], such formulas can be found. The result is that hy = fy and forn =1,2,...
€4n€in—1€4n—2

_ 3.35
Jan f4n71f4n72 + €in—1 ( )
e4nf4n—2
h _ + 3.36
2 f4" f4n71f4n72 + €in—1 ( )
Gon-1 = (fan-1fin—2+ €an—1)€4n3 (3.37)
hon—1 = (fan—1fan—2fin—3 + fan—1€an—2 + €an—_1 fan—3). (3.38)
Substituting from (3.24)-(3.27) into (3.35)—(3.38) we get forn =1,2,...
€ 1—o,_12
Gon = —zn—||ean1]? — [Gan 1 []— (3.39)
€2n—1 Z — Op
_ € — 1—-a,z
h2n = 5271 — Zn 5271—1 (340)
€on—1 Z — Oy
Zn—1 2 99 # — Qp_1
oy = - ol® — |Oop_o|| ————— 3.41
92n-1 €2n—252n—1[|62n 2|” — |02n—2] ]1 a1z (3.41)
Oop9 2 — Oy 1—a, 12
hon—1 = —Zp€op 1 2n 2 — : + 62n71+1- (3.42)
€op—2 1-— Qnpz 1— (7Y 4
So we get the explicit recurrence formulas forn =1,2,3,...
_ €or — 1—-a,z
Oon = [5271 — Zn 2n don—1 = ] O2n—-1
€2n—1 Z — Oy
€ l1—-a, 12
- [Zn 2n [|62n71|2 - |52n1‘2]7n1] O2n—2, (3-43)
€on—1 — Oy
[ 1 —a,z Oom 2 — Qi ]
Oon+1 = 52n+1f —Zp€oan+1—— 77— | O2n
1 —ap12 € 1 —0py12
— | — — 16 1, 3.44
e 12 (3.49)

with initial conditions
_ 51 + €12

N 1— oLz )
It is possible to give a similar derivation to obtain by another contraction the explicit recur-
rence relation for the 7,,. However, from (3.12)—(3.14) it immediately follows that

Onx = T (3.45)

Thus, the recurrences for the 7,, can be obtained from the recurrences for the o, by taking
the substar conjugate. We get forn =1,2,...

op =1, o1(2)

_ €on Z — Qp
Ton = [5271 - Zn_—52n—17_] Ton—1
€on—1 1 —ayz
N ) Z — Op—-1
- lzn@nn1 [|€2n—1|2 - |52n—1|2]ﬁ] Ton—2, (3-46)
- zZ—ay o Oop 1 — @2
Ton+1 Oopt1————— — Zp€opti=— | Ton
Z — Opq1 €on & — Opt1
Z 1—o,z
-l = 6 (3.47
€2n€2n 11 Z— Oy



However it is easily checked that by setting 0_; = 7y = 0 and 09 = 79 = 1, the previous
recurrences hold for n =0,1,.... Thus we have

Theorem 3.3 The orthogonal rational functions o, and 1, for R given by (3.12)-(3.13)
satisfy the three term recurrence relations (3.43)(3.44) and (3.46)-(3.47) forn =0,1,2, ...,
provided we set c_; =7_1 =0 and o9 = 179 = 1. The 6, and €, are given by (3.5)-(3.6).

4 Interpolation

The continued fraction fy + K -, (en/fn) with (e, f,) given by (3.23)-(3.27) is completely
defined by the linear functional M, the points {ay}° and the value of fy = k. We shall show
that this continued fraction defines uniquely two formal Newton series = and TI'.

We recall that a formal Newton series with respect to the points 5 = {f; : £k =0,1,...}
is a formal series of the form

vo+vi(z—Bo) +va(z—Bo)(z—B1)+ -+ vz —Bo) - (2= Bna) + - (4.1)

If S,, denotes the polynomial given by sum of the first n + 1 terms in this series, then the
(formal) Newton series expansion of a function ¢ with respect to 3 is the unique Newton
series of the form (4.1) which satisfies ¢(2) — S,(2) = O[(z — Bo) -+ (2 — Bn)] for n =
0,1,2,.... The coefficients (v, 1, ...) are the coordinates of ¢ with respect to the Newton
basis {No, N1, No,...} where Ny = 1 and N,, = [[}_,(z — Bx—1) for n > 1, which can be
associated with the interpolation points 8. These coordinates are given by the (possibly
confluent) divided differences vy = ©[Bo, b1, - - -, Bil-

If we assume o, # 0 for n = 1,2,... and set &, = 1/@,, then we shall consider formal
Newton series with repect to the tables

{0, aq, afla a1, &la g, &Qa g, &Qa <oy O, OA{TM Qn, &n; .- } (42)
and

{01 &la Qq, d1: aq, d?: 0, d?: G, ...y dna O, &na Qp, . . } (43)
Obviously, here we can use the alternative Newton bases

2 2, 2 2 2,2 2
1, Ry RW1, RWIT, BW T, RWI Ty ooy RW Tl 1Ty ‘W), T RWRWR 41T, RWpWn4 1 T Tp415 - - -

ie.,

Vo =1,
Vins1 = 20T, Vinyo = > =0,1,2
an+1 = RW,T,, An+2 = fWnWn41T,, n=u1,4,...

_ _ 2 _
Vings = 2WnWn1TnTpy1, Vinga = 2W, 1 TpTpg1, n=0,1,2,... (4.6)

for the first case and

2 2,2 2 2,2 2
1, Ry BTy RWITy RUWNLTTy BW{ Ty« v vy RUWn W T, RW, T RW, T T4 1y RWp W 1T Ty 41y - - -
ie.,
Wy =1, 7
2,2 2
Wians1 = 2w, m,, Wippo = 2w, T, n=0,1,2,... 4.8
2
W4n—|—3 = ZWnpWp 41T Tp41, W4n—|—4 = anwn+17Tn+1, n = 0, ]., 2, cen (49)
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in the second case
It is easily shown by an induction argument that the canonical numerators E, and de-
nominators F,, of the continued fraction fo + K~ (e,/f,) are of the following form (n > 0)

P, 4n Q4n

By, = s Fy = s Py, = ﬁZna Q4n = DP2n, (4'10)
WnTn WnThn
P4n Q
+1 4n+1 ~
By = v Fapr = v Pini1 = Gony Qant1 = on, (4-11)
n'tn nitn
P4n Q
+2 4n+2 ~
E4n—|—2 == ; F4n—|—2 = ; P4n+2 = P2n+1, Q4n—|—2 = DP2n+1, (412)
Wn+1Tn Wn+17n
P4n Q
+3 4An+3 ~
Eipis = R v Pints = Gonyi, Q4n+3 = Q2n+1, (4-13)
WnTp41 WnTp4+1

where Py, Pn, Gn, and g, are all in II,,. Since E,, and F;, have the same denominator, we can

deﬁne
" I n Qn’ " T ( )

In the remainder of this section, we assume that the above expressions for F), are ir-
reducible and do not vanish at the origin nor at infinity. We recall from [7] that the nth
orthogonal rational function ®,, for a sequence @ is called non-degenerate if the numerator of
&); does not vanish in &,_; and it is called non-exceptional if the numerator of ®,, does not
vanish in @&,_,. We shall say that ®, is completely non-degenerate if the numerator of @;‘1

does not vanish in any of the ay, £k =0,1,...,n (for £ = n this is automatic, since otherwise
®,, would not be in R,, ,) and we call &, completely non-exceptional if its numerator does not
vanish in any of the oy, £ =0,1,...,n. If ®,, is completely non-degenerate and completely

non-exceptional, we shall call it completely regular. In [7, Proposition 2.1], it is proved that
if the linear functional M is positive definite and all & are in D, then all of the ®, are
non-degenerate, but the same proof also implies that the ®,, are competely non-degenerate.
Also recall (see the proof of Lemma 2.1) that the polynomials p, are numerators of some
(/5* where the ¢, are orthogonal rational functions for the sequence & C D and thus ps, can
not vanish in any of the points 0, a4, ..., a;,, while py, 1 can not vanish in any of the points
0,1, ...,0,41. Thus the above requirement for Fy, and Fj, o comes down to saying that
neither po, nor po,.; vanish in the points a4, ..., &, and that they have precise degree as
indicated by their indices. Similarly, since the ¢, appear as numerators of some orthogonal
rational functions ¢~5n, the above assumptions on Fy, . ; and F}, 3 require that neither gy,
nor ¢o,+1 vanish in any of the points 0, a4, ..., a,. These conditions mean that all the o,
are completely regular.
We shall use the following general formulas for continued fractions

Enanl - Enlen = (—1)n_161€2 *c€p, n = 1, 2, ce (415)
and
EnibFh o —Ep 1 Fpp = (—1)"_16162 T €nfn+1; n=12... (4-16)
where in our case, the expressions (3.23)—(3.27) give (the w, are constants)

Wanp 2
(z —ap)(1 —@p2)’
Win+12
(z —an)(1 — @,2)’

€1€9 * **€Cyp = ’I’L:1,2,... (417)

€1€9***lapt1 = n=20,1,... (4.18)
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Wan4-22
z—an)(z — apgr)’
Wyn+3%
2= py1)(1 = Wppa2)’

€1€9 - - - C4ypto — ( n:O,l,... (419)

€169 - €ypi3 = ( n=0,1,... (4.20)

When we set by convention w_; = z ! and m_; = 1, then we see by direct verification for

the initial conditions and by substituting (4.17)—(4.20) and (4.10)—(4.13) into (4.15)—(4.16),
for the general cases that the following relations hold (u, and v, are constants)

BWn—1WnTn—1Tp

K4n+1 - K4n = U4p y n= O, ]_, P (421)
Ponqon
ZWp_1Wp Ty T
K4n—|—2 — K4n—|—1 = U4n+1w, n = 0, 1, PN (422)
Pon+192n
ZWp Wy Ty T
K4n—|—3 - K4n—|—2 = U4n+gw, n = 0, 1, - (423)
Pon+192n+1
ZWnWn T Tp41
K4n—|—4 - K4n—|—3 == U4n+3w, n= 0, 1, P (424)
Pon+292n+1
ZWp—1Wp_1TTp—1 T
K4n+1 — K4n—1 = VU4n-1 n-1¥n-1"n-1 n, n = 1,2, [ (425)
42n92n-1
ZWnWnp Ty 17T
K4n+2 — K4n = ’U4nw, n = O, 1, e (426)
Pon+1P2n
ZWn_1Wnp T T
K4n+3 — K4’n+1 = ’U4n+1w, n = 0, 1, P (427)
42n+192n
ZWnWh 1T T
Kinis = Kinyz = vgppp =", n=0,1,... (4.28)
Pon+1DP2n+2

Let us denote the coordinates of K, with respect to Newton basis (4.4)—(4.6) as ( ,‘C”));gozo
and those with respect to the Newton basis (4.7)—(4.9) by (’y,(cn)),;“;o. Then, considering the
even approximants, it follows from (4.26) and (4.28) that for n > 1

gD =Wk =0,1,...,4n—3, and &M =g p=0,1,... 4n— 1.
Thus f,(f") is independent of n for k£ < 2n — 1, so that the numbers
=62 k<2n-1

for k =0,1,... are well defined and not depending on n.
Similarly it follows from (4.25) and (4.27) that for the odd approximants (n > 1)

71&47171) = %Ellnﬂ), k=0,...,4n —3 and ’Y;(:m“) = ’Y/(c4n+3)a k=0,...,4n — 1.

and the numbers
w=at, k<on-1

are defined independent from n for £ =0,1,2,...
With these & and 7, we can define the formal Newton series

E(z) =&+ &Vi(z) + &Va(z) + - - (4.29)

and
[(z) = 70 + 1iWi(z) + 2Wa(z) + - - (4.30)
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with the Newton bases Vj, as in (4.4)-(4.6) and W}, as in (4.7)—(4.9). Clearly & = v = &,
with fo = k the common value at z = 0 for all K,,, with the exception of n = 1 (where the
value is —k). Thus we have

KH(O):&):”YO:K), n:0,2,3,4,...
On the other hand, by (4.21)—(4.24), we see that for n = 2,3,...
Knii—K,=0(z""), z— o0,

so that for n > 2, all K, take the same limit at oco. Thus we can define the value Ay by

. . . (—312 +E)I€
Ao = lim K, (2) = lim Ky(z) = lim ~22 9% _ . p>o
0= Jim Ka(2) = Jim Ko(2) = lim ~—="—— K, n2
Since also K7 = —k (note Ky = k), we have
lim K,(z)=X=—-k, n=123,... (4.31)

In other words, if the formal expansion at infinity of the approximants K, is given by

n 0
A

Kn(Z)Z)\(()n)‘FT‘F 2 -+ -

then Ao = A\ = —k for all n > 1.

Lemma 4.1 Given the point set o, with o, # 0 for n > 1, the linear functional M, and the
value of \g = Kk, then we can uniquely define the formal Newton series = and I as in (4.29)

and (4.30).

Let us couple the data Ag and {&;}r>o with the points at which they give information,
namely

Ao = (0, &), A1 = (Go, Ao), (4.32)
A4n72 = ((l/n, £4n73)a A4n71 = (d’na £4n72)a n = 1a 21 s (433)
A4n = (a’n: £4n71)a A4n—}—1 = (d’n: £4n)a n = 1: 25 .. (434)

and let us set A = (Aq, Ay, .. .).

Since f,(f”) =& fork=0,1,...,2n—1 and A = ), the approximant K, interpolates
the data A up to Ay, which are 2n + 1 interpolation conditions. Because by (4.10), Ky, is
of type (n,n) and thus has 4n + 1 degrees of freedom we say that Ky, is a multipoint Padé
approximant (MPA) of type (n,n) for these data.

For the odd approximants, we arrange the data as

Vo = (&, M), V1= (a0,), (4.35)
v4n—2 = (&n; ’7471—2); v4n—1 = (ana 7471—1)7 n= 17 27 ce (436)
v4n = (&n, 74n)a V411.—|—1 = (a’n, 74n+1)a n= 1: 25 .. (437)
and set V = (Vo,V1,Vs,...). For reasons similar to the ones used in the case of the

even approximants, we see that Ko, interpolates the data V up to Vg, which are 2n + 1
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interpolation conditions. Because Ky, is of type (n,n), we can say that Ko, is a MPA
of type (n,n) for the data V.
Since
K2n—|—1 —-E= O(‘/2n—|—1)

and since by (4.22) and (4.24), we have for the Newton expansions with respect to the basis
V,, that
Kony1 — Konra = O(Vop1), n>1,

it follows that §,(62n+1) =& for k=0,1,...,2n — 2. Thus we see that Ky, interpolates the
data A up to Ay,_; which are 2n conditions. Because Ko, is of type (n,n), this is one
condition short to be called an MPA for the data A.

By similar arguments one can obtain that the approximants K», interpolate the data V
up to Vo, _1, which are again 2n interpolation conditions. Because also Ko, is of type (n,n),
once more we are one interpolation condition short to call K5, a MPA for the data V.

Theorem 4.2 Suppose «,, # 0 for n > 1. Suppose the wnterpolation data A and V are
defined as in (4.32)—(4.34) and (4.35)-(4.37). Then Ko, is a MPA for A of type (n,n) and
it interpolates the first 2n data couples from V. On the other hand Ky, 1 s a MPA for V
of type (n,n) and it interpolates the first 2n data couples of A.

So far, we have assumed that all a,, # 0 for n > 1. Now assume that in the sequence
{a1,ay, ..., a0} we have a; = 0 for m different values of i. Then of course the corresponding
factor (1 — @;z) = 1. Taking this into account when inspecting the right-hand sides of
(4.21)—(4.24), it follows that

Kni(2) — K, =0(z™™), with m' > 2m 41 for n > 4k + 1.

Thus there must exist numbers Ag, ..., Ay, independent of n such that
Ko(2) =X+ Azt 4o 4 dgppz™ 2™ + Ag’;,1+1z1—2m +---, z—o00, VYn>4m+1.
Thus if o, = 0 for 0 < & = nq,no, ..., n, with m < oo, then we can define a polynomial of

degree 2m if m is finite, or a formal power series if m is infinite, say

Al Ao Aom
Liz)=XM+—+ 5+ + 50
(2) 0T T 2 »2m
Although checking all the details is a tedious job, one can verify that the following procedure
will allow us to keep the interpolation properties of the approximants as given in Theorem 4.2
without the condition that the «,, # 0 for n > 1.

0. Suppose o =0 for k € {ny,ng,...} with 0 <ng <mg <---.

1. Then the set {V,}52, will not be a basis for II. To turn this into a basis, drop all
the vectors Vi,,—1 and Vip.41, 2 = 1,2,.... Similarly turn {W,,}°, into a basis by
dropping the vectors Wy, o and Wy, .

2. By this operation, the coefficients &4, —1,64n;41, Van,—2 and 7a,, will disappear as well.
Replace in the data set A the coefficients &4, 1 and &y, 41 by A;, and replace in the
data set V the coefficients 7ys,, 2 and 7y4,, by A;
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Interpolation of the data set A then means that the approximant will match a number of
coefficients in the formal Newton series = and a number of terms in the formal power series
L at oo. If all o, # 0 for n > 1, there is only one coefficient, namely )\q, in the series L
defined, and this one coefficient is matched. All the other interpolation effort goes to the
series =. However, each time a data couple is met with &,, = 0, then a coefficient in = is
skipped and a coefficient in L is matched instead. A similar interpretation can be given for
interpolation of the data set V.

In the special case where all oy = 0, then = = I' will be formal power series at the
origin and L will be a formal power series at co. The approximants are then two-point Padé
approximants (2PA) for I" and L. The even approximants Ky, match n + 1 terms of I and
n terms of L while the odd approximants match n + 1 terms of L and n terms of I'. They
are the the 2PAs in the balanced situation.
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