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Abstract
We look at modeling carbon nanostructures from a theoretical graph network view, where a graph has atoms at a vertex

and links represent bonds. In this way, we can calculate standard statistical mechanics functions (entropy, enthalpy,
and free energy) and matrix indices (Wiener Index) of finite structures, such as fullerenes and carbon nanotubes. The
Euclidean Wiener Index (topographical index) is compared with its topological (standard) counterpart. For many of these
parameters, the data have power law behavior, especially when plotted versus the number of bonds or the number of
atoms. The number of bonds in a carbon nanotube is linear with the length of the nanotube, thus enabling us to calculate
the heat of formation of capped (5,5) and (10,10) nanotubes. These properties are determined from atomic coordinates
using MATLAB routines.
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1 Introduction
Carbon has many allotropes (diamond, graphite, fullerenes, and carbon nanotubes, (CNTs)) that illustrate the amazing
chemical and structural diversity of element number six. We consider the nanosized forms in our calculations; fullerenes
and CNTs. Fullerenes were discovered in 1985 [1], carbon nanotubes in 1991 [2], and graphene in 2004 [3]. As a result
of these groundbreaking discoveries, there are now literally thousands of scientists studying novel forms of carbon and
their properties.

The first fullerene to be discovered was C60, with a structure described as similar to that of a football (soccer ball)
[1] with pentagonal cycles separated by hexagonal ones, see Figure 1A. This so-called isolated pentagon rule (IPR) is
thought to stabilize the fullerene structure, since pentagonal bonds cost more energy than hexagonal ones [4]. Thus,
pentagonal cycles are found separated by hexagonal ones, so that there is 26 maximum separation between the two types.
The smallest fullerene is C20, consisting of 12 pentagons. In general, a fullerene has n 3-valent vertices with 12 pentagons
and (n/2− 10) hexagons, with 3/2n carbon-carbon bonds [5,6]. Experimentally, there is evidence of fullerenes as large
as C418, found in soot [7]. There are many isomers of the fullerene structures, so that several possible structures exist;
however, most of these are not favored energetically

Nanotubes were discovered in 1991 [2], as straight ‘helical’ coils of carbon, although filamentous carbon [8] was
known prior to 1991. Thus a nanotube can be thought of as a rolled up sheet of graphene, with hemispheres of fullerenes
at the ends. A commonly accepted growth mechanism [9,10] is that nanotubes form by catalytic action of transition
metals, such as iron or cobalt, with a cap at one end and the open growth end eventually becoming closed after some
aspect ratio is created. The nanotube analogue to C60, the most common fullerene, seems to be a (10,10) nanotube capped
with hemispheres of C240 [10], see Figure 1B and 1C.

Nanotubes are defined [11] by their ‘chiral vector’, or angle cut through the 2D layer of graphene, with

na1 +ma2 ≡ (n,m) (1)

where the indices (n,m) describe the number of unit vectors in the hexagonal graphene honeycomb lattice. There are
two common geometries, a ‘zigzag’ nanotube, with a chiral angle of θ = 0◦, and an ‘armchair’ nanotube with θ = 30◦,
leaving a general chiral nanotube with 0◦ ≤ θ ≤ 30◦. The chiral angle is given by:

θ = tan−1
[√

3m/(m+ 2n)
]

(2)

and the nanotube diameter is
dt = Ch/π =

√
3ac−c(m

2 +mn+ n2)1/2/π (3)

where ac−c is the carbon-carbon nearest neighbor distance (1.421 Å) in graphite. Thus the (10,10) nanotube is of the
armchair variety.
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A. MATLAB plot of C60(Ih). Contrast indicates pentag-
onal cycles in the structure.

B. MATLAB plot of C240(5v). Contrast indicates pen-
tagonal cycles in the structure.

C. MATLAB plot of carbon nanotube (10,10) 100 Å

Figure 1: MATLAB plots
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2 Methods
We employ a graph-theoretical approach, where nodes represent atoms, and an edge represents a bond between sites,
G = (V,E). We create a graph of the nanosized form of carbon by creating bonds (links) between nearest neighbors up
to 1.3 times the shortest neighbor distance. These vary from 20 to 8360 atoms for fullerenes and nanotubes. An adjacency
matrix is created and may exist in two forms. The standard form [12] is

A =

{
H(rc − rij) i 6= j
0 i = j

(4)

where the Heaviside step function H(rc − rij) = 1 if rc < 1.3∗*shortest distance to rij), and i and j represent atomic
sites, and rc is the cutoff value. Alternatively, we may consider the actual Euclidean distances in the adjacency matrix
[13,14], so that H(rc–rij) = eij , the Euclidean distance between atoms.

The approach to modeling the free energy, enthalpy, and entropy has been discussed in the literature [15,16]. These
can all be determined from the appropriate adjacency matrix. We also calculate one of the oldest indices, the Wiener index
[17], as

W =
1

2

N∑
i=1

N∑
j=1

dij (5)

where N is the number of atoms and dij is the shortest path distance between atoms i and j. In the standard form, the
distances between atoms = 1, and in the Euclidean form [13], it is eij , so that we calculate WE , the Euclidean 3D Wiener
index. The collection of data starts from the atomic coordinates, and proceeds to calculating the adjacency matrix, and
from it, all the results come from one MATLAB routine.

3 Results
In Figure 1, we show plots of finite nanocarbons, C60(Ih), C240(5v), and a (10,10) nanotube. In our notation, the fullerene
isomers are listed in parentheses as Ih or 5v. The fullerenes and nanotubes have atoms with 3-fold coordination and the
hexagonal and pentagonal cycles are shown in blue and red respectively. Once we have created the adjacency matrix, the
statistical mechanics data can be calculated [15,16]. The partition function is:

Z(G, β) = Tr(eβA)

where A is the adjacency matrix for the graph G, and β = 1/(kBT ). At T = 300K, we have β = 38.68173/eV . The
entropy can be determined as

S(G, β) = −kB
∑
j

λjpj + kB ln(Z)
∑
j

pj

where λj is an eigenvalue of A and

pj =
eβλj

Z(G,B)

is the probability that the ensemble occupies a microstate j. The free energy is the natural logarithm of the partition
function,

F (G, β) = − lnZ(G, β)

β

and the enthalpy can be defined as follows:

H(G, β) = − 1

Z(G, β)
Tr(AeβA).

We then plot the free energy, enthalpy, and entropy, per bond, versus the number of bonds in the nanocarbons. This results
in plots with good power law [18] regression statistics as shown in Figure 2. We plot the data/bond versus the number
of bonds for fullerenes and nanotubes. The distinction between (a) and (b) is that in (a), we have used an adjacency
matrix with Euclidean distances, and in (b), we have used the standard adjacency matrix with zeros and ones. The
bestfit equations in (a) have different leading coefficients, so that the entropy and enthalpy coincide (neglecting the sign
difference) for small (≈ 100 atoms) nanocarbons, and since the slope is different, the plots diverge for larger structures.
These quantities are divided by the number of bonds in the nanocarbon and plotted versus NB , to give a power law plot.
The asymptote of zero for large NB makes intuitive sense, since if we imagine the data/bond is finite, then as the number
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(a) Plots of the free energy, enthalpy, and entropy / bond
versus the number of bonds. The data clearly exhibits
power law character. This plot uses a Euclidean adja-
cency matrix.

(b) Plots of the free energy, enthalpy, and entropy / bond
versus the number of bonds. The data clearly exhibits
power law character. This plot uses a standard adjacency
matrix.

Figure 2: Power law plots for fullerenes and nanotubes.

Structural Motif εi.(kcal/mol)

pppp 19.8

pphp 17.6

pphh 10.3

phpp 15.7

phhp 12.4

phhh 7.8

hhpp 6.2

hhhp 4.7

hhhh 1.7

Table 1: Heat of formation parameters for the nine structural motifs [19].
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Figure 3: Power law plot of the Wiener Index (standard and Euclidean) for fullerenes and nanotubes versus the number of
atoms, N .

of bonds becomes large, we have zero as a limit. Note that the free energy and enthalpy have their signs reversed to allow
them to be plotted.

For the fullerenes and nanotubes, we can calculate the energy of formation based on the types of bonds [19] in the
structures, see Table 1. We use three types of bonds, as hh, hp, and pp, indicating hexagonal or pentagonal edges, and
then further subdivided as to whether the opposite ends of the bond meets a hexagonal or pentagonal cycle. This gives a
total of nine bonds and the heat of formation can be calculated as:

∆Hf =

motifs∑
i

εini

where εi is the energy contribution of each structural motif (nine) and ni is the number of bonds associated with that
motif. Since fullerenes have been analyzed extensively [20-22], we show ∆Hf versus length in Angstroms for two of
the more common nanotubes, the (5,5) and (10,10) armchair varieties. For nanotubes, the heat of formation includes the
energy to create the cap and then the length of the tube. We plot these results in Figure 3. The (5,5) nanotubes contain
a cap of C60 which has 60 phhh bonds and 30 hhpp bonds to give ∆Hf = 654 kcal/mol. As the length of the nanotube
increases, we add hhhh bonds at 1.7 kcal/mol for each bond. The (10,10) nanotubes have a cap of C240 (see Figure 1B)
[9], which has 60 phhh bonds, 60 hhhp bonds, and 240 hhhh bonds, to give ∆Hj = 1158 kcal/mol. Again, as the length of
the nanotube increases, we add hhhh bonds at 1.7 kcal/mol for each bond. From the graph, we see that since the (10,10)
tube is larger, the slope is 41.63 kcal/mol per Å length versus 20.689 kcal/mol per Å length for the (5,5) nanotube. For the
(10,10) nanotubes, this gives a cap energy of 64 eV and a length energy of 1.8 eV / Å. These data are in good agreement
[9] (40 eV and 0.74 eV / Å) with estimated measurements.

Since we are using a graph-theoretical language, we also calculate the Wiener index for fullerenes and nanotubes,
based on the coordinate information in MATLAB. We note that for fullerenes, the Wiener index of C60(Ih) = 8340 has
been known since 1992 [23], and since then some additional results have been calculated [24-26]. The Wiener index for
armchair and zigzag nanotubes has been known since 2004 [27,28]. In Table 2, we list some of the Wiener indices for
the fullerenes we investigate, and also the (5,5) and (10,10) nanotubes. The Wiener Index for the fullerenes up to C84

agree with previous [24] results, and we add new results up to C720 and also the Euclidean indices for all nanocarbons.
In Figure 4, we plot the Wiener index versus N , the number of carbon atoms, to give a power law relationship. We note
that for the fullerenes, the Wiener index depends on the structure, so each isomer has a different value for the index.
Also, for the nanotubes, the original calculation [27,28] of the Wiener Index did not include caps on the ends, so a direct
comparison is not possible. Our modeling is for nanotubes up to 500 Å in length, with caps at both ends.
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Figure 4: Heat of formation for (5,5) and (10,10) armchair nanotubes versus length in Angstroms.

N NB Nanostruct Wiener Index (W ) Euclid. Wiener Ind. (WE) Ave Bond (Å)
20 30 C20(Ih) 500 710.02423 1.4200
32 48 C32(D3d) 1696 2408.3699 1.4200
40 60 C40(Td) 3000 4260.0679 1.4200
50 75 C50(D3) 5275 7490.6239 1.4200
60 90 C60(Ih) 8340 11917.75156 1.4320
70 105 C70(D5h) 12375 17672.68417 1.4307
84 126 C84(D2) 19646 28041.35179 1.4303

240 360 C240 277440 392329.2316 1.4187
540 810 C540 2119320 2994979.407 1.4190
720 1080 C720 4352340 6162553.116 1.4207
100 150 (5,5)5 30580 42310.62308 1.3879
140 210 (5,5)10 72860 101743.2403 1.3962
260 390 (5,5)25 383700 541217.5044 1.4059
460 690 (5,5)50 1899100 2689448.448 1.4107
880 1320 (5,5)100 12350940 17526597.26 1.4150
4120 6180 (5,5)500 1186916820 1685572294.8 1.4164
320 480 (10,10) 5 569680 804021.9498 1.4156
400 600 (10,10) 10 997120 1410161.755 1.4165
640 960 (10,10) 25 3341840 4737709.644 1.4178
1040 1560 (10,10) 50 12327040 17496098.43 1.4193
1860 2790 (10,10) 100 62759375 89129458.54 1.4187
8360 12540 (10,10) 500 5046069000 7169083944.2 1.4199

Table 2: N is the number of atoms in the nanostructure, fullerenes are denoted by CN and nanotubes by their chiral
indices followed by their length in Angstroms. The topological Wiener Index is W , and the Euclidean Wiener Index is
WE . The bond length is in Angstroms.
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4 Conclusion
In summary, we have determined the power law behavior of the free energy, enthalpy, entropy, and atomic displacement
of nanocarbons consisting of 20-8360 atoms. We use atomic coordinates to calculate the Wiener index for fullerenes
and nanotubes. There are some minor distinctions when using the Euclidean Wiener index, which we have included for
completeness. The heat of formation of nanotubes follows a linear relationship with length in agreement with known data.

We have outlined procedures applicable to modeling finite carbon nanostructures using only the 3D coordinates of the
structures. These methods will allow others to investigate similar types of models and we encourage the understanding of
nano-geometries as we move into the 21st century.
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