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Abstract. We describe an algorithm for complex discrete least squares approximation, which
turns out to be very efficient when function values are prescribed in points on the real axis or on
the unit circle. In the case of polynomial approximation, this reduces to algorithms proposed by
Rutishauser, Gragg, Harrod, Reichel, Ammar and others. The underlying reason for efficiency is
the existence of a recurrence relation for orthogonal polynomials, which are used to represent the
solution. We show how these ideas can be generalized to least squares approximation problems of a
more general nature.
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1. Introduction. Let {zk}m
k=0 be a set of complex nodes and {w2

k}m
k=0 a set of

positive weights (let us assume that wk > 0).
We shall first solve the problem of finding the least squares polynomial approximant
in the space with positive semi-definite inner product

〈f, g〉 =
m∑

k=0

f(zk)w2
kg(zk).(1)

Note that this is a positive definite inner product for the space of vectors (f(z0), . . . , f(zm))
representing the function values at the given nodes.
The polynomial p ∈ Pn of degree n ≤ m which minimizes

‖f − p‖, with ‖v‖ = 〈v, v〉1/2

(note that this is a semi-norm) can be found as follows. Find a basis {ϕ0, . . . , ϕn}
for Pn which is orthonormal with respect to 〈·, ·〉. The solution p is the generalized
Fourier expansion of f with respect to this basis, truncated after the term of degree
n. An algorithm that solves the problem will compute implicitly or explicitly the or-
thonormal basis and the Fourier coefficients. As we shall see in the following sections,
we can reduce the complexity of such an algorithm by an order of magnitude when a
“short recurrence” exists for the orthogonal polynomials. We shall consider the case
where all the zi are on the real line, in which case a three-term recurrence relation
exists, and the case where all the zi are on the complex unit circle, in which case a
Szegő type recurrence relation exists.

The above mentioned discrete least squares problem is closely related to many
other problems in numerical analysis. For example, consider the quadrature formula∫ b

a

w(x)f(x)dx ≈
m∑

k=0

w2
kf(zk)

where w(x) is a positive weight for the real interval [a, b]. We get a Gaussian quadra-
ture formula, exact for all polynomials of degree 2m+1 by a special choice of the nodes
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2 A. BULTHEEL AND M. VAN BAREL

and weights. The nodes zk are the zeros of the (m+ 1)st orthogonal polynomial with
respect to 〈f, g〉 =

∫ b

a
f(x)g(x)w(x)dx. These are also the eigenvalues of the truncated

Jacobi matrix which is associated with this orthogonal system. The weights w2
i are

proportional to q2i0 where qi0 is the first component of the corresponding eigenvector.
Another link can be made with inverse spectral problems. These come in sev-

eral forms. One variant is precisely the inverse of the previous quadrature problem:
find the Jacobi matrix, when its eigenvalues and the first entries of the normalized
eigenvectors are given.

We shall call the computation of the quadrature formula or the eigenvalue de-
composition of the Jacobi matrix direct problems, while the inverse spectral problem,
and the least squares problem will be called inverse problems.

For a survey of inverse spectral problems, we refer to Boley-Golub [5]. One of the
methods mentioned there is the Rutishauser-Gragg-Harrod algorithm. This algorithm
can be traced back to Rutishauser [14] and was adapted by Gragg-Harrod [11] with
a technique of Kahan-Pal-Walker for chasing a nonzero element in the matrix.

For a discrete least squares interpretation of these algorithms we refer to Reichel
[12]. When the zi are not on the real line, but on the unit circle, similar ideas
lead to algorithms discussed by Ammar and He [4] and Ammar-Gragg-Reichel [2] for
the inverse eigenvalue problem and to Reichel-Ammar-Gragg [13] for a least squares
interpretation.

We shall first survey the general theory in the context of discrete least squares
approximation where the zk are arbitrary complex numbers in sections 2,3 and 4.
In section 5, we shall explain how the complexity can be reduced with an order of
magnitude when short recurrences exist.

The next step (section 6) is to generalize these results to the problem of minimizing

min
m∑

k=0

|w0kp0(zk) + · · ·+ wαkpα(zk)|2(2)

where the {w0k, . . . , wαk}m
k=0 are given complex numbers and the polynomials pi of

degree at most di, i = 0, . . . , α have to be found, with the constraint that at least one
of them is monic of strict degree.

When α = 1, this generalization is related with rational approximation, in con-
trast with the previously described problem, which is related to polynomial approx-
imation. We shall refer to the generalized problem as the matrix case, while the
simpler polynomial case is referred to as the scalar case.

For the matrix case, we may distinguish between two levels of complication. When
all the degrees di are equal, it will turn out (section 7) that the solution method can
be described in terms of square matrix orthogonal polynomials of size α+ 1, and the
previous theory of scalar orthogonal polynomials is readily generalized.
When not all the degrees di are equal, we are in the most general case that we shall
consider here (section 8). The solution can be described now in terms of vector
orthogonal polynomials, which allow to combine the scalar orthogonal polynomials of
the first case and the matrix orthogonal polynomials of the second case which will
show up both during the solution of the problem.
The break-down of the algorithm will only occur in the case of exact interpolation.
This is discussed in section 9.

To avoid an unduly complicated notation, we shall mainly restrict ourselves in
this paper to the case α = 1, but the generalization to general α ≥ 1 should be
obvious.
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2. Polynomial least squares approximation. Discrete least squares approx-
imation by polynomials is a classical problem in numerical analysis where orthogonal
polynomials play a central role.
Given an inner product 〈·, ·〉 defined on Pm × Pm, the polynomial p ∈ Pn of degree at
most n ≤ m, which minimizes the error

‖f − p‖, p ∈ Pn

is given by

p =
n∑

k=0

ϕkak, ak = 〈f, ϕk〉

when the {ϕk}n
0 form an orthonormal set of polynomials:

ϕk ∈ Pk − Pk−1, P−1 = ∅, 〈ϕk, ϕl〉 = δkl.

The inner product we shall consider here is of the discrete form (1) where the zi are
distinct complex numbers.
Note that when m = n, the least squares solution is the interpolating polynomial, so
that interpolation can be seen as a special case.
To illustrate where the orthogonal polynomials show up in this context, we start with
an arbitrary polynomial basis {ψk}, ψk ∈ Pk − Pk−1. Setting

p =
n∑

k=0

ψka
Ψ
k , aΨ

k ∈ C,

the least squares problem can be formulated as finding the weighted least squares
solution of the system of linear equations

n∑
k=0

ψk(zi)aΨ
k = f(zi), i = 0, . . . ,m,

which is the same as the least squares solution of

WΨnA
Ψ
n = WF

where W = diag(w0, . . . , wm) and

Ψn =

 ψ0(z0) . . . ψn(z0)
...

...
ψ0(zm) . . . ψn(zm)

 , AΨ
n =

 aΨ
0
...
aΨ

n

 , F =

 f(z0)
...

f(zm)

 .
Note that when ψk(z) = zk, the power basis, then Ψn is a rectangular Vandermonde
matrix.
The normal equations for this system are

(ΨH
n W

2Ψn)AΨ
n = ΨH

n W
2F.

When the ψk are chosen to be the orthonormal polynomials ϕk, then ΨH
n W

2Ψn = In+1

and the previous system gives the solution AΨ
n = ΨH

n W
2F immediately.
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When the least squares problem is solved by QR factorization, i.e., when Q is an
m ×m unitary matrix such that QHWΨn = [RT 0T ]T , is upper triangular, we have
to solve the triangular system given by the first n+ 1 rows of[

R
0

]
AΨ

n = QHWF +
[

0
X

]
where X is related to the residual vector r by[

0
X

]
= QHr, r = WΨnA

Ψ
n −WF.

Note that the least squares error is ‖X‖ = ‖r‖. Again, when the ψk are replaced by
the orthonormal polynomials ϕk, we get the trivial system (m ≥ n)[

In+1

0

]
AΦ

n = QHWF +
[

0
X

]
.

Note that a unitary matrix Q is always related to the orthonormal polynomials ϕk by

Q = WΦ

where

Φ = Φm =

 ϕ0(z0) . . . ϕm(z0)
...

...
ϕ0(zm) . . . ϕm(zm)


since

QHQ = ΦHW 2Φ = Im+1.

3. The Hessenberg matrix. From the previous discussion, it follows that the
central problem is to construct the orthonormal basis {ϕk}. In general, the polynomial
zϕk−1(z) can be expressed as a linear combination of the polynomials ϕ0, . . . , ϕk,
leading to a relation of the form

zϕk−1(z) = ηkkϕk(z) + · · ·+ η0kϕ0(z), k = 1, . . . ,m+ 1.

We can express the previous relations as

z[ϕ0(z), . . . , ϕm(z)] = [ϕ0(z), . . . , ϕm(z)]H + eT
m+1ϕm+1(z)ηm+1,m+1,(3)

where H is an upper Hessenberg matrix

H =


η01 . . . η0m η0,m+1

η11 . . . η1m η1,m+1

. . .
...

...
ηmm ηm,m+1


and eT

m+1 = [0 0 . . . 0 1].
Note that a discrete inner product of the proposed form will cause a break-down
in the generation of the polynomials at stage m + 1. Indeed, we should identify a
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function with the (m + 1)-vector of its function values in zk, k = 0, . . . ,m. Thus
when we say the “polynomial p”, we actually mean the vector (p(z0), . . . , p(zm)).
Thus our “function space” is a space of (m+ 1)-vectors, which is inherently (m+ 1)-
dimensional, and thus the (m+1)-st orthogonal polynomial will be orthogonal to the
whole space, hence it must be zero. Thus, if ϕk are these orthogonal polynomials, then
[ϕm+1(z0), . . . , ϕm+1(zm)]T will be the zero vector. This is equivalent with saying that
ϕm+1 is proportional to (z − z0) . . . (z − zm).
Even when we use terms as “functions”, and “polynomials”, the problem considered
is in fact a vectorial problem, which can be best formulated in terms of matrices,
which we shall do below.
Setting Φ = Φm as before, we rewrite the relation (referr) as

ZΦ = ΦH

with Z = diag(z0, . . . , zm).
Multiplying with the diagonal matrix W and using WZ = ZW , we are lead to

H = (WΦ)HZ(WΦ) = QHZQ,

which means that the diagonal matrix Z and the Hessenberg matrix H are unitarily
similar.
The constant polynomial ϕ0 is normalized when it is equal to η−1

00 with η00 given by

QHw1 = [η00, 0, . . . , 0]T

where w1 = [w0, . . . , wm]T . Indeed, using Q = WΦ and supposing ‖ϕ0‖ = 1, we see
that all the entries in QHw1 are zero by orthogonality, except for the first one, which
is 1/ϕ0.
This condition is not sufficient to characterize Q completely. We can fix it uniquely
by making the ϕk to have positive leading coefficients. This will be obtained when all
the ηkk, k = 0, 1, . . . ,m are positive. Since we assumed that all the weights w2

i are
positive, the ηkk are nonzero and therefore this normalization can always be realized.

We thus obtained a 1-to-1 relation between the data {zi, wi}m
0 , the unitary matrix

Q and the elements ηij , i = 0, . . . ,m, j = 0, . . . ,m + 1 of an extended (with η00)
Hessenberg matrix and this also fixes the orthonormal polynomials.

Since Z and H are unitarily similar, they have the same spectrum and the con-
struction of H from Z by unitary similarity transformations is in fact an inverse
spectral problem: given the spectrum Z and the first components of the eigenvectors,
find the set of orthonormal eigenvectors (the columns of QH), such that QHZQ is the
eigenvalue decomposition of some upper Hessenberg matrix with the normalization
described above.

In the direct problem, one computes the eigenvalues {zk}m
0 and the eigenvectors

Q from the Hessenberg matrix, e.g., with the QR algorithm. For the inverse problem,
the Hessenberg matrix is reconstructed from the spectral data by an algorithm which
could be called an inverse QR algorithm. This is the Rutishauser-Gragg-Harrod al-
gorithm for the case of the real line [11, 12] and the unitary inverse QR algorithm
described in [2] for the case of the unit circle. For the least squares problem, we
add the function values f(zk) and when these are properly transformed by the simi-
latity transformations of the inverse QR algorithm, this will result in the generalized
Fourier coefficients of the approximant and some information about the corresponding
residual. Indeed, the solution of the approximation problem is given by

p = [ϕ0, . . . , ϕn]AΦ
n , AΦ

n = ΦH
n W

2F.
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Note that the normal equations are never explicitly formed.

The whole scheme can be collected in one table giving the relations

QH
[

w0 w1 Z
] [ I2

Q

]
=


η00 η01 . . . η0m η0,m+1

AΦ
n 0 η11 . . . η1m η1,m+1

−−
...

. . .
...

...
X 0 ηmm ηm,m+1


with w0 = WF and w1 = [w0, . . . , wm]T as before. The approximation error is ‖X‖.
For further reference we shall refer to the matrix of the right hand side as the extended
Hessenberg matrix.

4. Updating. Suppose that AΦ
n was computed by the last scheme for some data

set {zi, fi, wi}m
0 . We then end up with a scheme of the following form (n = 3,m = 5)

× × × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×
× × × ×
× × ×

A new data triple (zm+1, fm+1, wm+1) can be added, for example, in the top line. The
three crosses in the top line of the left scheme below represent wm+1fm+1, wm+1 and
zm+1 respectively. The other crosses correspond to the ones we had in the previous
scheme.

× × ×
× × × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×
× × × ×
× × ×

⇒

× × × × × × × × ×
× × × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×
× × × ×
× × ×

This left scheme has to be transformed by unitary similarity transformations into the
right scheme which has the same form as the original one but with one extra row
and one extra column. This result is obtained by eliminating the (2,2) element by an
elementary rotation/reflection in the plane of the first two rows. The corresponding
transformation on the columns will influence columns 3 and 4 and will introduce a
nonzero element at position (3,3) which should not be there. This is eliminated by a
rotation/reflection in the plane of rows 2 and 3 etc. We call this procedure chasing
the elements down the diagonal. In the first column of the result, we find above the
horizontal line the updated coefficients AΦ

n . When we do not change n, it is sufficient
to perform only the operations which influence these coefficients. Thus we could have
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stopped after we obtained the form

× × × × × × × × ×
× × × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×
× × × × ×
× × ×

This can be done with O(n2) operations per new data point. In the special case of
data on the real line or on the unit circle, this reduces to O(n) operations as we shall
see in the next section.

5. Recurrence relations. The algorithm described above simplifies consider-
ably when the orthogonal polynomials satisfy a particular recurrence relation.
A classical situation occurs when the zi ∈ R, i = 0, 1, . . . ,m. Since also the weights
wi are real, the Q and H matrix will be real, which means that we can drop the com-
plex conjugation from our notation. However, in view of the generalization to follow,
where we shall have complex numbers instead of the wi, we keep for the moment the
bar, although it has no effect, being applied to real numbers. Thus we observe that
for zi ∈ R, the Hessenberg matrix H satisfies

HH = (QHZQ)H = QHZQ = H.

This means that H is Hermitian and therefore tridiagonal. The matrix H reduces to
the classical Jacobi matrix

H =


a0 b̄1

b1 a1
. . .

. . . . . . b̄m
bm am


containing the coefficients of the three term recurrence relation

ϕ−1 = 0, zϕk(z) = b̄kϕk−1(z) + akϕk(z) + bk+1ϕk+1(z), k = 0, 1, . . . ,m− 1.

A similar situation occurs when the zi are purely imaginary, in which case the matrix
H is skew Hermitian. We shall not discuss this case separately.

The algorithm we described before now needs to perform rotations (or reflections)
on vectors of length 3 or 4, which reduces the complexity of the algorithm by an
order. This is the basis of the Rutishauser-Gragg-Harrod algorithm [14, 11]. See also
[5, 12, 6].

In this context, it was observed only lately [9, 10, 2, 13, 3] that also the situation
where the zi ∈ T (the unit circle) leads to a simplification. It follows from

HHH = QHZHZQ = QHQ = Im+1

that H is then a unitary Hessenberg matrix. The related orthogonal polynomials
are orthogonal with respect to a discrete measure supported on the unit circle. The
3-term recurrence relation is replaced by a recurrence of Szegő-type

zϕk−1(z) = ϕk(z)σk + ϕ∗k−1(z)γk
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with

ϕ∗k(z) = zkϕk(1/z) ∈ Pk and σ2
k = 1− |γk|2, σk > 0

where the γk are the so called reflection coefficients or Schur parameters. Just like in
the case of a tridiagonal matrix, the Hessenberg matrix is built up from the recurrence
coefficients γk, σk. However, the connection is much more complicated. For example,
for m = 3, H has the form

H =


−γ1 −σ1γ2 −σ1σ2γ3 −σ1σ2σ3γ4

σ1 −γ̄1γ2 −γ̄1σ2γ3 −γ̄1σ2σ3γ4

σ2 −γ̄2γ3 −γ̄2σ3γ4

−σ3 γ̄3γ4

 .
The Schur parameters can be recovered from the Hessenberg matrix by

σj = ηjj , j = 1, . . . ,m, η00 = 1/ϕ0 = σ0,

γj = −η0j/(σ1σ2 . . . σj−1), j = 1, . . . ,m+ 1.

The complexity reduction in the algorithm is obtained from the important observation
that any unitary Hessenberg matrix H can be written as a product of elementary
unitary factors

H = G1G2 . . . GmG
′
m+1

with

Gk = Ik−1 ⊕
[
−γk σk

σk γ̄k

]
⊕ Im−k, k = 1, . . . ,m

and

G′
m+1 = diag(1, . . . , 1,−γm+1).

This result can be found e.g., in [9, 2].
Now an elementary similarity transformation on rows/columns k and k+ 1 of H,

represented in this factored form, will only affect the factors Gk and part of the factors
Gk−1 and Gk+1. Again, these operations require computations on short vectors of
length 3, making the algorithm very efficient again. For the details consult [9, 2, 13].
For example, the interpolation problem (n = m) is solved in O(m2) operations instead
of O(m3).

6. Vector approximants. The previous situation of polynomial approximation
can be generalized as follows.
Given {zi; f0i, . . . , fαi;w0i, . . . , wαi}m

i=0, find polynomials pk ∈ Pdk
, k = 0, . . . , α, such

that
m∑

i=0

|w0if0ip0(zi) + · · ·+ wαifαipα(zi)|2

is minimized. Now it doesn’t really matter whether the wji are positive or not, since
the products wjifji will now play the role of the weights and the fji are arbitrary
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complex numbers. Thus, to simplify the notation, we could as well write wji instead
of wjifji since these numbers will always appear as products. Thus the problem is to
minimize

m∑
i=0

|w0ip0(zi) + · · ·+ wαipα(zi)|2.

Setting d = (d0, . . . , dα), Pd = [Pd0 , . . . ,Pdα ]T ,

wi = [w0i, . . . , wαi], p(z) = [p0(z), . . . , pα(z)]T ∈ Pd,

we can write this as

min
m∑

i=0

|wip(zi)|2, p ∈ Pd.

Of course, this problem has the trivial solution p = 0, unless we require at least one
of the pi(z) to be of strict degree di, e.g., by making it monic. This, or any other
normalization condition could be imposed for that matter.

We require in this paper that pα is monic of degree dα, and rephrase this as
pα ∈ PM

dα
.

To explain the general idea, we restrict ourselves to α = 1, the case of a general
α being a straightforward generalization which would only increase the notational
burden. Thus we consider the problem

min
m∑

i=0

|w0ip0(zi) + w1ip1(zi)|2, p0 ∈ Pd0 , p1 ∈ PM
d1
.

Note that when w0i = wi > 0, w1i = −wifi, and p1 ≡ 1 ∈ PM
0 , (i.e., d1 = 0), then we

get the polynomial approximation problem discussed before.
When we set w0i = wif0i and w1i = −wif1i with wi > 0, the problem becomes

min
m∑

i=0

w2
i |f0ip0(zi)− f1ip1(zi)|2

which is a linearized version of the rational least squares problem of determining the
rational approximant p0/p1 for the data f1i/f0i, or equivalently the rational approx-
imant p1/p0 for the data f0i/f1i. Note that in the linearized form, it is as easy to
prescribe pole information (f0i = 0) as it is to fix a finite function value (f0i 6= 0).

The solution of the general case is partly parallel to the polynomial case d1 = 0
discussed before, and partly parallel to another simple case, namely d0 = d1 = n,
which we shall discuss first in section 7. In the subsequent section 8, we shall consider
the general case where d0 6= d1.

7. Equal degrees. We consider the case α = 1, d0 = d1 = n. This means that
Pd is here equal to P2×1

n .

7.1. The optimization problem. We have to find

min
m∑

i=0

|wip(zi)|2, p0 ∈ Pn, p1 ∈ PM
n



10 A. BULTHEEL AND M. VAN BAREL

where wi = [w0i w1i] and p(z) = [p0(z) p1(z)]T ∈ P2×1
n . This problem was considered

in [15, 17]. We propose a solution of the form

p(z) =
n∑

k=0

ϕk(z)ak,

where

ϕk(z) ∈ P2×2
k − P2×2

k−1, ak ∈ C2×1, k = 0, 1, . . . , n.

Proposing p(z) to be of this form assumes that the leading coefficients of the block
polynomials ϕk are nonsingular. Otherwise this would not represent all possible cou-
ples of polynomials (p0, p1) ∈ P2×1

n . We shall call this the regular case and assume
for the moment that we are in this comfortable situation. In the singular case, a
break-down may occur during the algorithm, and we shall deal with that separately.
Note that the singular case did not show up in the previous scalar polynomial case,
unless at the very end when n = m+1, since the weights were assumed to be positive.
We shall see below that in this block polynomial situation, the weights are not positive
and could even be singular.

When we denote

W = diag(w0, . . . , wm) ∈ C(m+1)×(2m+2)

AΦ
n = [aT

0 , . . . , a
T
n ]T ∈ C(2n+2)×1

Φn =

 ϕ0(z0) . . . ϕn(z0)
...

...
ϕ0(zm) . . . ϕn(zm)

 ∈ C(2m+2)×(2n+2)

the optimization problem is to find the least squares solution of the homogeneous
linear system

WΦnA
Φ
n = 0

with the constraint that p1 should be monic of degree n.
For simplicity reasons, suppose that m + 1 = 2(m′ + 1) is even. If it were not,

we would have to make a modification in our formulations for the index m′. The
algorithm however, does not depend on m being odd or even as we shall see later.

By making the block polynomials ϕk orthogonal so that
m∑

i=0

ϕk(zi)HwH
i wiϕl(zi) = δklI2, k, l = 0, 1, . . . ,m′,(4)

we can construct a unitary matrix Q ∈ C(m+1)×(m+1) by setting

Q = WΦ

where Φ = Φm′ is a (2m + 2) × (m + 1) matrix, so that Q is a square matrix of size
m+ 1.
We also assume that the number of data points m+ 1 is at least equal to the number
of unknowns 2n+ 1 (recall that one coefficient is fixed by the monic normalization).
The unitarity of the matrix Q means that

QHQ = ΦHWHWΦ = Im+1
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and the optimization problem reduces to

min
m∑

i=0

p(zi)HwH
i wip(zi) = min(AΦ

m′)HΦHWHWΦ(AΦ
m′)

= min(AΦ
m′)H(AΦ

m′)

= min
m′∑

k=0

aH
k ak

= min
m′∑

k=0

(|a1k|2 + |a2k|2), ak = [a1k a2k]T

with the constraint that p(z) ∈ P2×1
n ; thus an+1 = · · · = am′ = 0, and p1 ∈ PM

n . Since
the leading term of p1 is only influenced by ϕnan, we are free to choose a0, . . . , an−1,
so that we can set them equal to zero, to minimize the error. Thus it remains to find

min(|a1n|2 + |a2n|2)

such that

ϕn(z)
[
a1n

a2n

]
=
[
p0(z)
p1(z)

]
∈
[

Pn

PM
n

]
.

To monitor the degree of p1, we shall require that the polynomials ϕk have an upper
triangular leading coefficient:

ϕk(z) =
[
αk γk

0 βk

]
zk + · · ·

with αk, βk > 0. Note that this is always possible in the regular case. The condition
p1 ∈ PM

n then sets a2n = 1/βn and a1n is arbitrary, hence to be set equal to zero if
we want to minimize the error.
As a conclusion, we have solved the approximation problem by computing the n-th
block polynomial ϕn, orthonormal in the sense of (4) and with leading coefficient
upper triangular. The solution is

p(z) =
[
p0(z)
p1(z)

]
= ϕn(z)

[
0
a2n

]
, a2n = 1/βn.

7.2. The algorithm. As in the scalar polynomial case, expressing zϕk(z) in
terms of ϕ0, . . . , ϕk+1 for z ∈ {z0, . . . , zm} leads to the matrix relation

ZΦ = ΦH,

where as before Φ = Φm′ , Z = diag(z0, . . . , zm), Z = Z ⊗ I2 = diag(z0I2, . . . , zmI2),
and H is a block upper Hessenberg matrix with 2×2 blocks. If the leading coefficient
of ϕk is upper triangular, then the subdiagonal blocks of H are upper triangular. The
computational scheme is compressed in the formula

QH [w|Z]
[
I2

Q

]
=


η00 η01 . . . η0m′ η0,m′+1

η11 η1m′ η1,m′+1

. . .
...

...
ηm′m′ ηm′,m′+1
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where w = [wT
0 , . . . , w

T
m]T and where all ηij are 2 × 2 blocks and the ηii are upper

triangular with positive diagonal elements. Thus

ϕ0 = η−1
00 ; zϕk−1(z) = ϕ0(z)η0k + · · ·+ ϕk(z)ηkk, k = 1, . . . ,m′.

The updating after adding the data (zm+1, wm+1), where wm+1 = (w0,m+1, w1,m+1),
makes the transformation with unitary similarity transformations from the left to the
right scheme below. The three crosses in the top row of the left scheme represent the
new data.

× × ×
× × × × × × × ×

× × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×

⇒

× × × × × × × × ×
× × × × × × × ×

× × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×

The successive elementary transformations eliminate the crosses on the subdiagonal,
chasing them down the matrix. This example also illustrates what happens at the
end when m is an even number: the polynomial ϕm′ ∈ P2×1

m′ instead of ϕm′ ∈ P2×2
m′ .

Again, when finishing this updating after ϕn has been computed, it will require only
O(n2) operations per data point introduced. In the special case of data on the real
line or the unit circle, this reduces to O(n) operations. For the details, we refer to
[15, 17].

By the same arguments as in the scalar case, it is still true that H is Hermitian,
hence block tridiagonal, when all the zi are real. Taking into account that the sub-
diagonal blocks are upper triangular, we obtain in this case that H is pentadiagonal
and the extended Hessenberg matrix has the form

B0 A0 BH
1

B1 A1
. . .

. . . . . . BH
m′

Bm′ Am′


with the 2 × 2 blocks Bk upper triangular and the Ak Hermitian. This leads to the
following block 3-term recurrence

ϕ0 = B−1
0 , zϕk(z) = ϕk−1B

H
k + ϕk(z)Ak + ϕk+1(z)Bk+1, 0 ≤ k < m′.

This case was considered in [15].
Similarly, the case where all zi lie on the unit circle T, leads to a 2 × 2 block gener-
alization of the corresponding polynomial case. For example, the extended unitary
block Hessenberg matrix takes the form (m′ = 3)

[H0|H] =


σ0 −γ1 −Σ1γ2 −Σ1Σ2γ3 Σ1Σ2Σ3

σ1 −Γ1γ2 −Γ1Σ2γ3 Γ1Σ2Σ3

σ2 −Γ2γ3 Γ2Σ3

σ3 Γ3

 , γi, σi,Σi,Γi ∈ C2×2.

The matrices

Uk =
[
−γk Σk

σk Γk

]
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are unitary: UH
k Uk = I4. Note that by allowing some asymmetry in the Uk we do not

need a −γ4 in the last column as we had in the scalar case. We have for k = 1, . . . ,m′,
the block Szegő recurrence relations

ϕk(z)σk = zϕk−1(z) + ϕ′k−1(z)γk

ϕ′k(z)ΣH
k = zϕk−1(z)γH

k + ϕ′k−1(z)

which start with ϕ0 = ϕ′0 = σ−1
0 .

The block Hessenberg matrix can again be factored as

H = G1G2 . . . Gm′

with

Gk = I2(k−1) ⊕ Uk ⊕ Im−2k−1, k = 1, . . . ,m′.

The proof of this can be found in [17]. This makes it possible to perform the elemen-
tary unitary similarity transformations of the updating procedure only on vectors of
maximal length 5, very much like in the case of real points zi. Thus also here, the
complexity of the algorithm reduces to O(m2) for interpolation. More details can
be found in [17]. For the case of the real line, the algorithm was also discussed in
[1], solving an open problem in [5, p. 615]. The previous procedure now solves the
problem also for the case of the unit circle.

7.3. Summary. The case α = 1, d0 = d1 = n and also the case α ≥ 1,
d0 = d1 = · · · = dα = n for that matter, generalizes the polynomial approxima-
tion problem by constructing orthonormal polynomials ϕk which are (α+1)× (α+1)
polynomial matrices and these are generated by a block 3-term recurrence relation
when all zi ∈ R and by a block Szegő recurrence relation when all zi ∈ T.
the computational algorithm is basically the same, since it reduces the extended ma-
trix

[w|Z] ∈ C(m+1)×(α+m+2)

by a sequence of elementary unitary similarity transformations to an upper trapezoidal
matrix

QH [w|Z]
[
Iα+1

Q

]
= [H0|H]

with H block upper Hessenberg with (α+ 1)× (α+ 1) blocks and

H0 = QHw = [ηT
00, 0, . . . , 0]T ,

where η00 ∈ C(α+1)×(α+1) is upper triangular with positive diagonal elements, as well
as all the subdiagonal blocks of H. For n = m′, where (α+ 1)(m′ + 1)− 1 = m+ 1,
(which implies that σm′ is of size α× (α+ 1)), we solve an interpolation problem. It
requires O(m2) operations when zi ∈ R or ∈ T, instead of O(m3) when the zi are
arbitrary in C.

8. Arbitrary degrees. In this section we consider the case α = 1 with d0 6= d1.
For more details we refer to [16].
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8.1. The problem. We suppose without loss of generality that d0 = δ and
d1 = n+ δ, n, δ ≥ 0. We have to find once more

min
m∑

i=0

|wip(zi)|2, p0 ∈ Pδ, p1 ∈ PM
n+δ

with wi = [w0i w1i] and [p0(z) p1(z)]T ∈ Pd, d = (d0, d1).
The polynomial approximation problem is recovered by setting δ = 0. The case
d0 = d1 = δ is recovered by setting n = 0.
The simplest approach to the general problem is by starting with the algorithm. In the
subsequent subsections, we propose a computational scheme involving unitary similar-
ity transformations, next we give an interpretation in terms of orthogonal polynomials
and finally we solve the approximation problem.

8.2. The algorithm. Comparing the cases δ = 0 and n = 0, we see that the
algorithm applies a sequence of elementary unitary similarity transformations on an
extended matrix

[w|Z], w = [wT
0 , . . . , w

T
m]T , Z = diag(z0, . . . , zm)

to bring it in the form of an extended (block) upper Hessenberg

QH [w|Z]
[
I2

Q

]
= [H0|H].

When n = 0, the transformations were aimed at chasing down the elements of [w|Z]
below the main diagonal, making [H0|H] upper triangular. Therefore H turned out
to be block upper Hessenberg.

When δ = 0, the transformations had much the same objective, but now, there
was no attempt to eliminate elements from the first column of w, only elements from
the second column were pushed to the SE part of the matrix. The matrix then turned
out to be upper Hessenberg in a scalar sense.

The general case can be treated by an algorithm that combines both of these
objectives. We start like in the polynomial case (n = 0), chasing only elements from
the second column of w. However, once we reached row n + 1, we start eliminating
elements in the first column too.

Applying this procedure shows that the extended Hessenberg [H0|H] has the form

0 n m
0 → × × × × × × × × × × × ×

× × × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × ×

n→ × × × × × × × ×
× × × × × × ×

× × × × × ×
× × × × ×

× × × ×
m→ × × ×

= [H0|H].

This means that the NW part of H, of size (n + 1) × (n + 1), will be scalar upper
Hessenberg as in the case n = 0, while the SE part of size (m− n+ 2)× (m− n+ 2)
has the block upper Hessenberg form of the case δ = 0.
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The updating procedure works as follows. Starting with (the new data are found
in the first row)

× × ×
× ⊗ × × × × × × × × × ×
× × × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × ×
× × × × × × × ×

× × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×

the element ⊗ is chased down the diagonal by elementary unitary similarity trans-
formations operating on two successive rows/columns until we reach the following
scheme (where � = 0 and � and 	 are the last elements introduced which are in
general nonzero)

× × × × × × × × × × × × ×
× × × × × × × × × × × ×
× × × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × ×
⊗ 	 × × × × × × ×

� × × × × × × ×
� × × × × × ×

× × × × ×
× × × ×

× × ×

Now the element ⊗ in row n + 1 is eliminated by a rotation/reflection in the plane
of this row and the previous one. The corresponding transformation on the columns
will introduce a nonzero element at position �. Then � and � are chased down the
diagonal in the usual way until we reach the final situation

× × × × × × × × × × × × ×
× × × × × × × × × × × ×
× × × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × ×

× × × × × × × ×
× × × × × × ×

× × × × × ×
× × × × ×

× × × ×
× × ×

8.3. Orthogonal vector polynomials. The unitary matrix Q involved in the
previous transformation was for the case δ = 0 of the form Q = WΦm where W was
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a scalar diagonal matrix of the weights and Φm was the matrix with ij-element given
by ϕj(zi), with ϕj the j-th orthonormal polynomial.

When n = 0, then Q = WΦm′ , where W is the block diagonal with blocks being
the 2 × 1 “weights” wi and Φm′ is the block matrix with 2 × 2 blocks, where the
ij-block is given by ϕj(zi), with ϕj the j-th block orthonormal polynomial.

For the general case, we shall have a mixture of both. For the NW part of the H
matrix, we have the scalar situation and for the SE part we have the block situation.

To unify both situations, we turn to vector polynomials πk of size 2× 1. For the
block part, we see a block polynomial ϕj as a collection of two columns and set

ϕj(z) = [π2j−1(z)|π2j(z)].

For the scalar part, we embed the scalar polynomial ϕj in a vector polynomial πj by
setting

πj(z) =
[

0
ϕj(z)

]
.

In both cases, the orthogonality of the ϕj translates into the orthogonality relation

m∑
i=0

πk(zi)HwH
i wiπl(zi) = δkl

for the vector polynomials πk. Let us apply this to the situation of the previous
algorithm. For simplicity, we suppose that all zi ∈ R. For zi ∈ T, the situation is
similar.
For column number j = 0, 1, . . . , n − 1, we are in the situation of scalar orthogonal
polynomials: Qij = w1iϕj(zi) = wiπj(zi). Setting

[H0|H] =


× b0 a0 b̄1
... b1 a1

. . .

×
. . . . . . . . .

. . . . . .


we have for j = 0, . . . , n− 2 the 3-term recurrence relation

zϕj(z) = ϕj−1(z)b̄j + ϕj(z)aj + ϕj+1(z)bj+1, ϕ−1 = 0, ϕ0 = b−1
0 .

By embedding, this becomes

zπj(z) = πj−1(z)b̄j + πj(z)aj + πj+1(z)bj+1, π0 = [0 ϕ0]T .

Thus, setting

Πj = [πj(z0)T , . . . , πj(zm)T ]T

we have for the columns Qj of Q the equality

Qj = WΠj , j = 0, 1, . . . , n− 1.

For the trailing part of Q, i.e., for columns (n+ 2j− 1, n+ 2j), j = 0, 1, . . ., we are in
the block polynomial case. The block polynomials ϕj(z) group two vector polynomials

ϕj(z) = [πn+2j−1(z)|πn+2j(z)],
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which correspond to two columns of Q, namely

Qj = [Qn+2j−1|Qn+2j ].

Observe that we have the following relation between Qj and the block orthogonal
polynomials

Qij = wiϕj(zi) =
[

Q2i,n+2j−1 Q2i,n+2j

Q2i+1,n+2j−1 Q2i+1,n+2j

]
,

where this time wi = [w0i w1i]. As above, denote the vector of function values for πj

by Πj . The block column of function values for ϕj is denoted by Φj . Then clearly

Qj = WΦj , Φj = [Πn+2j−1|Πn+2j ].

Denoting in the extended Hessenberg matrix

[H0|H] =



× b0
. . . . . .

×
. . . . . . BT

0

0 B0 A0 BT
1

0 B1 A1
. . .

...
. . . . . .


, B0 =

[
0 bn−1

0 0

]
,

we have the block recurrence

zϕj(z) = ϕj−1(z)BT
j + ϕj(z)Aj + ϕj+1(z)Bj+1, j = 0, 1, . . .

The missing link between the scalar and the block part is the initial condition for this
block recurrence. This is related to columns n−2, n−1 and n of Q. Because columns
n− 2 and n− 1 are generated by the scalar recurrence, we know that these columns
are Qj = WΠj , j = n − 2, n − 1, where the Πj are related to the embedded scalar
polynomials. A problem appears in column Qn where the 3-term recurrence of the
leading (scalar) part migrates to the block 3-term recurrence of the trailing (block)
part, i.e., from a 3-term to a 5-term scalar recurrence. We look at this column in
greater detail. Because

d0

...
dn

0
...
0


= QH



w00

...

...

...

...
w0m


= QHWE, E =



1
0
1
0
...
1
0


,

we have

Q0d0 + · · ·+Qndn = WE;
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thus

Qn =
1
dn

(WE − [Q0| . . . |Qn−1]AΦ
n−1), AΦ

n−1 = [d0, . . . , dn−1]T

=
1
dn

(WE −W [Π0| . . . |Πn−1]AΦ
n−1)

= W
1
dn

(E − [Π0| . . . |Πn−1]AΦ
n−1)

= W
1
dn

(E − Pn−1), Pn−1 = [Π0| . . . |Πn−1]AΦ
n−1.

Setting Qn = WΠn, Πn = [πn(z0)T , . . . , πn(zm)T ]T , we find that

πn(z) =
1
dn

[
1

pn−1(z)

]
(5)

where

pn−1(z) = ϕ0(z)d0 + · · ·+ ϕn−1(z)dn−1

is the polynomial least squares approximant of degree n − 1 for the data (zi, wi),
i = 0, . . . ,m.

8.4. Solution of the general problem. Now we are ready to solve the general
problem. We start with the degree structure of the polynomials πj(z). Suppose the
j-th column of Q is Qj , which we write as

Qj = WΠj , Πj = [πj(z0)T , . . . , πj(zm)T ]T

with W = diag(w0, . . . , wm) and πj(z) = [ψj(z) φj(z)]T . Then it follows from the
previous analysis that the φj are the scalar orthogonal polynomials ϕj , and hence the
degree of φj(z) is j, for j = 0, 1, . . . , n − 1. Moreover, the ψj are zero for the same
indices (their degree is −∞). For j = n, we just found that ψn is 1/dn, thus of degree
0 and φn is of degree at most n− 1, since the latter is proportional to the polynomial
least squares approximant of that degree. With the block recurrence relation, we now
easily find that the degree structure of the block polynomials

ϕj = [πn+2j−1|πn+2j ] =
[
ψn+2j−1 ψn+2j

φn+2j−1 φn+2j

]
is

[
j − 1 j

n+ j − 1 n+ j − 1

]
for j = 1, 2, . . ., while ϕ0 has degree structure[

−∞ 0
n− 1 n− 1

]
.

It can be checked that in the regular case, that is when all the subdiagonal ele-
ments b0, . . . , bn−1 as well as dn are nonzero and when also all the subdiagonal blocks
B1, . . . , B

′
m are regular (upper triangular), then the degrees of φk = ϕk are precisely k

for k = 0, 1, . . . , n−1 and in the block polynomials ϕj , the entries ψn+2j and φn+2j−1

have the precise degrees that are indicated, i.e., j and n+ j − 1 respectively. Thus, if
we propose a solution to our approximation problem of the form (suppose m ≥ n+2δ)

p(z) =
n+2δ+1∑

j=0

πj(z)aj , aj ∈ C,
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then p(z) = [p0(z) p1(z)]T will automatically satisfy the degree restrictions d0 ≤ δ
and d1 ≤ n+ δ. We have to find

min(AΠ
n )HΠH

n′WHWΠn′(AΠ
n ), n′ = n+ 2δ + 1,

where

AΠ
n = [a0, . . . , an′ ]T and Πn′ = [Π0| . . . |Πn′ ].

Since WΠn′ form the first n′ + 1 columns of the unitary matrix Q, this reduces to

min(AΠ
n′)H(AΠ

n′) = min
n′∑

j=0

|aj |2.

If we require as before that p1(z) is monic of degree n+ δ, then an′ = 1/βn′ where βj

is the leading coefficient in φj . The remaining aj are arbitrary. Hence, to minimize
the error, we should make them all zero. Thus our solution is given by

p(z) = πn′(z)an′ , n′ = 2n+ δ + 1, an′ = 1/βn′ .

9. The singular case. Let us start by considering the singular case for d0 =
d1 = n. We shall then generate a singular subdiagonal block ηkk of the Hessenberg
matrix. The algorithm performing the unitary similarity transformations will not be
harmed by this situation. However, the sequence of block orthogonal polynomials will
break down. From the relation

zϕk−1(z) = ϕ0(z)η0k + · · ·+ ϕk(z)ηkk

it follows that if ηkk is singular, then this can not be solved for ϕk(z). In the regular
case, all the ηjj are regular and then the leading coefficient of ϕk is η−1

00 . . . η
−1
kk . Thus,

if all the ηjj are regular upper triangular, then also the leading coefficient of ϕk will be
regular upper triangular. As we have said in the introduction, the singular situation
will always occur, even in the scalar polynomial case with positive weights, but there
only at the very end where k = m+1. That is exactly the stage where we reached the
situation where the least squares solution becomes the solution of an interpolation
problem. We show below that this is precisely what will also happen when some
premature break-down occurs.

Suppose that the scalar entries of the extended block Hessenberg matrix are
[H0|H] = [hij ]i,j=0,1,.... (We use hij to distinguish them from the block entries ηij .)
Suppose that the element hkk is the first element on its diagonal that becomes zero
and thus produces some singular subdiagonal block in H. Then it is no problem to
construct the successive scalar columns of the matrix Φ = Φm′ until the recurrence
relation hits the zero entry hkk. If we denote for j = 0, 1, . . . , k − 1, the j-th column
of Φ as Πj , then we know from what we have seen, that Πj represents the vector of
function values at the nodes z0, . . . , zm of some vector polynomial πj(z) ∈ P2×1. The
problem in the singular case is that πk(z) can not be solved from

zπk−2 = πkhkk + πk−1hk−1,k + · · ·+ π0h0k

because hkk = 0. However, from

Q
[
H0 H

]
=
[

w0 w1 Z
] [ I2 0

0 Q

]
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it follows that

w0 = Q0h00; w1 = Q0h01 +Q1h11

and for k ≥ 2

ZQk−2 = Q0h0k + · · ·+Qkhkk

where Qj , j = 0, 1, . . . denotes the j-th column of Q. We shall discuss the case hkk = 0
separately for k = 0, k = 1 and k ≥ 2 separately.
If h00 = 0, then w0 = 0. This is a very unlikely situation because then there is only
a trivial solution (p0, p1) = (1, 0) which fits exactly.
Next consider h11 = 0; then define π′1 as

π′1 =
[

0
1

]
− π0h01.

Then

WΠ′
1 = (w1 −WΠ0h01)

= (w1 −Q0h01)
= Q1h11 = 0.

This means that we get an exact approximation since wiπ
′
1(zi) = 0, i = 0, . . . ,m.

For the general case hkk = 0, k ≥ 2, we have that

ZQk−2 −Q0h0k − · · · −Qk−1hk−1,k = Qkhkk = 0.

Since Qj = WΠj for j = 0, . . . , k − 1, we also have

0 = ZWΠk−2 −WΠ0h0k − · · · −WΠk−1hk−1,k

= W
(
ZΠk−2 −Π0h0k − · · · −Πk−1hk−1,k

)
(6)

where Z = Z ⊗ I2. Define the polynomial

π′k(z) = zπk−2(z)− π0(z)h0k − · · · − πk−1(z)hk−1,k

then, WΠ′
k = W [π′k(z0)T , . . . , π′k(zm)T ]T will be zero since it is equal to the expression

(6), which is zero. This means that

wiπ
′
k(zi) = 0, i = 0, . . . ,m.

The latter relations just tell us that this π′k is an exact solution of the approximation
problem, i.e., it interpolates.

In the general situation where d0 6= d1, we have to distinguish between the scalar
and the block part. For the scalar part we can now also have a break-down in the
sequence of orthogonal polynomials since the weights are not positive anymore but
arbitrary complex numbers.

Using the notation

[H0|H] =


× h00 h01 . . . h0,n+1

...
. . . . . .

...

× hnn hn,n+1
. . .

0
. . . . . .
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for the NW part of the extended Hessenberg matrix, the situation is there as sketched
above: whenever some hkk is zero, we will have an interpolating polynomial solution.
It then holds that

π′k(z) = zπk−1(z)− π0(z)h0k − · · · − πk−1(z)hk−1,k

and because WΠ′
k = W [π′Tk (z0), . . . , π′Tk (zm)]T is zero, we get

wiπ
′
k(zi) = 0, i = 0, . . . ,m,

identifying π′k(z) as a (polynomial) interpolant.
For the SE part, i.e., for the block polynomial part, a zero on the subsubdiagonal

(i.e., when we get a singular subdiagonal block in the Hessenberg matrix), will imply
interpolation as we explained above for the block case.

The remaining problem is the case where the bottom element in the first column
of the transformed extended Hessenberg matrix becomes zero. That is the element
that has previously been denoted by dn. Indeed, if this is zero, then our derivation,
which gave (5):

πn(z) =
1
dn

[
1

pn−1(z)

]
does not hold anymore. But again, here we will have interpolation, i.e., a least squares
error equal to zero. It follows from the derivation in the previous section that when
dn = 0,

W (E − Pn−1) = dnQn = 0.

Thus

wi

([
1
0

]
−

n−1∑
k=0

πk(zi)dk

)
= wi

[
1

pn−1(zi)

]
= 0

where pn−1(z) =
∑n−1

k=0 ϕk(z)aΦ
k . This is the same as

w0i − w1ipn−1(zi) = 0, i = 0, . . . ,m

which means that (1, pn−1(z))/d′ with d′ 6= 0 to normalize pn−1(z) as a monic poly-
nomial, will fit the data exactly.

10. Conclusion. We have shown that the inverse QR algorithm for solving dis-
crete polynomial approximation problems for knots on the real line or on the unit
circle can be generalized to more general approximation problems of the form (2).

In the previous section, we only considered the problem of updating, i.e., how to
adapt the approximant when one knot is added to the set of data. There also exists
a possibility to consider downdating, i.e., when one knot is removed from the set of
interpolation points. For the polynomial approximation problem, this was discussed
in [6] for real data and in [3] for data on the unit circle. The procedure can be
based on a direct QR algorithm which will “diagonalize” the Hessenberg matrix in
one row and column (e.g., the last one). This means that the only nonzero element
in the last row and the last column of the transformed Hessenberg matrix is zm on
the diagonal. The unitary similarity transformations on the rest of the extended



22 A. BULTHEEL AND M. VAN BAREL

Hessenberg matrix brings out the corresponding weight in its first columns and the
leading m × m part gives the solution for the downdated problem. Of course, just
as the updating procedure can be generalized, also the downdating procedure can be
adapted to our general situation. A combination of downdating and updating provides
a tool for least squares approximation with a sliding window, i.e., where a window
slides over the data, letting new data enter and simultaneously forgetting about the
oldest data.

The inverse QR algorithm that we described in the previous sections is in principle
applicable in the situation of arbitrary complex data. However its complexity can be
reduced by an order of magnitude if the knots are real or located on the unit circle.
The secret of this complexity reduction is the exploitation of a recurrence relation for
the corresponding orthogonal polynomials and the parametrization of the Hessenberg
matrix involved in terms of the recurrence coefficients.

The polynomial discrete least squares approximation problem discussed in the
papers where the algorithm was first conceived gave rise to the construction of a
sequence of polynomials orthogonal with respect to a discrete inner product. In the
more general problem, these generalize to orthogonal block polynomials when all the
degrees of the approximating polynomials are equal, or, in the more general case of
arbitrary degrees, both scalar and block orthogonal polynomials appear which can be
uniformly treated as vector orthogonal polynomials.

The algorithm has been reported to have excellent numerical stability properties
[11, 12] and is to be preferred over the so called Stieltjes procedure [12]. See also
[7, 8]. Moreover it is well suited for implementation in a pipeline fashion on a parallel
architecture [17, 15].
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