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Abstract. In this paper, we present an algorithm to compute vector Padr-Hermite 
approximants along a sequence of perfect points in the vector Padr-Hermite table. We 
show the connection to matrix Pad6 approximants. The algorithm is used to compute 
the solution of a block Hankel system of linear equations. 

1. Introduction 

Given a matrix o f  power series, we shall describe an algorithm for recursively comput- 
ing the vector Padr-Hermite approximants that are located at successive perfect points 
on a diagonal o f  the vector Padr-Hermite table. In fact, our algorithm even computes a 
basis for all possible solutions that can be obtained in that point o f  the table. 

A vector Padr-Hermite approximant with order indices o- for a matrix o f  power series 
F(z )  ~ F[[z]] sxm is a polynomial vector p(z) ~ F[z] m such that 

F(z)p(z )  = O+(z~). 

When s = 1, m = 2, and F(z)  = [ - 1  f (z ) ] ,  with f ( z )  a scalar power series, we get a 
Pad6 approximant [1],[2]. When s = 1, and or, which reduces to a scalar integer number, 
is the sum of  the allowed degrees o fp  plus (m - 1), then p is a Padr-Hermite approximant. 
For more details, we refer the interested reader to the introduction o f  [21],[8] and the 
references therein. 

The vector Padr-Hermite table considered in this paper, is a generalization o f  the Padr- 
Hermite table [18],[14] and the classical Pad6 table [12]. The algorithms of  [10],[19] are 
based on relationships between neighboring approximants in  the Padr-Hermite table. 
However, the algorithms are only guaranteed to work when the vector o f  power series 
is perfect  (see [14]). To overcome this restriction, .we developed in [21] aft algorithm 
computing nonperfect Padr-Hermite approximants. 

This algorithm is very similar to the one develoPed by Beckermann in [4] to solve 
the M-Pad6 approximatio n problem. When all the interpolation points coincide, the 
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M-Pad6 approximation problem reduces to a Padr-Hermite approximation problem. 
Beckermann also investigated the singular structure of the M-Pad6 table in [3]. In [20] 
the simultaneous Pad6 approximation problem was solved in a similar way. The pre- 
vious two types of approximation and the more general matrix rational interpolation 

problems are all special cases of the vector M-Pad~ approximation problem. In [22], 
we derived basic algorithmic steps to follow any path of approximation. Beckermann 
and Labahn [5] introduced the concept o f  power  Hermite-Padk approximants to solve 
different types of matrix Pad6 approximation problems. They even derived a super- 
fast algorithm to accomplish this. The basic steps taken in all these algorithms are the 
most elementary steps one can take; i.e., adding only one new interpolation condition, 
changing only one degree of the interpolant. However, when using floating point arith- 
metic, this way of working does not (yet) allow control of the numerical stability of the 
algorithm. 

It turns out that algorithms which make bigger jumps, but require a special structure 
of the solution, have more flexibility in controlling the stability. Originally such algo- 
rithms were not designed to overcome numerical stability problems but to overcome 
the nonperfectness of the given power series. The special structure of the solution is 
found in so-called perfect  points. Hence, instead of doing elementary steps to go from 
one perfect point to another using some intermediate nonperfect points, these algorithms 
"look-ahead" from a perfect point immediately to the next perfect one. 

The algorithm developed in this paper is such a "look-ahead" procedure. It can be 
seen as a first step towards a numerically (forward) stable algorithm when floating point 
arithmetic is used. Instead of jumping from one perfect point to the next one, the updating 
formulas derived here are also valid when going from one perfect point to any other 
later one. Hence, we could compute successive "well-conditioned" perfect points. For a 
successful adaptation of these ideas to the scalar Pad6 approximation problem, we refer 
to [9], and for the (scalar) Padr-Hermite approximation problem, to [6]. However, in 
this paper, we will not concentrate on these stability considerations. Another reason to 
have updating formulas for bigger jumps, not necessarily with a special structure of the 
solution, is the construction of  superfast algorithms. See, for example, [5],[7],[ 13 ]. 

Our algorithm generalizes an algorithm of Cabay, Labahn and Beckermann [8], which 
treats a similar problem for the scalar Padr-Hermite case. Instead of  taking a row vector 
of scalar power series, we replace each scalar power series by a column vector of power 
series. Hence, we get in general an (s • m) matrix of power series (with s < m). Cabay 
and Labahn also give a generalization in [7], the difference being that each scalar power 
series is replaced by a square matrix power series. Therefore, the number of columns 
of the resulting matrix of power series is a multiple of the number of rows. Hence, the 
problem they consider can be directly transformed into the problem solved here, but not 
vice-versa. However, they use the recurrence relation from one perfect point to a later 
one to construct a superfast algorithm. 

Besides generalizing the previous work ofCabay, Labahn and Beckermann, we wanted 
to develop the updating formulas that go from one perfect point to another as a special 
case of a very general and simple updating formula (allowing construction of superfast 
algorithms where the intermediate points don't need to be perfect). In spite of the simple 
general updating formula, it turns out that when special structure conditions are imposed, 
this formula becomes more detailed and complex. 
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In Section 7, we also relate the problem to matrix Pad6 approximation and give the 
connection with [17]. In Section 8, we use the algorithm to compute the solution o f  block 
Hankel systems. We make the comparison with [ 15] where the inverse o f  a block Hankel 
matrix is computed. 

Only minor modifications are needed to obtain an updating o f  the basis when moving 
from one perfect point to another that need not be on the same diagonal. Also, adaptations 
for a superfast version o f  the algorithms are standard and can be applied easily to our 
algorithm. 

We start with some preliminary definitions and notations. Let N -- {0, l, 2 . . . .  } be 
the set o f  natural numbers and Z, the set o f  integers. An index s-tuple will be written in 
vector notation: e.g., ~r = (~rl . . . . .  Ors) E N s. 

F is an arbitrary (finite or infinite) field. F[z] s• and F[[z]] ~• denote the set o f s  x m 
polynomials and formal Maclaurin series, respectively. All formal Maclaurin series in 
this paper will be in F[[z]] s• with s < m. 

For F ( z )  ~ F[[z]] ~• and tr 6 N ~, we write 

F ( z )  : O+(z  'r) 

to mean that the (i, j ) - th  entry o f  F ( z )  is o f  the form 

jSj (z) = ~ j51~z k 
k>ai 

i.e., ~ri indicates the order o f  row i o f  F ( z ) .  We use an analogous definition for O_ (Z~). 
For tr E Z s and F ( z )  ~ F[[z]] ~• we write, z ~  for diag(z ~ . . . . .  z '~ ' )F(z) .  
Let ~- E Z m and p(z) ~ F[z] m, then 

~'-deg(pl(z) . . . . .  pro(Z)) = max{deg  p i ( z )  - ri, i = 1, 2 . . . . .  m}.  

With such a polynomial vector p(z) of ' r -degree  8 we associate its coefficient vector 

(1) 

where 

coeff(p) = [po,1, pl,l . . . . .  P8+~.11 . . .  lPo,m, pl  . . . . . . .  P~+~,.,m] r 

k=0 

For a general polynomial matrix 

P (z) = [Pl (z), r 2 (z) . . . . .  Pk (z)], 

w e  say that r -deg  P ( z )  = o~ ~ Z k when ,'r-deg pi(z) ---- o t i  for i = 1 . . . . .  k. I f  each of  
the columns is considered to have a r-degree < 6, we define the coefficient matrix o f  
P(z) as 

coeff (P)  = [coeff(pl)  . . . . .  coeff(pk)], 

with coeff(pj) ,  j = 1, 2 . . . . .  k, given by (1). 
For more details about the following concepts, we refer to [22]. 
I fp (z )  ~ F [ z ]  m and "r-deg p(z) = 8, then "r-hdc p(z) is the highest degree coefficient 

with respect to ~', that is, the vector in F m whose i-th component equals the coefficient 

,S-t-ri 

p i ( z )  : --~.~Pk,izk, i = 1,2 . . . . .  m. 
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o f  z a+~ in Pi (z). A set of  polynomial  vectors is "r-reduced iff  their "r-hdc vectors are 
linearly independent. 

For  an s-tuple z = (zl . . . . .  zs) 6 Z s, 

Ilz[I = ~ Izil. 
i=1 

We define a function vect : N --> N s : t ~-~ vect(t)  = o" = (crl, or2 . . . . .  O's) by  

~rl=~r2 . . . . .  c r r = q + l  and ~rr+l . . . . .  a s = q  

where q and r are defined by the unique decomposit ion o f  t into t = qs + r, with 
0 < r  < s (i.e., r = t mod s). Note that II~rll = II vect(t)[[ = t, so that o ' i s  uniquely 

defined by its norm. 
The rationale behind this definition is that i f  we have t interpolation conditions, to be 

distributed over an s dimensional vectorial interpolation problem and a = vect( t) ,  then 
a natural choice is to distribute these conditions cyclically such that cri conditions are 
imposed on component  i. Such ordering was proposed for the first time by Van Iseghem 

[23]. 
In this paper, we shall assume that the vectors ~r of  order indices (see below) are 

always in this natural ordering, so that tr = vect(lltr[[) and hence that cr is uniquely 

defined by its norm. 
We also reserve the notation es = (1 . . . . .  1, 0 . . . . .  0) 6 Z m with s ones and e = 

(1 . . . . .  1) 6 Z m. By e we mean the s-dimensional  analogue o fe .  

2. Vector Pad~-Hermite Approximation 

We are interested in the approximants, defined as follows. 

Definition 1 (vector Padr-Hermite  approximation). Given F(z) c F[[z]] sxm with s < 
m, we say that a polynomial  vector p(z)  e F[z] m • 1 is a vector Padr-Hermite  approximant  
with order indices tr ~ N s for F(z) i f  it satisfies the vector interpolation conditions 

(2) F(z)p(z) = O+(z"). 

S"  denotes the set o f  all vector Padr-Hermite  approximants for given ~ and given F(z). 

Recall  that the vectors tr are supposed to be in the natural ordering, so that tr, and 
hence a lso  S '~, is completely fixed by the natural number t = II o-II. 

We define the vector Padr-Hermite  table as follows. 

Defini t ion 2 (vector Padr-Hermite  table). Let the formal s x m Maclaurin series F (z) 
F[[z]]S • with s -< m be given. Po in t ' r  ~ N m of  the m-dimensional  vector Padr-Hermite  
table o f F ( z )  contains a matrix M~-(z) = [bl (z), b2(z) . . . . .  b~(z)] whose columns form 
a basis o f  the F-vector  space S~-. S~- is the set o f  all polynomial  vectors p(z)  that have 
-r-degree < 0 and are vector Padr-Hermite  approximants for F(z) with order indices 

~r = vect(il 'rll + s). 
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Note that the vector o f  degree indices, r ,  gives an upper bound for the degrees that 
we allow for the polynomial components of  p(z),  but at the same time fixes the number  
of  interpolation conditions by II~rll = r lr l l  + s. Hence, it determines o" and therefore the 
specific interpolation conditions that are to be satisfied. In other words, &- C S * contains 
all the elements p(z) 6 S"  with r - d e g  p(z) _< 0. The converse is not true; tr  will not 
define r uniquely. The previous connection between the degree and order indices, i.e., 
o" = vect(llrll + s), will be maintained in the rest o f  the paper. 

The computation of  vector Pad6-Hermite approximants is equivalent to the solution 
of  a structured system of  homogeneous linear equations. This can be seen as follows. 
We denote the columns o f  F(z) by fj (z), where 

O0 

f j ( z ) = ~ - ~ f k , j Z  k with f k , j E F  sxl ( f k , j = 0 f o r k < 0 ) .  
k=0 

The elements of  Sr can be found by computing the solutions of  the following set o f  
linear homogeneous equations, which incorporates the degree conditions as well as the 
corresponding interpolation conditions, 

(3) T~- coeff(p) = 0. 

The generalized block Sylvester matrix T~. is defined as follows (t = Iio'11 = I l r l l  + s ) :  

Tr = [Tr, l ] Tr,2 I . . .  I Tr,m] E F tx(llrll+m), 

where 

with 

T~,j 

f0,j 
fl,j. fo,j 

I fq-l,j fq-2,j 
L fqj fq-l,j 

�9 "" f q - r j - l , j  

" " " f q - r )  . j  

E F t• , 

f/*,j E F rxl  

containing the first r elements o f f / j  w i th r  = [Jrll mod s (recall t = I1o'11 = Ilrll + s  = 
sq + r). The number o f  unknowns is l i t  + ell --  Ilrll + m�9 The number o f  equations 
(interpolation conditions) is Iio'11 = Ilrll + s. Because s < m, the basis M~-(z) will at 
least contain (llrlf + m) - (llrrl + s) = m - s elements. 

Definition 3 (perfect point). I f  the basis for Sr contains precisely m - s elements, we 
say that r is a perfect point�9 

The following theorems are simple observations. 

T h e o r e m  4 (characterization o f  a perfect point). The point "r is perfect iff Tr has full 
rank, i.e. iff the I l r l l  + s rows of T.~ are linearly independent�9 

Note that the non-trivial part o f  the first block row o f  Tr is equal to the constant 
coefficient o f  F(z), i.e., F(0) .  This implies the following theorem. 
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Theorem 5. Let T~. b e equal to T~. but with the first block row and the first column 
of  each o f  the m block columns deleted. The generalized block Sylvester matrix Tr has 
full rank iff F(O) has full rank and the square generalized block Sylvester matrix T* is 
nonsingular. 

In the sequel we assume that F(O) has full rank and that the columns o f  F(z) are 
ordered such that the first s columns of  F(O) are linearly independent. 

Coro l la ry  6. Assume that F(O) has full rank. Then the following are equivalent. 

1. The point r is perfect. 
2. TT has full  rank. 
3. T* c F Ilrllxlirll is nonsingular. 

4. There is no nontrivial solution with r-degree < 
interpolation conditions. 

- 1  satisfying the first Ilrll 

The following theorem says that for a perfect point, a basis matrix for Sr wilt always 
be r-reduced.  

Theorem 7 (r - reduced basis matrix). Let r be a perfect point for F(z) e F[[z]]S xm 
and let 

M~-(z) = [bl (Z), bz(z) . . . . .  b~(z)] 

be a basis matrix for St. Then ot = m - s and Mr(z) is T-reduced with T-degree O. 

Proof.  Suppose Mr(z) is not r -reduced,  i.e., the r -h ighes t  degree coefficient o f  one 
o f  the basis vectors is already zero or can be made equal to zero by recombination o f  
the basis vectors. However, multiplying this basis vector by z would give a nontrivial 
solution satisfying (3) with the constant term equal to zero. Hence, there would exist a 
nontrivial solution o f  

T~coeff(p) = 0. 

This means that T* is singular, hence r is not a perfect point which contradicts our 
assumption. �9 

T h e o r e m  8. I f  "r is a perfeet point for F(z) e F[[z]] sxm and M~-(z) is a basis matrix 
for &-, then the m - s columns of  Mr(O) are linearly independent. Moreover, i f  the 
columns il,i2 . . . . .  is of  F(O) are linearly independent (form a nonsingular matrix), 
then the (m - s) x (m - s) matrix obtained by deleting rows ix ,i2 . . . . .  is in Mr(O) is 
nonsingular. 

Proof.  I f  the basis vectors have linearly dependent constant coefficients, they can be 
combined to give a nontrivial solution of  (3) which has the constant term equal to zero. 
As in the previous proof, this means that r can not be a perfect point. To prove the second 
part, observe that F(0)M~-(0) ----- 0 is the first block row of  (3). �9 
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3. Basis Matrix for S '~ 

In this section we look for a compact way to denote all elements o f  S",  i.e., all the 
solutions o f  (2). For more details and proofs, we refer to [22]. 

Because S ~ forms an F[z]-submodule o f  F[z] m, we can represent p(z) E S ~ as a 
polynomial linear combination o f  some basis vectors bl (z) . . . . .  bm (z). Arranging these 
basis vectors as the columns o f  a basis matrix B '~ (z) 6 F[z] m • we see that all solutions 
p(z) of (2)  can be written as 

p(z) = Ba(z)c(z), 

with c(z) 6 Fm• This e(z) contains the uniquely defined coordinates o f  p(z) with 
respect to this basis matrix. 

To construct and identify a basis matrix B~(z) we can use the following characteri- 
zation theorem. 

Theorem 9 (characterization o f  a basis matrix). �9 [22]. A polynomial matrix 
B(z) E Fmxm[z] is a basis matrix for S ~ iff 

1. the m columns bj(z) of B(z) belong to S ~, i.e., they satisfy (2); 
2. degdet  B(z) = ks with ks the number of independent conditions out of  the llo'll 

interpolation conditions given by (2), 

Remarks. 1. ks is minimal in the following sense. Take m polynomial vectors pj (z), 
j = 1, 2 . . . . .  m satisfying (2) and set 

P(z) : [Pl (z), p2(z) . . . . .  Pm(Z)]. 

I f  det P (z) is not identically 0, then deg det P (z) > ks. 
2. I f  F(0)  has full rank s, all interpolation conditions are linearly independent, i.e., 

ks = Ilcrll. 

All elements o f  S ~ o f  limited r-degree can be represented as follows. 

Theorem 10 (r-reduced basis matrix). From [22]. l f the basis matrix 

B~(Z) : [b1(z), b2(z) . . . . .  bm (Z)] 

for S ~ is 7"-reduced, then all the elements of  S ~ having r-degree < ot can be represented 
a s  

�9 o .  p(z) = B (z)c(z), 

with deg ci (z) < ot - Ol i and Ol i : r-deg of hi (z). 

The latter result will allow us to coflstmct an entry Mr(z) of  the vector Pade-Hermite 
table corresponding to a perfect point r .  By the previous theorem it is obvious that for a 
perfect point r ,  we can generate the subset Sr o f  all elements in S ~ with r -degree < 0, 
where o" = vect(ll'rll -t- s) if  we have a r - reduced basis matrix B~'(z) for the submodule 
S ~. Thus the construction o f  a basis matrix Mr(z) for the vector space Sr is reduced to 
the construction o f  a r - reduced basis matrix Br (Z) for the submodule S ~. 

We use the following definition. 
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Definition 11 (residual series, residual). I f p ( z )  ~ S ~, we define the residual series 
R(z) ~ F[[z]] ~• l o fp ( z )  with respect to F(z) for the order indices tr as 

F(z)p(z) = J R ( z ) .  

The constant coefficient R(0) of  R(z) is called the residual o fp (z ) .  

T h e o r e m  12. Let "1" be a perfect point o fF(z )  ~ F[[Z]] sxm and Mr(z) a basis matrix 
which is the entry of  the Pad&Hermite table at point ~-. The matrix 

Br(Z) = [z2B*(z) Mr(Z)], 

$ m - - s  

with 

T* coeff(B*) = [0sx(llrll-s), S] T, X c F T M  nonsingular, 

and r-deg B~_(z) < - e  (columnwise), forms a r-reduced basis matrix for S ~ with 
tr = vect (llrll + s ) .  The r-column degrees of  Br(z) are e~ (s ones, m - s zeros). Hence, 
degdet  Br(z) = Ir~rtl. In other words, the columns of  B*~(z) are vector Padd-Hermite 
approximants for order indices tr - 2e, having r-degree = - 1  and having linearly 
independent residuals. 

Proof .  First, note that B~_(z) can always be computed because T~ is nonsingular if  r 
is a perfect point. Second, note that all the columns o f  B~- are in S ~. 

Splitting F(z) as F(z) ---- [FL(z) FR(z)] with FL(z) E F[[z]] T M  and FR(Z) c 
F[[z]] s•176 it holds that 

O(m's)• Im-s J Br(Z)  = [. O(m--s)• M~c(O) q- O+(Z l) ' 

with M'~(z) the last m - s rows of Mr(z). Taking the determinant o f  the left and right 
hand side, we derive that 

0 r det B,-(z) = O+ (z ll~ll ). 

On the other hand, the r -deg  of  the columns of  MT(Z) are 0 and the r -deg  of  the columns 
of  B~* are < - 1. 

Therefore, 

Z - r  B r ( z )  = BhZ es -k O-(Zes -e ) ,  

or 

det B~-(z) = det BhZ Ilrll+s q- O_(Z Ilrll+s-1) = O-(zll'rll). 

Hence, we get that det Br(Z) = det BhZ II~rll ~ O. Thus, degdet  B~.(z) = Iltrl[ = ks, 
and by Theorem 9, this Br is a basis matrix for S ~. Moreover, because the highest 
degree coefficients o f  the columns of  Br(z) are the corresponding columns of  Bh and 
det Bh ~ O, Br(Z) is r - reduced with r -co lumn degrees e,. �9 

In the sequel, we need a uniquely defined basis matrix in a perfect point. 

T h e o r e m  13. Let r be a perfect point o fF(z)  ~ F[[z]] ~• Then, there exists a unique 
"r-reduced basis matrix Br(z) for S ~ such that 
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1. it has the form Br(z) = [zZBL(Z) BR(Z)] with BL(Z) C F[Z] mxs and Be(z) 
F[z]mx(m-s); 

2. the "r-column degrees o f  B~-(z) are es; 
3. F(z)Z2BL(Z) : Z~Is + O+(z'r+e); 
4. B~(0) = Im--s where B'R(z) denotes the lastm - s rows of  BR(z). 

Proof. The leIt part, BL (z), is uniquely determined by the second and third conditions 
or 

T* coeff(BL) = [0sx(llrll_s ), Is] T. 

Hence, BL(Z) = B* with X = Is in the previous theorem. The right part, Bit(z), is 
uniquely determined by the second and fourth conditions. We get that BR(Z) = M~-(z) 
with the last m - s rows of M~-(0) equal to Im-s. From the previous theorem, we see that 
the matrix [BL (Z) BR (Z)] is a r-reduced basis matrix for S ~. �9 

Definition (canonical basis matrix). Let r be a perfect point of  F(z) ~ F[[z]] s •  The 
unique basis matrix from the previous theorem is called the canonical basis matrix. 

4. Going from One Perfect Point to Another One 

Assume that we know a r-reduced basis matrix B,-(z) for S a corresponding to the 
perfect point r given by Theorem 12. Suppose that r + ke is also a perfect point. Can 
we compute a ( r  + ke)-reduced basis matrix B,-+ke(Z) starting from the basis matrix 
Br(z)? The following observation is trivial. 

L e m m a  15 (r-reduced). A polynomial matrix P(z) ~ F[z] mxm is r-reduced iff P(z) 
is (r  + ke)-reduced. Moreover, 

r -  deg(P) = ( r  + ke)- deg(P) + ke. 

When adding interpolation conditions, we can use a general updating theorem. It says 
that a basis with order indices tr -t- v can be obtained by combining an order tr basis 
for F(z) with an order v basis for its residual series. In the sequel, we will need basis 
matrices of  submodules based on other series than the series F(z). From now on, if  it 
is not clear which series is used, we will include it in the notation as follows: BC'(F; z) 
and S~" ( F). 

Theorem 16 (general updating theorem). Let B~( F ; z) be a r-reduced basis matrix 
for S~ ( F). The r-degrees of  the columns Of B~( F ;z) are c~. The polynomial matrix 
B~+~'(F;z) = B~(F;z)B~'(R;z) is a r-reduced basis matrix for S~+~(F) iff BV(R;z) 
is a ( - c~)-reduced basis matrix for the submodule SU(R), with 

S"(R) = {p(z)lR(z)p(z) = O+(z~)}, 

where R ( z ) is the residual series of  B"  ( F ; z ), i.e., F ( z ) B~ ( F ; z ) = z~ R ( z ). 

Proof. A proof of  this theorem can be found in Appendix A. �9 
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We have to be careful when we apply this theorem to update from one perfect point 
to another one. Suppose Iio" + vii = q's + r', 0 <_ r' < s. Then we impose q '  + 1 
interpolation conditions for the rows 1 . . . . .  r '  o f  F(z) and q '  interpolation conditions 
for the rows r '  + 1 . . . . .  s. I f  I1~'11 = qs + r ,  0 _< r < s, then the elements from S~'(F) 
satisfy q + 1 interpolation conditions for the rows 1 . . . . .  r and q conditions for the 
rows r + 1 . . . . .  s. So the order u approximant for the residual should exactly fill up the 
difference in conditions per row. Thus the interpolation conditions for the residuals are 
imposed on the II u ll rows, repeated cyclically, starting with row r + 1. In other words, the 
order u approximant for the residual series R(z) is in fact computed for CrR(Z), where 
C represents the permutatio n operator which shuffles the rows cyclically one place up. 
Applying the previous theorem to B~-(F; z) and Br+ke(F; z), results in the following 
theorem. 

Theorem 17 (updating from one perfect point to another). Let r and 7- + ke be two 
perfect points on a diagonal of  the Pad& Hermite table for F ( z ). Suppose Br ( F ; z ) is a 
7--reduced basis for S~'(F), with tr = vect (lIrll  + s) (e.g., as given by Theorem 12). 
Let Rr(Z) be the residual series of  B,-(F;z), i.e., F(Z)Br(F;z)  = Z~ Rr(Z). Finally, for 
0 < k E N, define u ~ N s as the vector of  order indices u = vect (km). 

Then the polynomial matrix Br+ke( F ;z ) : B~-( F ;z) Bke-e, (Cr Rr;Z) is a (7" + ke)- 
reduced basis matrix for SCr+u (Cr Rr) iff B~_~, (Cr Rr;Z) is a (ke - es)-reduced basis 
matrix for S~ ( Cr Rr) for the perfect point ( ke - es) in the vector Pad& Hermite table for 
Cr er(z)  with 11o'11 = qs + r, 0 < r < s. 

Proof. Let us first prove that ifT" is a perfect point for F (z), then r + ke is also a perfect 
point for F(z) iff (ke - es) is a perfect point for R~.(z) = C~Rr(Z). First assume that 
(ke - es) is not a perfect point for RC(z). Hence, there exists a non-trivial polynomial 
vector p(z) having (ke - e~)-degree < - 1  satisfying the first like - es]] = km - s 
interpolation conditions. 

Note that q(z) = Br(F; z)p(z) has ( r  + ke)-degree < - 1  and q(z) is a nontrivial 
solution satisfying the first 

(tlTll + s) § l i k e -  es II : I[r § kell 

interpolation conditions for F(z). Hence, 7- + ke is not a perfect point. 
For the "if ' -part ,  we assume that (ke - es) is a perfect point for R~.(z) and, as above, 

it follows easily that r + ke is a perfect point for F(z). 
The rest o f  the theorem follows immediately from Lemma 15 and Theorem 16. �9 

Note that if  Br(F; z) and Bke_e, (CrR~-; z)are constructed using Theorem 12, also 
BT(F; z)Bk,-,~ (C r RT; z) will have the form described in this theorem. 

5. The Border of the Vector Pad&Hermite Table 

In the previous section, we have assumed that 7" > 0 (componentwise). Theorem 17 
shows how to jump from the perfect point 7- to the perfect point r + ke. 

Suppose now that we are interested in a 7--reduced basis matrix Br(z) for the submod- 
ule S ~' where some o f  the components o f t  may be negative. The first nontrivial point 
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on the diagonal 7" + ke, k ~ Z is 

"r - rmaxe, with rmax = max{D I J = 1, 2 . . . . .  m }. 

However, some o f  the components o f t  - ke, k = Zmax, rmax -- 1 . . . . .  0 can be negative. 
Hence, we have to extend the definition o f  S", Br(z),  St,  Mr(z)  . . . .  whenever some 
rj < 0 .  

Definition 18 (projection o f  the diagonal r --  ke). We define the projection o f  z = 
(Zl . . . . .  Zm) 6 Z m on the positive cone by proj(z) = zr with 

~ r j=max{0 ,  zj}, j = l  . . . . .  m. 

We call the piecewise linear path 7rk = proj(rk), the projection o f  the diagonal path 
rk = 7- -- ke, k = rmax, rmax - 1 . . . . .  0, when each point is replaced by its projection 
on the positive cone. When 3rj  : r < 0, the entities Br(z),  St ,  Mr(Z) . . . .  are defined as 
the corresponding entities for the projection zr = proj(r) .  Thus, for example, Br(z) = 
B~(z). 

We now show that the results o f  the previous section are also valid when 3rj :  zj < 0. 
From now on, we shall assume, without loss o f  generality, that the columns o f  F (z) 

F[[z]] ~• are ordered such that for a perfect point r ,  )--~=1 rj is maximal with FL(0) 
nonsingular. We use FL (Z) to denote the s x s matrix containing the first s columns o f  
F(z).  Note that this special ordering will only be necessary to establish the results when 
r :A proj ( r ) ,  i.e., on the border o f  the vector Padr-Hermite table. 

Theorem 19. Given 7" E Z m and F(z) ~ F[[z]] s• The columns o f F ( z )  are ordered 
as explained above. 

Let the point 7r = proj ( r )  be perfect. Let B.~(z) = B~r(z) be the canonical 7r-reduced 
basis matrix given by Theorem 12. Then, Br(z) is also a r-reduced basis matrix for  
S ~', tr = vect (tlTr[I + s). Its 7r-column degrees are es and its "r-column degrees are 
es + (Tr - 7"). Moreover, the first s components o f  (Tr - r )  are always zero. 

Proof.  The proof  o f  this theorem is given in Appendix B. 

We now extend Theorem 17 to the more general case when one o f  the components o f  
"r could be negative. 

Theorem 20 (updating from one perfect point to another). Let Br(F;z)  = B~(F;z) ,  
with rr = proj ('r), the canonical r-reducedbasis matrix for  Sa(F),  tr = vect (11~'11 + s ) ,  
given by Theorem 19. 

For 0 < k ~ N, thepolynomial matrix Br(F;z)Be(RC;z) is the canonical ( r  + ke)- 
reduced basis matrix Br+ke(F;z) = BTr,(F;z) for  S~'+~'(F), with lr '  = proj ( r  + ke) for  

I I  c the perfect point r + ke iff  B ( Rr; z ) = Ba( RC ; z) is the canonical6 = k e - e s  - ( z r -  r ) -  
reduced basis matrix for  the perfect point 6 in the vector Pad&Hermite table for  R~. (z) = 

.CrRr(Z), with Rr(z) the residual series for  Br(z) (i.e. F(z)B~-(F;z) = z"R~.(z), C is 
the cyclical up-shift matrix, and r = II~rll mod s). 

The &column degrees o f  Br(RC;z) are e, + (Tr' - r - ke). 
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Proof.  The proof  o f  this theorem is given in Appendix C. 

6. Algorithm 

The previous theorem allows us to construct an algorithm jumping from one perfect 
point to the next, on the diagonal 7 - - l e ,  1 = rm~x, Zmax - -  1 . . . .  in the vector Pade-Hermite 
table. 

Algor i thm 21 Diagonal Path. 
Input: F(z) ~ F[[z]] s• with F(0)  o f  full rank and 7- 6 Z m. 
Step 1 (a) permute the columns o f  F(z) and the corresponding elements of  7- such 

that FL(O) is nonsingular with ~ = 1  rj maximal; 
(b) k +-- 1;/z +- -7- - ( rmax+ 1)e; ~" +- - e s ;  Bu(F; z) +- lm; RC~(z) +- F(z). 

Step 2 for I = rmax, rmax - 1 . . . . .  0 

(a) 6 +-- ke - es - (Tr - / Z )  
(b) d +-- det(T~*) with Te* based on R~(z) 
(c) if d ~ 0 then 

(1) construct the canonical B~(RC~; z) from Theorem 12 
(2) Bu+ke(F; z) +- Bu(F; z)B~(R~; z) 
(3) R'~+ke(Z) +- z-~R~(z)Bo(z) with u = vect(ll6[I + s) 
(4) /z +--/Z + ke 
(5) 7r +-  proj(/z) 

C ~(z) with r = 11611 mod s (6) R~(z)= r e t  " 

(7) k +-- 1 
else 
(1) k ~ - -k+l  
endif  

endfor 
Output: if/Z = 7- then 

(a) 7- is a perfect point; 
(b) B~(F; z) is a/z-reduced basis matrix connected to this perfect point/Z. 

else 
(a) 7- is not a perfect poinl; 
(b) /Z is the last perfect point on the diagonal before 7- and B,(F; z) is the 

corresponding basis matrix; 
(c) if  we are interested in a 7--reduced basis matrix B~-(F; z) for the non-perfect 

point 7-, we can compute a 6-reduced basis matrix B6(R~; z) for the non- 
perfect point 6 for RCu(z). The polynomial matrix B~(F; z)B~(R~; z) is a 
7--reduced basis matrix for the non-perfect point "1-. 

endif 

Remarks. 1. When/Z is initialized as/Z +-- 7- - (rmax + 1)e and 7r as 7r +-- - e s ,  we 
start by looking for a first perfect point o f  the form 

(6 +--)ke - e~ - (rr - / Z )  = 7- - (Zm~ + 1)e + ke 

with k > 0. 
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2. In a manner that is analogous to [8], we can show that this algorithm requires only 
O(IJ proj(r)H 2) FLOPS if  the variable k only reaches small values compared to 

II proj (-r)II. 
3. Suppose s = l a n d  m = 2, with F(z)  = [ - 1  f ( z ) ]  (Padr-approximation) with 

f (z) = O+ (z 1). We are interested in a r - reduced basis matrix Br (z) with r = (rl ,  r2) 
and 0 < rl < z2. Hence, r2 = rma~ = max{v1, r2}. I f  we follow the diagonal path 
r -  le, l = r2, r2 - 1 . . . . .  ri . . . . .  0, the first point which is possibly a perfect point, is 
reached for I = rl.  Indeed, we have shown that the first s components ofTr = proj ( r )  
are equal to the corresponding components of  r for a perfect point r .  However, 

r l - - I  # 7rl = 0 ,  l = rz, r2 - -  1 . . . .  Z l + l .  

Also I = zl gives no perfect point. This also follows from the fact that the first row 
o f T *  is a zero row with 7r = p ro j ( r  - le), l = z ' 2 ,  r2 -- 1 . . . . .  r 1 . 

Suppose I = rl - 1 gives the first perfect point r .  Computing a -r-reduced basis 
matrix B~-(z) for this perfect point, requires O ((r2 - rl)3) FLOPS. Hence, if  r2 >> rl ,  
then the variable k of  Algorithm 21 reaches the value r2 - rl + 1, which is not moderate 
anymore compared to the total number of  interpolation conditions. 

Therefore, to reduce the amount of  computational work, one could follow other 
paths in the vector Padr-Hermite table. These paths are chosen such that the distance 
between two consecutive perfect points is small compared to the total length o f  the 
path. O f  course, when a non-diagonal step is made, the updating formulas have to be 
adapted. 

4. Algorithm 21 jumps from one perfect point to the next one on a diagonal path in the 
vector Padr-Hermite table. The updating formula of  Theorem 20, however, is valid 
for stepping from one perfect point to any that follow it. Hence, instead of  choosing 
the next perfect point, we can choose one of  the "well-conditioned" perfect points 
that follow it. That is, instead of  determining the next point based on the determinant 
o f  T~*, we can look for a 6 such that the condition number of  T~ is small enough, 
which implies that this also determines a perfect point. 

5. Instead of  Algorithm 21, a divide and conquer strategy could be used as in Cabay 
and Labahn [7], reducing the amount of  computational work to O (k log92 k), with 
k : II proj(r)l l .  

7. Matrix Pad~ Approximation 

In this section and the next one, we give two applications of  the previous algorithm to 
related problems such as matrix Pad6 approximation, and the solution of  block Hankel 
systems. Both problems can be reduced to a vector Padr-Hermite problem. 

We get the following connection between the vector Padr-Hermite approximation 
problem and matrix Pad6 approximation. 

We split F(z )  ~ F[[Z]] sxm as 

F(z )  = [FL(Z) FR(Z)], 

with 

FL(z) ~ F[[z]] T M  and FR(Z) ~ F[[z]] s• 

and assume that FL (0) is nonsingular. 
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Let -r be a perfect point, and the basis matrix for the F-vector space S~- be 

MT(Z) = [bl (z), b2(z) . . . . .  bm-s(z)]. 

This basis matrix can be split up as 

[ N ( z ) ]  with N(z)  ~ F[z] s• and D(z) e F[z] (m-s)x(m-s). 
M~.(z) = L D(z)  j '  

Because FL (0) is nonsingular, D(0) is nonsingular (see Theorem 8). Hence, by rewriting 
the interpolation condition (2), we obtain 

FL(Z)N(z)D(z)  -1 = --FR(Z) + O+(Z~ 

AS usual ct = vect(llTrll + s). Ifatl  the entries ofnt are the same, we get 

N(z )D( z )  -1 = --FL(Z)-I FR(z) + O+(Z"). 

I f  FL(Z) = Isxs, then, even if the entries of  ~r are different from each other, we can 
always write 

N(z )D(z )  -1 = --FR(z) + O+(z'r). 

Hence, the M.r(Z) for a perfect point 1- gives us a matrix Pad6 approximant having 
~--McMillan degree 0. For the definition of r-McMillan degree, we refer to [22]. 

I f m  = 2s and proj(-r) = -r = (3N . . . . .  8N, 80 . . . . .  80) (S times &v and 8o), we get 
that o" = (&v + 3o + t)r Hence, N(z )D(z )  -1 is a right matrix Pad6 fraction as defined 
in [17] with degN(z)  < 3N and deg D(z) _< 80. When we use our algorithm for this 
specific data and jump immediately to the diagonal part of  the path, we get a similar 
algorithm as in [17]. 

8. Solution of  B lock  Hankel  Sys tems  of  Equat ions  

Let us consider the (a • r )  block HankeI matrix 

ii HI ... He 1 HI. H2 - "  nfl+l F sxq 
H :  . ". , with Hi E . 

H~+I "'" +~_1 

Consider the set of  linear equations 

H x = b ,  with b = [ b 0  T,blT . . . . .  bT] r a  and bi ~ F  s• 

where we look for 

r r . . .  xff] r ,  with xi E F q• x = [x~, x~_ t, , 

Before we can apply the previous techniques, we have to translate this linear algebra 
problem into a vector Padr-Hermite approximation problem. Let us rewrite the original 
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linear algebra problem in the following equivalent one: 

(4) 

no 

no H1 . . .  nil-1 
Ho H1 H2 . . .  n 3 
H1 H2 H3 ""  H~+l 

Ha H~+1 H.+2 . . .  H~+~ 

Is 

- b o  

- b l  Iil = 0 ,  

with unknowns x and y = [Y~-I r , Y~-2 . . . . .  yff]r  with Yi ~ Fs• Note that this set 
o f  linear homogeneous equations has (or + / 3  + 1)s equations and (/3 + 1)q + / 3 s  + 1 
unknowns (counting the 1 as an unknown). 

I f  we define 

H(Z) = H o z  ~ + Hlz I +- - .  + H~+~z ~+3 + O+(za+/3+l), 

b(z) =boz  ~ + b lz  1 + - . -  + b~z ~ + O+(z~+1), 

X(Z) ~---X0Z 0 "[- XlZ 1 -t- �9 "�9 -}- XflZ fl, 

y(z) =y0z ~ + y l z  1 + �9 �9 �9 + y 3 _ l Z / ~ - l ;  

equation (4) is equivalent to the following vector Pad&Hermite approximation problem: __[" x(z) ] 
[ n ( z )  Is --zflb(z)] [ y ( l z )  = O+(zCe+/3+x), 

with 0-deg x < /3  and 0-deg y < t5 - 1. This can be rewritten as 

F(z)p(z) = O+(z"), 

with 

m = q + s + l ,  

F(z) = [ H ( z )  Is - z~b(z)] 6 F[[z]] sxm, 

p(z) =[XT(Z) y r (z )  1] ~ ~ F[z] re• 

r -deg  p _<0, 

"r = (3 , /~  . . . . .  /3,/3 - 1, 3 - 1 . . . . .  3 - 1,0),  

q s 

cr =(ol + 3 + 1 , a + f l +  1 . . . . .  a + f l +  1). 

Because F(0)  has full rank, we can use Algorithm 21 to compute r - reduced  basis 
matrices Bu(z) for each perfect point on the diagonal r -  le, l = fl, 13 - 1, 15 - 2 . . . . .  1". 
Note that it might be that the columns o f  F(z) should be reordered such that FL(0) is 
nonsingular with )--~'=1 rj  maximal�9 The last value o f / ( i . e . ,  I*) is chosen such that the 
number o f  interpolation conditions that determine B~-(z) is smaller than or equal to the 
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total number o f  given interpolation conditions, or 

l* = min{l ~ Zl Ilrrlt + s _ (~ + r + 1)s with rc = proj(~- - / e ) } .  

Equivalently, 1" is determined such that 

(5) l* = min {{l ~ Z [ (s + q) l  > qfl - (or + 1)s} U {fl}}. 

From now on let us assume that the block Hankel matrix H is square, i.e., s ( a  + 1) = 
q (fl + 1). Moreover, let H be nonsingular. Hence, the solution space of(4)  has dimension 
1 and there is only one element from this solution space having last component equal to 
1. 

Equation (5) simplifies to I* = 0. F o r / =  I*, we have that/z = 7- and the corresponding 
number o f  interpolation conditions is 117"11 + s = (s + q )~ .  The remaining number o f  
interpolation conditions is 

(or + fl + 1)s - (11"1"11 + s) = q > 0. 

Hence, to obtain the final solution, we look for the unique solution o f  

C r R r ( z ) p ( z )  ---- O+(z") ,  r = II'rlE mod s (6) 

with 

F(z)B~-(z)  = z 'e R~.(z), 

# = vect(ll~'ll + s), 

v = vect(q), 

( - es ) -degp(z )  < 0, 

and the last component o fp (z )  is equal to 1. 
Equation (6) translates into a set o f  q linear homogeneous equations with q -t- 1 

unknowns. The solution space has dimension one and there exists a unique solution p(z) 
with the last component equal to one. The final solution x(z) o f  the block Hankel system 
of  equations is given as 

(7) x(z) = [lq 0 0 ] B , - ( z ) p ( z ) .  

Suppose now that the last perfect point for / = r ,  fl - 1 . . . . .  0 is not r - l*e = ~- but a 
previous point "r - le with I > 0. Now, p(z) is the unique solution o f  

CrR~-_te(z)p(z)  = O+(zV), r = I1 proj(~- - le)l[ mod s, (8) 

with 

F(z)B. , -- te(z)  = Z~" Rr- le(Z) ,  

~ '  = vect(ll proj (~" -- le)II + s), 

v = vect(s(oe + fi + 1) -- II~r'll), 

i.e., [Ivll = q( l  + 1) + sl ,  (le - es - lus+q+O-degp(z )  < 0 (for 1 < fl), and the last 
component o f  p(z) is equal to one (ui = (0, 0 . . . . .  1 . . . . .  0) with the one at position 
i). Translating (8) into a linear algebra problem results in a set o f  q ( / +  1) + sl linear 
homogeneous equations with q( l  + 1) + sl  + 1 unknowns. Scaling the last component 
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to be one, gives us the unique p(z) which, together with (7), leads to the final solution of 
the block Hankel problem. In the case where the Nock Hankel matrix H is singular, the 
solution space of(6) and (8) will have dimension greater than one. From the basis vectors 
with the last component scaled to be one, all solutions of the block Hankel problem can 
be expressed using (7). 

We could also solve the block Hankel system by using the inversion formula of  
Gohberg and Shalom [11]. The  entities needed in this inversion formula can be 
immediately extracted from the "r-reduced basis matrix for S '~, given F(z) with 

F(z)  = [H-1 + zH(z)  - Is], with H-1 and H~+~+1 arbitrary, 

"1- =(/5 + 1)e, 

~r =(or + fl + 3)e. 

Hence, we can use our algorithm to compute this basis matrix, going from one per- 
fect point to the next. Note that the last point will be perfect if the block Hankel 
matrix is nonsingular. In [15], Labahn also gives an algorithm jumping from one perfect 
point to another. However, he only takes into account the perfect points "1- such that 
o" = vect(ll'rll + s) has equal components. This means that the number of  interpolation 
conditions that are added in each step is at least equal to the common multiple ofs  and q 
multiplied by ( 1 + s/q) ,  while our algorithm adds at least s + q interpolation conditions. 
Take, for example, s = 5 and q = 7. The method of Labahn uses a jump size of  at 
least 35(1 + 3/5) = 56, while our algorithm uses a jump size of at least 12. Hence, if 
there are intermediate perfect points between the perfect points found by the algorithm 
of Labahn, our algorithm will be more efficient. When the blocks are square, this differ- 
ence disappears. We refer the interested reader to [16] where the inversion components 
of block HankeMike matrices are computed. 

9. Conclusion 

In this paper, we have constructed an algorithm going from one perfect point to another 
on a diagonal path in a vector Pad6-Hermite table. We have indicated that a slightly 
modified version of the algorithm can also be used to compute basis matrices for "well- 
conditioned" perfect points or to compute the solution of a block Hankel system of 
equations. 
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Appendix A. Proof of Theorem 16 

W h e n  F ( 0 )  has  ful l  rank ,  w e  have  the  fo l lowing  resul t  for  the  c o n s t a n t  coef f ic ien t  o f  

a bas i s  m a t r i x  B~ 

Theorem 22. Given F(z )  ~ F[[z] ]  s• with s < m. Take any basis matrix B~(z)  fo r  
the submodule S ~ given by Definition 1. I f  the columns il ,i2 . . . . .  is o fF(O)  are linearly 
independent, then the (m - s) x m matrix D B ~ (0) obtained by deleting rows il, i2 . . . . .  is 
in B ~ ( 0 )  has ful l  rank. The matrix D is obtained by deleting rows il ,iz . . . . .  is in the 
m x m identity matrix. Moreover, 

[R(o) 1 
DB~(O) J 

is nons ingular where R ( z ) = z-~" F ( z ) B~ ( z ) , i.e., the residual series o f  B'r ( z ). Hence, 
R(O) and DBa(O) have full  rank. Also, d e g d e t  B~(z)  = ll~rtl, i.e., all interpolation 
conditions are linearly independent. 
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Proof. Consider the following equality: 

D Ba (z) ] '  

or  

Because 

]-' r z R(z) 1 
B'r(z) = D J L DBa(z) J" 
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Proof. The polynomial matrix B~(z)  e F[Z] mxm is a "r-reduced basis matrix for S ", 
given F(z) ,  iff 

1. F ( z )B~(z )  = z~R(z) ,  with R(z)  ~ F[[z]] s• 
2. degdet Ba(z)  = [Iobl, 
3. Ba (z) = Zr Bha (Z)ZCt, with B~(z) = O_(z~ and deg det B~ (z) = O. 
r The polynomial matrix B"(z)  is a (-c~)-reduced basis matrix for S V, given R(z) ,  iff 

a. R(z)BU(z)  = zUR'(z), with R'(z) E F[[z]] sxm, 
b. degdet B~'(z) = Ilvll, 
c. Bt'(z) -C~BV = z h (Z)Z , with B~'(Z) = O_ (z ~ and deg det B~(z) = O. 

Then the polynomial matrix B~+U(z) = B~'(z)BU(z) is a "r-reduced basis matrix for 
S ~', given F(z) ,  because 

a. F(z)Ba+Z'(z) = F(z) (B~(z)BU(z) )  = z'rR(z)BU(z) = z~+UR'(z), 
b. degdet B~(z) = llcrll + tlvtl = liar + ull ,  
c. Ba+~'(Z) = (z~-B~(z)za)(z-aB~(z)z  13) = z rB  ~'+~''" h tZ)Z , with B~+~'(z) = 

B a  v h (Z)Bh (Z) = O-(Z ~ and deg det nh~r+U(z) = O. 

=~ In a similar way as for the "if" part, one can show that B"(z)  = (B~'(z)) -~ B'~+~'(z) 
satisfies all the conditions to be a (-~)-reduced basis matrix for S% given R(z) ,  
except that it is a polynomial matrix. With the notation of the previous theorem, we 

det B~'(z) =O_(zll~ll), 

det [ z~'R(z) DB~'(z) ] =O+(zliail)' 

we see that det B~(z)  = cz II~'11 , with 0 ~ c E IF, and that 

1 
DB(O) J 

is nonsingular. Hence, DB(O) and R(0) have full rank, i.e., the rank is, respectively, 
m - s and s. �9 

The proof of Theorem 16 can now be given. 
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have the following equality 

R(z) DBO,(z)]BU(z)=[ zUR'(z) DB~r+"(Z) 1 ' 
or  

BU(z) = DBCr(z ) [ DB~+V(z).J 

= O+ (z o ) O+ (z ~ 

=O+(z~ 
Hence, B~'(z) is polynomial. 

Appendix B. Proof of Theorem 19 

Proof.  Let us first prove the last statement in Theorem 19, i_e., that 7/'j = ~ ' j ,  j = 
1, 2 . . . . .  s. Suppose there is some k, 1 < k < s such that zrk ~ zk. Note that this is only 
possible when 0 = zrk > rk. Hence, B~-(0) has the following form: 

(9) B~-(0)= 0 . . .  0 . ,  , . . .  , ]  ~ ..... k 

O(m-s)xs [rn-s 3 
We now prove that all .-entries are zero. Suppose the (k, j)-eutry, 0 < k _< s < j < m, 
o f  B~.(0) is different from zero. Because F(0)Br(0)  ---- 0, we could switch columns k 
and j o f  F(z) ,  keeping FL(O) nonsingular. Hence, rj _< rk < 0 ( ~ = t  ri is maximal) 
or the j - th  row of  B.,-(z) contains only terms of  degree 0. Therefore, by expanding the 
determinant o f  B.,.(z) along row j ,  we see that it is equat to the determinant o f  a square 
m a r x  o f  size m - I, which has the same form as (9). Hence, by indzzctior~ or~ the 
dimension o f  Ihese matrices, one can prove that, i f 0  = rrk > r~ with I < k < s, then 
det B,-(z) = 0. This contradicts the fact that B~.(z) is a basis matrix. Hence ~rj = ~j, for 
a l l j  ---- 1,2 . . . . .  s. 

To prove the remainder o f  the theorem, we assume without loss o f  generality that 
0 = zrj > r j ,  j = s +  1 . . . . .  s + k ,  andr r j  ----- zj for other j values. Hence, the 
1r-reduced basis matrix B~-(z) can be written as 

' / r  e s B~.(z) -- z ~' z e" = z B.,-h(z)z O Ik O 

with degdet  B.r,h (Z) ~- 0 and Br,h (Z ) = O_(Z O) (component~vlse). Therefore, B~-(z ) 
can also be written as a r - reduced basis matrix, 

Br (z) =z ~'[z ~-~'B.r,h (Z)Z'r-~r]z rr-'r+e~ 

=Z~" 8~,h(Z)Z~ '~-~', 

where, from the structure o f  Br,h(Z), it also follows that deg det B'.r,a(z) = 0 and 
B~_,~ (z) = O_ (z~ This proves the theorem. �9 
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Appendix C. Proof of Theorem 20 

Proof. Similar to the first part o f  the proof o f  Theorem 17, we can show that r + ke is 
a perfect point for F(z)  i f f8  = (ke - es - (Tr - 7.)) is a perfect point for the permuted 
residual series Rfr(z). 

Let us assume that B~(Rf~; z) is the canonical &reduced basis matrix for the perfect 
point 6 in the vector Pad6-Hermite table for R~(z). The &column degrees o f  the columns 
o f  Ba(R~; z) for a perfect point 6 are given as es + proj(6) - 6 which is equal to 
es + (rr' - r - ke) as we shall now show. 

There are two possibilities for each component o f  rr and r .  

1. ri = 7ri > 0. Hence 

(proj(6) - 6)i = proj(ke - es)i - (ke - es)i 

= 0  

= p r o j ( r  + ke)i - ( r  + ke)i 

=Tr I - (7- + ke)i; 

2. r/ < 7ri = 0 (s + 1 < i < m). Therefore, 

(proj(6) - 6)i = p r o j ( r  + ke)i - ( r  + ke)i 

=~'~ -- (7" + ke)i. 

Hence, we have shown that 

(10) proj(6) - 6 = 7r' - ( r  + ke). 

In the sequel, we prove that if  B~ (R c; z) is connected to the perfect point 6 for R e (z), the 
polynomial matrix Br(F; z)B~(RC; Z) is a (7. + ke)-reduced basis matrix connected to 
the perfect point ( r  + ke) for F (z). First, we show that the correct number o f  interpolation 
conditions is satisfie d , i.e., we have to show that 

llTr'll + s = (llrrll + s ) +  (11 proj(6)ll + s). 

Using (10), we get 

(11~'11 + s ) +  (11 proj(6)ll + s) =(llrrll + s ) +  (11611 + I l r r ' l l -  l i t +  kell + s) 

=(llrrll + s) + [([I - esll - II~rll + IIr + ketl) 

+ Ilrr'll - l i t  + kell + s] (def. o f  6) 

=llTr'll + s .  

In the remaining part o f  the proof, we show that Br(F; z)Ba(R~; z) is ( r  + ke)-reduced 
with ( r  + ke)-column degrees es + 7r' - ( r  + ke). Because By(F; z) is r - reduced 
with r - co lumn degrees es -t- 7r - 7", and B~(R~; z) is &reduced with &column degrees 
es + 7r' - ( r  + ke), we can write 

Br(F;  z)B~(R~; Z) =(zr  Br,h(F; Z'Ze'+Tr-r'~-ke-e'-~r+rB "R c" Z)Z es+~'-r-ke) ) )kZ ~5,hk r, 
r+ke c z)ze~+~-r-ke, =Z Br,h(F; z)B&h(Rr; 
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with deg det(Br.h (F;  z)B&h (R~.; z)) = 0 and Br, h (F;  z)B&h (R~.; Z) = O_ (Z~ Hence, 
B.,.(F; z)B,5(R~.; z) is (T+ke) - reduced  with ('r +ke)-colurnn degrees es + T r ' -  ( 'r  +ke ) .  

It is easy to see that if  Br(F; z) and Ba(RSr; Z) are both the canonical basis matrices 
in the sense o f  Theorem 19, their product is also the canonical basis matrix. This proves 
the "if" part o f  the theorem. 

The  "only if" part is proved similarly. �9 
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