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Abstract

Let {an} be a sequence in the unit disk D = {z E C :1 z 1< I} consisting of a finite

number of points cyclically repeated, and let £. be the linear space generated by the func-

tions Bn (z) = Ii -I all: I((z - ~k \. Let {CPn(z)} be orthogonal rational functions obtainedk=O all: 1 - akZ

from the sequence {Bn( z)} (orthogonalization with respect to a given functional on £.), and

let {1/Jn( z)} be the corresponding functions of the second kind (with superstar transforms

CP~(z) and 1/J:(z) respectively). Interpolation and convergence properties of the modified

approximants Rn(z, Un, Un) = Un,pn~Z~ - un1/J:~Z~ that satisfy '(.(011' '= f'Ir~ ,are discussed.Uncpn Z + unCP; Z
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1 Preliminaries

We shall use the notation T = {z E C : Izi = I}, D = {z E C : Izi < 1} for the unit circle

and the unit disk. The kernel D( t, z) is defined by

D(t,z)=t+z t - z· (1.1)

Let J-l be a finite Borel measure on [-11",71-). The integral transform nJt is defined as the

Caratheodory function

nJt(z) = iT D(t, z)dJ-l(t). (1.2)

(We use the simplified notation above for J~1I" D( eiO, z )dJ-l( (J), and analogously in similar

cases. )

The real part of a Caratheodory function is a positive harmonic function in D, and vice

versa. (Recall Riesz-Herglotz representation theorem. Note that the real part of the kernel

D( t, z) is the Poisson kernel.)

The substar conjugate J. of a function J is defined as

J.(z) = J(l/z).

When J is a rational function or a series expansion, this may also be written as

J.(z) = J(l/z)

(1.3)

(1.4)

where the bar denotes conjugation of the coefficients. The inner product <, >Jt is defined

on C(T) x C(T) by

< J, 9 >Jt= iT J(t)g(t)dJ-l(t) = iT J(t)g.(t)dJ-l(t). (1.5)

Let {an: n = 1,2, ... } be an arbitrary sequence of (not necessarily distinct) points (inter­

polation points) in D. We define the Blaschke factor (n(z) as the function

n = 1,2, .... (1.6)

(Here I~:I= -1 if an = 0.)
We also define

n

11"o(z) = 1, 11"n(Z) = IT (1 - akz), n = 1,2, ... ,
k=l
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n

wo(Z) = 1, wn(z) = II(z - O'k), n = 1,2, ....
k=l

The Blaschke products Bn(z) are defined by

(1.8)

n = 1,2, ... , (1.9)

where

We shall also make use of the functions Bn\k(Z) defined by

(1.10)

n

Bn\n(z) = 1, Bn\k(Z) = Bn(z)j Bk(Z) = II (j(z) for 0 ::; k < n, n = 1,2, .... (1.11)
j=k+l

(The product means the constant 1 when k = n.)

We define, the spaces Ln and Ln. by

Ln = Span{Bk : k = 0,1, ... , n}

and set L = U~=oLn, L. = U~=oLn.'

We may then write

Pn(Z)

Ln = {-(-) : Pn E IIn}7rn Z

where Iln denotes the space of all polynomials of degree at most n.

For In E Ln we define its superstar conjugate I~ by

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

Note that this transformation depends on n. It must be clear from the context what n is.

Also note that when In E Ln then I~ E Ln.
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The theory of the function spaces described above is connected with the Nevanlinna-Pick

interpolation problem with interpolation points {an} (d. [16,17]). These function spaces

were introduced by Djrbashian in 1969 (see [11]), and independently in [1,2,10]. The theory

has recently been further developed in [3,4,6,8]. (Cf. also [14].) For connections between

Nevanlinna-Pick interpolation and system theory, see [9].

We shall in this paper mainly be concerned with a special case, which we shall call the

cyclic case. In this case the sequence {an} consists of a finite number p of points cyclically

repeated. Thus aqp+k = ak for k = 1, ... , p, q = 0,1,2, .... For more details on the cyclic

case see [5,7,12].

When all the interpolation points coalesce at the origin, the space L reduces to the space

of polynomials, and the orthogonal rational functions in L (see Section 2) are orthogonal

polynomials, Szego polynomials. For a survey of this special situation, see e.g. [13].

2 Orthogonal rational functions

Let the sequence {CPn : n = 0,1,2, ... } be obtained by orthonormalization of the sequence

{Bn: n = 0,1,2, ... } with respect to <, >w These functions are uniquely determined by

the requirement that the leading coefficient Kn in
n

CPn(z) = L KkBk(Z)
k=O

(2.1)

is positive. We then have Kn = cP~ (an). The following orthogonality properties are valid

(See [3,4].) We define the functions CPn(z,u,v) by

CPn(Z,u,v) = ucpn(z) + vcp~(z), u,v E C, (u,v) f. (0,0).

(2.2)

(2.3)

(2.4)

We note that CPn(Z, u, v) belongs to Ln (as function of z). We call these functions paraort­

hogonal when lul = Ivl.

We define the functions "pn of the second kind by

(2.5)
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For the functions 1/Jnand 1/J~various equivalent expressions can be given. Let us recall the

following result (see [3,4]):

Theorem 2.1 For n = 1,2, ... the following formulas are valid:

f l1k(z)1/Jn(z) = iT D(t, z)[ l1k(t) <t'n(t) - <t'n(z)]dJl(t), k = 0,1, , n - 1,

1/J~(z) = - f D(t, z)[~n\k~Z~ <t'~(t) - <t'~(z)], k = 0,1, , n - 1.iT n\k t

We shall next prove a result valid in the cyclic situation.

(2.6)

(2.7)

Theorem 2.2 In the cyclic case with p points the following formulas are valid for n =
p+1, p+2, ... :

1/Jn(z) = f D(t, z)[~n\qp~Z~ <Pn(t) - <Pn(z)]dJl(t) where qp < n (2.8)iT n\qp t

1/J~(z) = - iT D(t, z)[~qp~~~ <p~(t) - <p~(z)]dJl(t) where qp < n. (2.9)

Proo J:
n qp

We may write Bn\qp(z) = II (j(z) = II(j(z) = Bqp(z). The results now follow by
j=n-qp+l j=l

using k = qp in (2.6) - (2.7). D
We define the functions 1/Jn(z, u, v) of the second kind by

1/Jn(Z,u,V) = u1/Jn(z) - v1/J~(z), u,V E C, (u,v) =f (0,0). (2.10)

Theorem 2.3 In the cyclic case with p points the following formulas are valid for n =
p+1,p+2, ... :

1/Jn(z, u, v) = iT D(t, z)[~::~:j<Pn(t,u, v) - <Pn(Z,u,v)]dJl(t), where qp < n, (2.11)

1/Jn(z,u,V) = f D(t,z)[~n\qp~z~<Pn(t,u,V) - <t'n(z,u,v)]dJl(t), where qp < n. (2.12)iT n\qp t

Proof:

Follows by combining (2.7) and (2.8) (resp. (2.6) and (2.9)) for the situation k = qp. D

5



3 Interpolation by rational approximants

We shall in this section study interpolation properties of the rational functions

Rn(Z,u,v) = tPn(z,u,V)
CPn(z,u,V)

given by (2.4) and (2.10) to the function -Oi«z) defined in (1.2).

Let us recall the following result (see [8]):

Theorem 3.1 The function Oi«z) has in D the following Newton series expansion

00

0i«z) = [lLa+ 2 L ILmZWm-l(Z)],
m=l

where the general moments ILm are given by

In the following we shall use the notation q( n), r( n) as defined below:

n = q(n)p + r(n), r(n) E {1, ... ,p}.

(3.1)

(3.2)

(3.3)

(3.4)

Theorem 3.2 The rational function Rn(z, u, v) interpolates the function -Oi«z) in the

sense that for n > p:

where fn(z) is analytic in D.

Proof:

One can easily establish the identity

Hence, after integrating (3.6) with measure IL, we get

lLa + 2 'f: ILmZWm-l(Z) = 1{D(t, z)[1 - ZWn_l(Z)] - ZWn_l(Z! }dlL(t).m=l T tWn-l (t) tWn-l (t
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By combining (2.11) and (3.7) we then obtain (since q(n)p < n)

n-l

tPn(z, u, v) + ~n(z, u, v)[Jlo + 2 E JlmZWm-l(Z)]
m=l

1 ( )[Bq(n)p(Z) ( ) ZWn-l(Z) ( )] ()= TDt,z B ()~nt,u,V - (\~nZ,U,V dJltq(n)p t tWn-l t

-~n(z,u,V)ZWn_l(Z) ( 1 (\dJl(t)iT tWn-l t

and hence
n-l

tPn(z, u, v) + ~n(z, U, v)[JlO + 2 E JlmZWm-l (z)]
m=l

= -Jl~~n(z, u, V)ZWn_l(Z) + Wq(n)p(z)an(z),

where

, _ ( 1 dJl(t)Jln - iT tWn_l(t)

and

(3.8)

(3.9)

(3.10)

(3.11)) J ( )[ 7rq(n)p(t) ( )an(z = D t,z ( ) ( \~n t,u,vT 7rq(n)p Z Wq(n)p t

Z nn-l (z - a )
_ k=q(n)p+l k ( )]d (t)

( ) ~n Z, U, v Jl .tWn-l t

(If q(n)p = n - 1, the product means the constant 1.)

We are going to prove that an(ak) = 0 for q(n)p + 1 ~ k < n - 1.

Let q(n)p + 1 ~ k ~ n - 1, if n(q) < n - 1. Then

an(ak) = \) ( D(t, ak) 7rq(n)p~t~ ~n(t, u, v)dJl(t). (3.12)7rq(n)p ak iT Wq(n)p t

[7r (n) (t)] 1+ akt W (n) (t)
We note that D(t, ak) q p = c _ q p = c(n(t)L(t), where L(t) E £n-l

Wq(n)p(t) * 1- akt 7rq(n)p(t)

and c is a constant, while also D(t, ak) Wq(n)p(t) E £n-l. (Note that (1 + ~kt)Wq(n)p(t) =
7rq(n)p(t) (1 - akt)7rq(n)p(t)

(t - ~k\Sq(n)p(~\ where Sq(n)p(t) is a polynomial of degree q(n)p, that (1-akt)7rq(n)P(t) is a1- akt 7rq(n)p t

factor in 7rn(t), and that (t-ak) is a factor in Wq(n)p(t).) Thus [7rq(n)p~tn E £n-l n(n£n-l,wq(n)p t *
and hence

() 1 () (q(n)p(t)]
an ak = () < ~n t, u, v , ( \ * >~= O.7r q(n)p ak Wq(n)p t
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Analogously we find O"n(O) = O.

We have now seen that the second term of the right side of (3.9) in addition to having the

factor Wq(n)p(z) also has the extra factor Z and the extra factors (z - ak) for q(n)p + 1 <
k ::; n - 1 (since O"n(O)and O"n(ak) = 0 for the values of k indicated).

It follows that the second term on the right of (3.9) is of the form An(Z)ZWn_l(Z), Thus

n-l

tPn(z, u, v) + <Pn(Z,u, v)[Jlo + 2 L JlmZWm-l(Z)] = gn(Z)ZWn-l(Z),gn(z) analytic. (3.14)
m=l

Since

n-l
f!/l(z) + [Jlo+ 2 L JlmZWm-l(Z)] = hn(z)zwn_l(z), hn(z) analytic,

m=l

we conclude that (3.5) holds.

4 Convergence of rational approximants

(3.15)

o

We recall that we call the function <Pn(z, u, v) paraorthogonal when lul = Ivl. Paraort­

hogonal functions give rise to quadrature formulas. Let us recall the following result (see
[3,6]):

Theorem 4.1 The zeros of<Pn(z,u,V) for lul = Ivl are all simple and lie on T. Let the

zeros be denoted by dn)(u,v), k = 1, ... ,n. Then there exist positive constants Aln)(u,v)

such that the quadrature formula

n

j L(t)dJl(t) = LAln)(u,v)L(dn)(u,v))T k=l

is valid for L E £n-l + £(n-l)*'

(4.1)

We shall in the rest of this section again consider only the cyclic case with p points, and
use the same notation as in Section 3 and Theorem 4.1.

Theorem 4.2 Let lul = lvi, and assume n > p. Then Rn(z, u, v) has the partial fraction

decomposition

n

Rn(z,u,v) = - L A~)(u,v)D(~!:)(u,v),z).
m=l
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Proo r
Consider the function f(t) defined by

Bp(z)

f(t) = D(t, z)[ Bp(t) CPn(t, u, v) - CPn(z, U, v)].

The function CPn(z,u,V) can be written as

CPn(Z,u,v) = Pn(z,u,v)
1I"n(z) ,

where Pn(z,U,V) E TIn. It follows that

(4.3)

(4.4)

f(t) = (t + Z)[Wp(Z)1I"p(t)Pn(t, u, v)1I"n(Z) - Wp(t)1I"p(Z)1I"n(t)Pn(Z, u, v)], (4.5)
(t - Z)Wp(t)1I"p(Z)1I"n(t)

hence since t - Z is a factor in the numerator:

(4.6)

where Pp+n-1 belongs to TIp+n-l as a function of t. (Note that (1 - ant) is a factor both

in 1I"p(t) and in 7rn(t), and also in the numerator.)

It follows that we may write

(4.7)

hence f(t) E Ln-l + Lp• C Ln-l + L(n-l).' by partial fraction decomposition. (Note that

wp(t) and 1I"n-l(t) have no common factors.) Since f(~!::)(u, v)) = -D(~!::)(u, v), Z)CPn(z, U, v),

as CPn(~!::)(u,v),u,v) equals zero, application of Theorem 4.1 and Formula (2.11) yields

n

1/Jn(z,u,v) = -CPn(z,u,v) E "\~)(u,v)D(~!::)(u,v),z),
m=l

which is equivalent to (4.2).

Since (4.1) is valid for L = 1, the following equality holds:

n

E "\~)(u, v) = /lo·
m=l

(4.8)

D

(4.9)

Theorem 4.3 Letlunl = Ivn\ forn = 1,2",. Then the sequence {Rn(Z, Un, vn)} converges~
locally uniformly on D to -njl(z).
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Proof:

It easily follows by (4.2) and (4.9) that the functions Rn(z, U, v), Iul = lvi, are uniformly

bounded on every compact subset of D, and thus form a normal family. So there exist

subsequences of {Rn(z, Un, vn)} converging locally uniformly on D. Let vn(t, Un, vn) be the

measure on T having masses ).~)(un' vn) at the points ~!:)(un' vn). By Theorem 4.2 we

may then write

(4.10)

A standard argument shows that a subsequence of {Rn(z, Un, vn)} converges locally uni­

formly on D to a function F(z) if and only ifthe corresponding subsequence of {vn(t, Un, vn)}

converges to a measure v such that F(z) = -nv(z).

F h j dVn(un, Vn, t) j dv(t) h hurt ermore ( ) converges to --(-) for m = 0,1,2, .... On t e ot erT Wm t T Wm t
hand Theorem 3.2 shows that Rn(z, Un, Vn) + nJl(Z) = 9n(Z)ZWn-l(Z), where 9n(z) is

analytic in D. It follows from this and (4.10) that ( dvn(t, ~n) vn) = ( dJ.L~t~ foriT Wm t iT Wm t
m = 0,1, ... , n - 1.

~ dv(t) ~ dJ.L(t)Consequently --(-) = --(-) for m = 0,1,2, .... (Cf. [7,8] where related problemsT Wm t T Wm t

are treated.) It is known that the measure giving rise to the moments /-lm = ( dJ.L~t~ isiT Wm t
unique when L:~=1(1 - lanl) = 00 (this follows e.g. from the convergence result in [3],

Section 21). This is the case in the cyclic situation. Thus v = J.L and the whole sequence

{Rn(z, Un, vn)} converges to -nJl(z). 0
For convergence properties of the rational approximants Rn(z, 0,1) and Rn(z, 1,0) see [3].

For a more detailed study of convergence of multipoint Pade approximants, see especially

[15].
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