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Abstract

Let {a,} be a sequence in the unit disk D = {z € C :| z |< 1} consisting of a finite

number of points cyclically repeated, and let £ be the linear space generated by the func-
; n ok (z2—ax)
tions B,(2) = [] =
ions B,(2) kl;lo il
from the sequence {B,(z)} (orthogonalization with respect to a given functional on £), and

. Let {¢n(2)} be orthogonal rational functions obtained

let {1)n(2)} be the corresponding functions of the second kind (with superstar transforms
¢i(2) and 9} (z) respectively). Interpolation and convergence properties of the modified

unPn(z) — vapy(2) . ’
n that satisfy (Uml=[A; d -
Unpn(2) + Vo (2) at salisty [V jare discuss

approximants R,(z,un,v,) =
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1 Preliminaries

We shall use the notation T = {2 € C: |z] =1}, D = {z € C : |z| < 1} for the unit circle
and the unit disk. The kernel D(t, z) is defined by

t+ z
1=z

D(t,z) = (1.1)

Let u be a finite Borel measure on [—=,7|. The integral transform €, is defined as the
Carathéodory function

(z) = [ D(t, 2)du(t) (1.2)

We use the simplified notation above for [T _D(e*,2)du(8), and analogously in similar
x g

cases.)

The real part of a Carathéodory function is a positive harmonic function in D, and vice
versa. (Recall Riesz-Herglotz representation theorem. Note that the real part of the kernel
D(t, z) is the Poisson kernel.)

The substar conjugate f. of a function f is defined as

f-(z) = F(173). (1.3)
When f is a rational function or a series expansion, this may also be written as

fu(2) = f(1/2) (1.4)

where the bar denotes conjugation of the coefficients. The inner product <, >, is defined

on C(T) x C(T) by

< fi9>u= [ SODdu) = [ 1019 ()dp(t) (1.5)

Let {a, : n=1,2,..} be an arbitrary sequence of (not necessarily distinct) points (inter-
polation points) in D. We define the Blaschke factor (,.(z) as the function

_m (=)

Gl = o] T—m2)’ =120 (1.6)
(Here ]%_::T =-1lifa, =0.)
We also define

n

Wﬂ(z) =1, Iﬂ(z) = H(l ‘—a?Z), n=12,.., (17)

k=1



wilz) =1, wa(z)= ﬁ(z =iy S BT ey
k=1

The Blaschke products B,(z) are defined by

Bo(z) =1, Bu(z)= f[gk(z)zqn“”“(z), n=12,..,
k=1 ﬂ-"(z)
where
_ (1) T 2%
"?n _( 1) };Il |ak|

We shall also make use of the functions B,\x(z) defined by

n

Ban(2) =1, Bui(2) = Ba(2)/Bi(2) = ][] ¢i(2) for 0<k<n, n=1,2,...

i=k+1
(The product means the constant 1 when k& = n.)

We define the spaces £, and £,. by

L. =Span{B: : k =0,1,...,n}

En. = {f* :f € f'n}a

and set L= 00 E =105,
We may then write

Lo = {i’;g;  pa €11}
Lo = {i((‘?) : gn € 11,)

where [],, denotes the space of all polynomials of degree at most n.

For f, € L, we define its superstar conjugate f* by

f2(2) = Ba(2) fau(2).

(1.8)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

Note that this transformation depends on n. It must be clear from the context what n is.

Also note that when f, € £, then f* € L,,.



The theory of the function spaces described above is connected with the Nevanlinna-Pick
interpolation problem with interpolation points {a,} (cf. [16,17]). These function spaces
were introduced by Djrbashian in 1969 (see [11]), and independently in [1,2,10]. The theory
has recently been further developed in [3,4,6,8]. (Cf. also [14].) For connections between
Nevanlinna-Pick interpolation and system theory, see [9].

We shall in this paper mainly be concerned with a special case, which we shall call the
cyclic case. In this case the sequence {a,} consists of a finite number p of points cyclically
repeated. Thus ag,4k = ai for k =1,...,p, ¢ =0,1,2,.... For more details on the cyclic
case see [5,7,12].

When all the interpolation points coalesce at the origin, the space £ reduces to the space
of polynomials, and the orthogonal rational functions in £ (see Section 2) are orthogonal
polynomials, Szegd polynomials. For a survey of this special situation, see e.g. [13].

2 Orthogonal rational functions

Let the sequence {p, : n = 0,1,2,...} be obtained by orthonormalization of the sequence
{B.: n=0,1,2,..} with respect to <,>,. These functions are uniquely determined by

the requirement that the leading coefficient &, in
@n(2) = D _ ki Bi(2) (2.1)
k=0

is positive. We then have k, = ¢}(an). The following orthogonality properties are valid

€ fpu2,=0 for T €L (2.2)

< 9,pn>u=0 for g€ (aLn-1. (2.3)
(See [3,4].) We define the functions ¢n(z,u,v) by
en(2,u,v) = up,(2) + vo}(2z), u,veC, (u,v)# (0,0). (2.4)

We note that ¢,(z,u,v) belongs to £, (as function of z). We call these functions paraort-
hogonal when |u| = |v]|.

We define the functions v, of the second kind by

Yo(2) =1, $al2) = [ Dt 2)lpn(t) = p()du(®), n=1,2,... (2.5)
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For the functions v, and 1}, various equivalent expressions can be given. Let us recall the
following result (see [3,4]):

Theorem 2.1 Forn = 1,2,... the following formulas are valid:

2)= [ D(t,z t%(i)—%(Z)ld#(i), k=0,1,..,n—1, (2.6)
v =~ [ D(f,zng;\\j:; GO =i ()] k=0,1,myn L. (2.7)

We shall next prove a result valid in the cyclic situation.

Theorem 2.2 In the cyclic case with p points the following formulas are valid for n =
p+1, p+2,.

Br\e(2)
d’n(z) -/T D(t z)[mﬁf’n(t) - @n(z)]dlu(t) where gp<n (28)
* qu(z) * *
¥a(2) = = [ D(t,2) G2 #h(0) = #a(2)ldu(t) where gp<n. (29)
Proof:
We may write Bpy,p(2) = fI Gi(2) H (j(2) = Byp(2). The results now follow by
Jj=n-qp+1
using k = gp in (2.6) - (2.7). ]
We define the functions %,(z,u,v) of the second kind by
¥n(2,u,v) = upn(z) - viP3(2), u,v € C, (u,v) # (0,0). (2.10)

Theorem 2.3 In the cyclic case with p points the following formulas are valid for n =
p+ipt 2,0

Yn(z, u,v) ]T D(t,z qp((z))ga,,(t, u,v) — @n(2z,u,v)]du(t), where gp<n, (2.11)

Yn(z,u,v) -/T D(t, )[ Brgs(2)

o\t E) o (1,u,0) = palz, u,0)|du(t), where gp < n. (212)
n\qrp(t)

Proof:
Follows by combining (2.7) and (2.8) (resp. (2.6) and (2.9)) for the situation k = gp. ]
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3 Interpolation by rational approximants

We shall in this section study interpolation properties of the rational functions

¥n(z, u,v)
=20 3.1
R.(z,u,v)  — (3.1)
given by (2.4) and (2.10) to the function —§,(z) defined in (1.2).
Let us recall the following result (see [8]):
Theorem 3.1 The function Q,(z) has in D the following Newton series expansion
Vu(2) = (o +2 ) pmzwm-1(2)], (3-2)
m=1
where the general moments u,, are given by
du(t)
= =0,1,2,u:. .
/T wm(t)’ 0, (3.8)
In the following we shall use the notation g(n),r(n) as defined below:
n = q(n)p+r(n), r(n) € {1,...,p}. (3.4)

Theorem 3.2 The rational function R,(z,u,v) interpolates the function —Qu(2) in the
sense that for n > p:

Yn(2,u,v) + @n(z,u,0)Qu(2) = fa(2)2wn_1(2) (3.5)

where f.(z) is analytic in D.

Proof:
One can easily establish the identity

2wm-1(2) t+z2 z2wp_1(2) B 2wn_1(2)
1+2:; Wi (1) t—z[ T Bae(l)” Hea(l) 13:5)

Hence, after integrating (3.6) with measure yu, we get

2wn-1(2), 2wn-1(2)
#o+2“§nmzwm_ (=) = D)1 - ) T e Y. @)



By combining (2.11) and (3.7) we then obtain (since ¢(n)p < n)

n—1
1|bn(za u, v) + (Pn(zs u, U)[#o +2 Z pmz""’m“l(z)] (38)

m=1

Bynyp(2) - Balt) Z, U,
= Jp DUt NG it 0) = 12 (s 0)ldu()

—pn(z,u,v)zwp-1(2) ]T mt—)d,u(i)

and hence

n—1

¥n(2,1,0) + @n(2,4,0) o + 2 3 fm20m-1(2)] (3.9)

m=1

= _P’::(Pﬂ(z} u, U)an_]_(z) + wq(ﬂ}P(Z)oﬂ(Z)s

where

M= o twﬂ_l(t)d#(t) (3.10)

and

o) = 5 To(n)p(t) v
“( ) _/TD(tﬁ )[ q[n}p(z)wq{n)p(t)(pﬂ(t‘u’ ) (3‘11)

Hk_qt(:::l((t) ) @n(2,u,v)]dp(t).

(If ¢(n)p = n — 1, the product means the constant 1.)

We are going to prove that o,(ax) = 0for ¢(n)p+1 < k < n-—-1.
Let g(n)p+1<k<n-1,if n(qg) <n—1. Then

on(ox) = ?ET}L&T jT D(t, ax) *::’**Et)gp (t,u,v)du(t). (3.12)

)
Toep(t) | _ 1+ @t wymp(t) _
We note that D(t,ax) [wq(,,)p(t) o D c(a(t)L(t), where L(t) € L

n 1 4 @t ))wgy(n)p(t
and c is a constant, while also D(t,ak)w € L,-1. (Note that s Ek J@a(myp(t) =
To(n)p(t) (1 = @t )mg(myp(t)

where s,(,),(t) is a polynomial of degree g(n)p, that (1 —@kt)my(n)p(t) is a

(t — ax)Sqm)p(t)
(1- akt)""'q(n)p(t)

factor in 7,(t), and that (t—ax) is a factor in wy(n)y(t).) Thus [EL’%] el gt 5,
g(n)p *

and hence

T :‘:’j t;] . (3.13)

on(ar) =

To(n)p(Qk)



Analogously we find 0,(0) = 0.

We have now seen that the second term of the right side of (3.9) in addition to having the
factor wy(n),(2) also has the extra factor z and the extra factors (z — ax) for g(n)p +1 <
k < n—1 (since 6,(0) and on(ak) = 0 for the values of k indicated).

It follows that the second term on the right of (3.9) is of the form A,(z)zwn-1(2). Thus

Yn(2,u,v) + @z, u,v) o + 2 nill Bm2wm-1(2)] = gn(2)2wn-1(2), gn(2) analytic. (3.14)
Since

Qu(z) + [po + 2 nill,umzwm_l(z)] = hn(2)2wn-1(2), hn(2) analytic, (3.15)

we conclude that (3.5) holds. B

4 Convergence of rational approximants

We recall that we call the function ¢,(z,u,v) paraorthogonal when |u| = |v|. Paraort-
hogonal functions give rise to quadrature formulas. Let us recall the following result (see

[3,6]):

Theorem 4.1 The zeros of pu(z,u,v) for |u| = |v| are all simple and lie on T. Let the
zeros be denoted by f,{cn}(u,v), k =1,..,n. Then there exist positive constants /\i")(u,v)
such that the quadrature formula

n

Jp Bt = 3 M, 0) e (1w, ) (4.1)

k=1

is valid for L € Ly + L(n-1)s-

We shall in the rest of this section again consider only the cyclic case with p points, and
use the same notation as in Section 3 and Theorem 4.1.

Theorem 4.2 Let |u| = |v|, and assume n > p. Then R,(z,u,v) has the partial fraction
decomposition

n

Ru(z,u,v) = - z ’\S:?)(u1v)D(££:)(uvv):z)' (4.2)

m=1



Proof:
Consider the function f(t) defined by

B,(2)

f(t) = D(t’z)[Bp(t)

on(t, u,v) — @n(z,u,v)]. (4.3)
The function ¢,(z,u,v) can be written as

Zom, 0] = Wpﬂ(Z,U,v)
@n(z,u,v) Tn(2) ) (4.4)

where p,(z,u,v) € II,. It follows that

ft) = (t + 2)[wp(2)mp(t)pn(t, v, v)Ta(2) — wp(t)mp(2)7n(t)pn(2, u,v)) ,

4.5
(E = Oy ald) (£5)

hence since t — z is a factor in the numerator:
ft) = Ppyn-1(2,t)(1 — azt) (4.6)

wp(t)ma(t)

where Ppi,_1 belongs to II,4,-1 as a function of t. (Note that (1 —@5t) is a factor both
in 7,(t) and in 7,(t), and also in the numerator.)

It follows that we may write
Prin-a(21)
= p+n-1\+<, ,
0 = Oman®

hence f(t) € Ln_1 + Lp« C Ln-1 + L(n-1)«, by partial fraction decomposition. (Note that
wp(t) and 7,,_;(¢) have no common factors.) Since f(£{") (u,v)) = —D(£0) (u,v), 2)pn(z, u,v),
as @ (€™ (u,v),u,v) equals zero, application of Theorem 4.1 and Formula (2.11) yields

(4.7)

n

Yn(2z,u,v) = —pu(z,u,v) Z ,\,(,’:)(u,v)D(.f,(:}(u,v),z), (4.8)

m=1
which is equivalent to (4.2). 0
Since (4.1) is valid for L = 1, the following equality holds:

3 A% (u,v) = po. (4.9)

m=1

Theorem 4.3 Let |u,| = |va| forn =1,2,,,. Then the sequence { R,(2, un,v,)} converges
locally uniformly on D to —Q,(2). B



Proof:

It easily follows by (4.2) and (4.9) that the functions R,(z,u,v), |u| = |v|, are uniformly
bounded on every compact subset of D, and thus form a normal family. So there exist
subsequences of { R,(z,un,v,)} converging locally uniformly on D. Let v, (¢, up,v,) be the
measure on T having masses A" (u,,v,) at the points £ (u,,v,). By Theorem 4.2 we
may then write

Rzt ta) =~ ]T D(t, 2) dv (£, %5, Vs): (4.10)

A standard argument shows that a subsequence of {R,(z,un,v,)} converges locally uni-
formly on D to a function F'(2) if and only if the corresponding subsequence of {v, (¢, un,v,)}
converges to a measure v such that F(z) = —Q,(z).

Furthermore/ n(tn, Un, t) converges to/ wd ., for m = 0,1,2,.... On the other
T wn(t) T wa(t

hand Theorem 3.2 shows that R,(z,un,vs) + Q.(2) = gn(z)zwn_l(z), where g,(2) is

analytic in D. It follows from this and (4.10) that ./T %‘?3?&;) = i ji((?) for
m=0,1,....8—1.

dv(t d
Consequently j V( ) #t) form = 0,1,2,.... (Cf. [7,8] where related problems
T w T wn(t)
are treated.) It is known that the measure giving rise to the moments g, = - dp((tt)) i
Wm
unique when Y%°_ (1 — |an|) = oo (this follows e.g. from the convergence result in [3],

Section 21). This is the case in the cyclic situation. Thus v = pu and the whole sequence
{Rn(2,un,vs)} converges to —§,(2). J
For convergence properties of the rational approximants R,(2,0,1) and R,(z,1,0) see [3].

For a more detailed study of convergence of multipoint Padé approximants, see especially
[15].
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