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Abstract

We describe a simple and efficient algorithm to generate a number of polynomial
vectors which can be used to describe all possible solutions for a type 1 Padé-Hermite
problem. If o denotes the order of approximation, which is a measure for the size of
the Padé-Hermite problem, it uses only order o2 operations, even if the given system
is not perfect. To this end, the problem is considered as a special case of a generalized
Padé-Hermite problem which is also defined and analysed.

1 Introduction

More than a hundred years ago, Hermite introduced, what we call now, Padé-Hermite or
Hermite-Padé approximations to a set of functions [23, 21, 22|. He, already, made a distinc-
tion between the Latin or type I and the German or type II polynomial problem. The Latin
and German refers to the font type that was originally used in the work of Mahler, Jager
and Coates to denote the polynomials. The type I polynomials were denoted by a Roman
font and the type II polynomials by a Gothic font. Jager [25] actually uses the terms Latin
and German polynomials.

Nowadays, the notion of Padé-Hermite approximation is mostly applied for type I polyno-
mial approximations, while the type IT problem is in fact studied as a simultaneous Padé or
vector-Padé approximation problem. Hermite used these approximations to prove the irra-
tionality of the number e. The theory was further developed by Hermite and Padé [34, 24, 35|
as a generalization of the Padé approximation problem [33]. This explains the confusion in
calling them Padé-Hermite or Hermite-Padé approximants. Since the problem was studied
by people who approached it as a generalization of a Padé approximation problem, they
called it Padé-Hermite approximants. However, historically, Hermite’s name should come
first.

We have not the intention to make a complete overview of the relevant bibliography here.
Let us just mention some references. As usual in this kind of Padé-like theory, some papers
are in the field of the Padé-Hermite theory as such, while others have strong roots in number
theory or in the approximation of functions.

The early references consider especially the use of Padé-Hermite approximants to ap-
proximate very specific (systems of) function(s) and numbers and this work is still going
on. We mention from the earlier papers of this century the work of Mahler [29, 30, 28],



from the 1960’s a paper by Coates [12], and from the last twenty years Shafer [40], de Bruin
[16, 15, 14], Chudnovsky [8, 9, 11, 10] and Borwein [4, 5|. In this respect, the study of the
normality or perfectness of the system of functions is an important issue. In that case, many
interesting properties of the polynomials of both types and connections between them can
be proved.

Another interesting topic in the evolution of Padé-Hermite theory and vector Padé theory
was the introduction of a Padé-Hermite table. It has been studied extensively. We refer to
the basic work of Mahler [31] and Jager [25] and more recent work by de Bruin [13], Nikisin
[32], Della Dora and di Crescenzo [17, 18, 19, 20] and Paszkowski [36, 37, 38, 39].

Instead of taking the interpolation conditions all at the point z = 0, we can distribute
these conditions between several points. This generalization was introduced by Mahler
[31], Jager [25] and Coates [12]. Liibbe [27] coined the term M-Padé approximant. These
approximants were further studied by Beckermann [1, 3, 2.

After this small introduction to the history of the problem, let us explain the purpose of
this paper. We don’t want to study the singular structure of the Padé-Hermite table because
Beckermann [1, 3] describes this structure for the more general M-Padé approximation table.
This extends the results of Della Dora [18] and Paszkowski [39]. Instead, we want to develop
an elegant and fast algorithm to compute all the solutions of the Padé-Hermite approximation
problem following a “diagonal” in the Padé-Hermite table. To clarify the paper, we only
investigate the Padé-Hermite approximation problem, where all the interpolation points are
confluent and equal to zero. However, also the more general M-Padé approximation problem
can be solved in a simple and efficient way using a very similar algorithm to the one given
here. This generalization will be developed in a future publication.

Almost all of the work on the algorithmic aspects done previously handles the case where
the Padé-Hermite table is normal. We mention the recurrence relations of Paszkowski [38]
and those given by Della Dora and di Crescenzo [20] as typical examples. In this normal
case, the number of operations is of the order o where o is the order of approximation.

In [42], we gave a nice and fast algorithm solving the type II or German polynomial
problem for arbitrarily chosen interpolation points even when the simultaneous Padé ap-
proximation problem is non-normal (see also [7]). In the present paper, we want to develop
a similar algorithm to solve the type I or Latin polynomial problem using order o2 opera-
tions in all circumstances even for the non-normal or non-perfect Padé-Hermite table. We
want to do better than for example in [26], where a square matrix Padé approximation
problem is solved with order o2 operations in the normal case but in some non-normal cases
o3 operations are required. As far as we know, only Beckermann [2] has also developed an
order o2 algorithm working also for a non-normal table. In the sequel, we shall indicate the
similarities and the differences with the method developed here.

The paper can be summarized as follows: in section 2, we pose the Padé-Hermite ap-
proximation problem and embed it in a more general setting. In section 3, we prove that a
basis for all solutions can be obtained using shift chains of so called fundamental vectors. In
section 4, a recursive algorithm is developed to compute these fundamental vectors. Finally,
in section 5, we give an example of these computations and we illustrate how we can easily
implement additional constraints on the Padé-Hermite forms.

2 The Padé-Hermite approximation problem

In this section we define the type I or Latin polynomial problem which we call here Padé-
Hermite problem for simplicity. The polynomials and formal series may have coefficients



from some arbitrary field F.

Definition 1 (Padé-Hermite form) Given (n+1) formal power series f;;i = 0,1,...,n
and an (n + 1)-vector (po, 1, - - -, fn) of integer numbers p; > —1 (at least one of them is
> 0), a Padé-Hermite form of type (po, pi1, - - -, ) is defined as a non-trivial polynomial
(n + 1)-tuple (po, p1,--.,pn) satisfying

ZPj(Z)fj(z) =0(2) (1)

with
degp(z) <pj, j=0,1,....n (2)

and

o= p+n. (3)
=0

The condition of non-triviality excludes the zero (n+1)-tuple to be a Padé-Hermite form. The
notation in the right hand side of (1) means that this formal series starts of with the term in
2°. When one of the integer numbers p; = —1, condition (2) becomes degp;(z) < p; = —1,
i.e. p; is the zero polynomial. Hence, the formal power series f; does not play a role in
condition (1). In other words, f; and p; can be dropped from the problem setting resulting
in a Padé-Hermite form problem with n formal power series instead of (n+ 1). At least one
of the integer numbers j1; has to be greater than or equal to zero to guarantee the existence
of a non-trivial solution. In general, the interpolation conditions need not be given all at
the point z = 0. There could be given more general interpolation conditions in several
interpolation points. We refer to the work of Mahler [31], Jager [25] and Coates [12], and to
the more recent work of Liibbe [27] and Beckermann [1, 3, 2|. We shall exclude this case for
simplicity.

The polynomials p; are also called Latin or type I polynomials. In [42], we solve the dual
problem, the German or type II polynomial approximation problem. There we consider the
more general case of a vector rational approximation problem where some of the interpolation
points may or may not be confluent. In an extreme case, all the interpolation points are
confluent and equal to zero. Then we get the simultaneous Padé approximation problem.

To simplify the notation, we shall in the sequel denote (n + 1)-tuples in bold face letters.
They are to be considered as row vectors. Otherwise, they will be explicitly defined as column
vectors, e.g. the (n + 1)-tuple f of formal power series is a column vector. Operations and
inequalities are to be understood componentwise, except the inner product between a row
and column vector. For example, the notation g > —1 indicates that each component of
the row vector p is greater than or equal to —1, whereas u # —1 says that at least one
component of p is different from —1. Note that 1 = (1,1,...,1). As a further illustration,
we reformulate the previous definition as follows.

Definition 2 (Padé-Hermite form in compact notation) Given an (n+ 1)-tuple f(z)
of formal power series, and an (n + 1)-tuple p of integers —1 # @ > —1, we call an
(n+ 1)-tuple of polynomials p(z) a Padé-Hermite form of type p if

R(z) = p(2)f(2) = O(27), (4)
o—n=u =Y (5)
degp(z) < . (6)



The notation R(z) = O(2?) means that (d%)kR(z) iszeroin z =0 for k=0,1,...,0 — L.
The formal power series R(z) will play an important role in the sequel.

Definition 3 (residual series) Given an (n + 1)-tuple f(2) of formal power series, the
residual series R(z) of an (n + 1)-tuple of polynomials p(z) with respect to f(z) is defined
as

R(z) = p(2) f(2).

The Padé-Hermite approximation problem is to find some or all Padé-Hermite forms of
a certain specified type. Note that all the solutions of such a problem (extended with the
zero vector) form a vector space of dimension at least one because the number of unknowns
0+ 1 is one more than the number of homogeneous linear conditions (1) or, equivalently (4).

To solve the Padé-Hermite approximation problem, we shall embed it in a more general
one. Therefore, we introduce the notion of T-degree.

Definition 4 (7-degree) Given an (n + 1)-vector T = (10, 71,...,T,) of integer numbers,
the T-degree of a polynomial (n + 1)-tuple is defined as

T_deg (p07p17 s 7pn) = maX{degpj - T]’j - Oa s vn}'
We define the generalized Padé-Hermite problem as follows.

Definition 5 (generalized Padé-Hermite problem) Given the (n + 1)-tuple of formal
power series f, the (n + 1)-tuple of integer numbers T = (19,71, ..., Tn), the integer number
0 and the non negative integer o > 0, the generalized Padé-Hermite problem of type T for
order o and degree § is to find all polynomial (n + 1)-tuples p = (po, p1, - .., Pn) Satisfying

p(2)f(z) = O(=°), (7)
T-degp < 0. (8)

As before, we can note that the set of all solutions of a generalized Padé-Hermite problem
for a fixed type vector 7 and given ¢ and o forms a vector space of finite dimension. We
shall usually call it solution space and denote it by SY.

Let us connect the generalized Padé-Hermite problem to the genuine Padé-Hermite prob-
lem. We can consider an arbitrary integer k. With 7 = p+k = p+ (k. k, ..., k), the gen-
eralized Padé-Hermite form is identical to the genuine Padé-Hermite form, that we defined
before, if we put o = |u| +n and 6 = —k. Thus S7, with 7 = p+ k and 0 = |p| + n is the
space of all Padé-Hermite forms of type p (plus the zero vector). Note that for the special
case T = w, we get equivalence when 6 = 0 and o = |p| + n.

3 A basis for S§

For a fixed type T and order ¢ > 0, we can construct a basis for each of the solution
spaces 57,0 = —00,...,+00. We shall characterize this basis as the union of shift chains.
Such a shift chain will consist of a fundamental vector (which is a certain polynomial (n +
1)-tuple) and its shifted versions, i.e. successive multiplications with z. There are n + 1
fundamental vectors, hence there can be at most n + 1 such shift chains in the basis. If
a; is the j-th fundamental vector (0 < j < n), then a shift chain for a; has the form
{a;(2),za;(z),...,27a;(z)}. If v < 0, we say that the chain is empty. We denote the
components of a; as a; = (a0, aj1,...,Qjn).



The set of n + 1 fundamental vectors are polynomial solutions of equation (7), with no
restriction on the degree ¢, but which are independent and minimal in a specific way. The
folowing definition doesn’t make it obvious that such a set of fundamental vectors always
exists, however it is a most practical definition to prove the theorem about the basis of S§.
That they indeed exist will follow from the construction by the algorithm in the next section.

Definition 6 (fundamental vectors) Given the (n+1) formal power series f;,j = 0,1,...,n,
the type T and the order o > 0. We call aj,j = 0,1,...,n a set of fundamental vectors if
they satisfy the following conditions:

1. They solve equation (7).

2. They are linearly independent over the ring of polynomials. This means that there exist
no polynomials q;,7 = 0,1,...,n, except the zero polynomials, such that

Z ¢;(2)a;(z) = 0.

3. a1(0),ax(0),...,a,(0) are linearly independent over the field F and the constant coef-
ficient of the polynomial (n—+1)-tuple ay is the zero vector or ag(0) = 0 = (0,0,...,0).

4. aq satisfies (7) with strict order, i.e.
ao(2) F(2) = 04(27) & Ry 2" + O(z""Y)  with Ry, # 0.

5. The sum of the T-degrees of ag, a1, as, ..., a, is minimal.

For the special case 0 = 0, we define the fundamental vectors as the (n+ 1) canonical unit
vectors, i.e. the rows of the unit matriz of size n + 1.

Notes: Let us give some comments about the strict order condition for ag and the minimality
condition for the 7-degrees of the fundamental vectors.

e The minimality of the 7-degrees of ag, a1, ..., a, implies that ag, a4, ..., a, are T-row
reduced, by this we mean that the matrix

ag zTo
a; z~ M

a, z" ™

is row reduced. By definition, this matrix is called row reduced if the (vector) coef-
ficients of the highest degree terms, of the n + 1 rows are linearly independent. This
is indeed a consequence of the minimality of the 7-degrees because if this matrix was
not 7-row reduced, we could easily generate a new set of fundamental vectors using
elementary polynomial combinations such that at least one of the fundamental vectors
has a smaller 7-degree while the others do not increase. This would contradict the
minimality of the given set. For details on this, one may consult [42].



e Taking into account that a¢(0) = 0, the strict order condition for ay can only be
satisfied if there exists at least one f; having strict order p, f;j(2) = O4(2”), with
p+ 1 < 0. From now on, we shall assume this to be true.

For the special case ¢ = 0, this assumption should be replaced by the condition that
there exists at least one f; for which f;(0) # 0. We can then choose the j-th unit vector
to be ag and the strict order condition will also be satisfied. All other conditions we
had for ¢ > 0 will also be satisfied by a permutation of the fundamental vectors for
o = 0, except of course the condition ay(0) = 0.

With this assumption about the formal power series, we can give a short proof showing
the existence of the fundamental vectors of type 7 and order 0. We need the following
definition.

Definition 7 (projection) The projection P, of order o of a formal power series f is
defined as the polynomial of maximum degree o — 1 satisfying

Py f(2) = f(z) + O(2%),
i.e. Pyf is the polynomial part of f having mazimum degree o — 1.

Theorem 1 (existence of the fundamental vectors) Given the (n + 1) formal power
series f;,7 = 0,1,...,n, the type T and the order o. Assume that one of the formal power

series fi satisfies fr(0) # 0. Then, the fundamental vectors ag, ay, ..., a, defined by Defin-
itron O exist.

Proof. For ¢ = 0, the proof is trivial. For ¢ > 0, we consider the following polynomial
(n + 1)-tuples:

S az) ] [0 0 - 0 2 0 - 0 7
al(z) Pafk 0 0 _PcrfO 0 0
CLQ(Z) 0 ngk 0 —ngl 0 0
a(z) - 0 0O - Pfy —Fofyr 0 - 0
ap41(2) 0 o - 0 —=Fyfiya Pofi --- 0

| an(z) . 0 R —F, fn 0 - Fifr ]

This set of polynomial (n + 1)-tuples satisfies all conditions of Definition 6 except the last
one about the minimality of the sum of the 7-degrees. We leave the details as an exercise for
the reader. Since we have given here one specific solution satisfying the first four conditions,
the set of all solutions is not empty. Therefore, there must be at least one solution, i.e. a
set of polynomial (n + 1)-tuples, with minimal sum of the 7-degrees. Hence, there exists a
set of fundamental vectors. O

In the next section we shall give an algorithm which actually constructs the fundamental
vectors for some o + 1, given the fundamental vectors for . Since those for o = 0 exist by
definition, the existence for every o follows by induction under the given assumption on f.
Before we shall give this algorithm to generate the fundamental vectors, we show their
relevance in solving the generalized Padé-Hermite problem. The fundamental vectors can
be used to construct a basis for each of the solution spaces S§ as indicated in Theorem 3
below. In the proof of this theorem, we shall use some of the following relations that exist
between the solution spaces. These relations shall also form the basis of our algorithm.



Lemma 2 For fized type T, it holds that

S C S5
257 C ST
SgH o sY

za€ Sy = acSy.

Proof. The proof follows immediately from the definition of the solution spaces into play,
or from the nested structure of the homogeneous linear equations implied by (1). O

We are now ready to describe and prove our basis for the solution spaces.

Theorem 3 (a basis for S7) Given the order o > 0, the degree 6, the type T and a set of
fundamental vectors a; having T-degree 6,. A basis for the solution space S§ is given by the
union of at most n + 1 shift chains

Hai(2). zai(2), ..., 2% ai(2)}.

Note that the fundamental vector a; does not appear in this basis when 6; > 6.

Proof. It is easy to see that the theorem is true for o = 0. We leave this to the reader.
Suppose that o > 0. Consider an element a of the solution space S§. We shall show
that there is a unique way to write this element as a linear combination of the vectors given
above. Which shows that these vectors form a basis.
We first prove that a(0) is always a linear combination of a;(0),i = 1,2, ..., n. Suppose
this is not true. Then

a(z)
a;(z)
Az) = | a2(2) | =0(2)

| au(2)

and A(0) has full rank. Because a and all fundamental vectors satisfy relation (7), we can

also write (2)
Nl

A(2) — Af = O(="),

fa(2)
where the order-relation holds for each component of the vector of the residual series. Bring-
ing A to the other side of this equation, leads to the componentwise order-relation

f=0(")0(") = O(=").

This is in contradiction with the assumption that there exists an f; satisfying f; = O,(2”)
with p < o. Therefore, a(0) is a linear combination of a;(0). Moreover in this linear
combination only those a; can appear for which §; < § because the 7-degrees 9; are minimal
by definition of the fundamental vectors. Hence, we can decompose a as a = Z?:1 cja;+a
with a’ divisible by z and this decomposition is unique. Using the definition of ag, we can
write @’ in exactly one way as a’ = cyapz’~% + a” with a” divisible by z and in St

a’(2)f(z) = O(="").



Therefore, a”(z)/z is also a polynomial (n + 1)-tuple and an element of S¢ ;. The theorem
now follows by induction. O

4 A fast recursive algorithm to solve the generalized
Padé-Hermite approximation problem

In this section, we shall develop an elegant and fast algorithm to compute a set of fun-
damental vectors. As a matter of fact, because we can start from the trivial choice of
fundamental vectors when o = 0, it is sufficient to describe how we can compute the funda-
mental vectors @i of order o + 1 from the fundamental vectors a¢ of the previous order.
As we have explained in the previous section, we can take the unit vectors as fundamental
vectors for o = 0 if we assume that there exists an f; with f;(z) = O,(2°). This is the only
assumption to be made, because we shall actually construct all the fundamental vectors for
subsequent orders o = 1,2,... and thereby also prove their existence, without any further
assumption. Throughout this section, the type 7 is fixed. We denote the 7-degree of the
fundamental vector af as 07 and the corresponding residual series as Ry .

To describe the algorithm, we need the concept of residual which is the leading coefficient
in the residual series which may or may not be zero. More precisely, it is defined as folows.

Definition 8 (residual) The residual R;, of the fundamental vector a? is defined by the
relation
R7(z) = al f = Rio2" + O(27), (9)

i.e. the residual is the coefficient of order o in the corresponding residual series.

From Definition 6, it follows that Ry, # 0 for ¢ > 0, and R; # 0 when f;(0) # 0.

First of all, we shall give an informal description of the algorithm. The algorithm starts
by taking the fundamental vectors {a;7 = 0,...,n} of order 0 equal to the (n + 1)-unit
vectors having 7-degrees §Y = —7; and residual series f;.

Now we describe the recursion step to go from o to o+ 1. Therefore suppose that we have
computed a set of fundamental vectors {a?;i = 0,...,n} of order ¢ and want to compute
a set of fundamental vectors {a*';i = 0,...,n} of order o + 1. Because each fundamental

vector af™! is by definition an element of S;’;f], Lemma 2 says that af ™! is also an element
1
o+1

77" can be written as a linear polynomial

of quﬂ. Therefore, each fundamental vector a

combination of the fundamental vectors of order o. Hence also the corresponding residual
series Rf“ can be computed as the same linear polynomial combination of the residual series
of order o.

By the second condition of Definition 6, the fundamental vectors a¢ are independent
over the polynomials. Also the fundamental vectors af*' should satisfy this condition. This
implies that there must be a polynomial matrix Vo' whose determinant may not vanish
identically and such that

o+1 o

a0+1 %0

o o

Aa’+1 — a; — Va—l—lAd — Va-‘,—l a;
o+1 o

a, a,

The following description of this transition matrix V7 defines the algorithm.



The fundamental vector af™" has to be in a solution space S§' for some § and it has

to be divisible by 2. Following Lemma 2, it should be of the form aJ*' = za with a € S¢.

Therefore, a can be written as a linear polynomial combination of the fundamental vectors of
order o. To guarantee that ¢ is minimal and that the residual Ry ,+1 # 0 as required, we can
take a equal to a?, the fundamental vector of order o with least 7-degree and with residual
R, , # 0, i.e. satisfying equation (7) with right-hand side O,(27). This a? will always exist
because ag for o > 0, and af for o0 = 0 with f;(0) # 0, are among the af with R; , # 0, but
it need not be uniquely defined. Hence, a possible choice for the fundamental vector a ™™ i
za? with residual Ry ,4+1 = R,, and minimal 7-degree d; = 07 + 1.

Each of the other fundamental vectors of order ¢ can be used as a component of a
fundamental vector of order o + 1 with the same 7-degree. More precisely, the remaining
fundamental vectors a]”l,j = 1,2,...,n, of order 0 + 1 are equal to a7 — a’R; /R, .,
t=0,1,...,n and 7 # r, having 7-degrees 5;.’*1 = 07. From this recursive construction, it
o+1

i

S

follows immediately that the vectors a
o+ 1.

We summarize this method as algorithm PadeHermite given below. Besides the notation
of the square polynomial matriz A° that we introduced above, we also gather the residual

series and the T-degrees.
Il

and 6° =

,1=20,1,...,n are fundamental vectors of order

X

R 7 - . .
Re 5

n

The polynomial matriz Vo summarizes the operations to go from order o to order o + 1.
The r-th unit vector is denoted as e, = [0...0 1 0...0]" where the one is the (r + 1)-st
component and superscript T denotes transpose.



Algorithm 1: PadeHermite

{ Initialization }

—7
« —T1
[A° | RO)=[TI | f] with &=
for 0 =0,1,2,...
Determine r as §7 = min{d7|R;, # 0}.
Define the matrix V7!
[0 ... 0O z 0 ... 07
1 ... 0 —Rys/Riy 0 ... 0
Vitl=10 ... 1 =R._1,/R» 0 ... 0
0 ... 0 —Rj1,/Re 1 ... 0
0 0 —R.,/R., 0 ... 1|

Go from order o to order o + 1 by
[ A | RV ] =V A7 | R'] and 677 =9q(87 +e,)
with the permutation matrix 4 equal to
T=le,eper € 1 €€y e
endfor

10



Notes:

o The residuals needed in the algorithm can immediately be read off from the residual
series R"7 as the coefficients of order o. We could also drop the updating of the
residual series from the algorithm and compute the residuals using the Definition 8,
i.e. using an inner product formula (9). This however is more difficult to parallelize.
For more information, we refer the interested reader to the work of Bruckstein and
Kailath [6] on layer peeling and layer adjoining variants of similar algorithms. For the
vector rational interpolation problem, a similar discussion can be found in [}2].

e The algorithm PadeHermite can be implemented in several ways. When we look at

the operations involved, summarized in the matriz Vo we conclude that to compute
the components of the a;’“, the only elementary operations required are a shift and an
addition of a constant multiple of a polynomial to another one. Hence, instead of using
the classical basis 1, z, 2%, ... to represent these component polynomials, we can use any
basis as long as these two elementary operations can be implemented efficiently. One
possibility is to use orthogonal polynomials ¢o(z), ¢1(2), ... which satisfy a three term
recurrence relation ¢x(z) = Ap(z —ag)pp—1(2) — Brdr—2(2). From the latter, we see that
the shift operation can be efficiently implemented. In our previous publications ([7, 41]
and others), we have always developed algorithms using only these two basic operations
on polynomials. Therefore, the same reasoning can be made for the representation of

the polynomial vectors emerging in all these algorithms.

o When we apply this elegant algorithm to construct the Padé-Hermite form of type T,
we follow a “diagonal” path in the Padé-Hermite table (which could be non-normal
or non-perfect). Indeed, at level o = |T| + n we compute the fundamental vectors
from which all solutions of the Padé-Hermite approzimation problem of type T can be
constructed as the elements of S§. At level 0 +n+1, all solutions of the Padé-Hermite
approzimation problem of type T+ 1 are the elements of ST, In general, SZ%("H)
is the set of all solutions of the Padé-Hermite problem of type T + k1. (Pay attention

when going backwards: one of the components of T — k1 can become less than zero.)

e This recursive algorithm is fast. Suppose we want to compute the fundamental vectors
of order 0 = 0,1,2,...,0m4s, i.e. the for-loop in algorithm PadeHermite runs from
0 =0 until 0 = 0,40 — 1. In this case we do not need to compute all the coefficients
of the residual series but only the coefficients which are needed in the subsequent steps
of the algorithm. More precisely, when the for-loop index is equal to o, we know that
all residual series R, i =0,1,...,n will satisfy

Riﬂ-i-l — O(ZU+1).

Therefore, we only have to compute the coefficients connected to the powers o + 1,0 +
2, ..., Omaz— 1 of z. For the same for-loop index o, each of the polynomial components
of the square (n+1) x (n+1) matriz A°** has a degree smaller than or equal to o except
the components of the first row of A" which could be of degree o+1. Let us investigate
the operations to go from order o to order o+ 1. We shall only indicate the arithmetic
operations (in the arbitrary field F). To compute the first fundamental vector ad™ with
corresponding residual series Rg“, we only apply a shift operation involving at most
(n+1)(0+2) coefficients of all the components of al™ and (0mee —1) —0 coefficients of
R§™. For each of the remaining fundamental vectors alt with corresponding residual
series RZTY, i = 1,2,...,n, we have to compute first r; = Ri_15/Rys fori < r
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and r; = R; o /R, » fori > r, requiring one division operation. Secondly, we apply one
multiplication and one subtraction operation for at most (n+1)(c+1) coefficients of all
components of afH and (Oyes—1)—0 coefficients of RZ-UH. We neglect the operations to
determine r and the updating operations on the T-degree vector 8° . Hence, to go from
order o to order o+ 1, we need n division operations, n((n+1)(c+1)+ (Omez — 1) —0)
multiplication and addition operations. Therefore, algorithm PadeHermite computes
the fundamental vectors of order o = 0,1,2, ..., Omaz USING NO e diVisSiOn operations
and at most

Omaz—1

> nl(n+1)(0 + 1) + (O — 1) = 0) = (n*/2+n)02,,

o=0

multiplication and addition operations, i.e. using a number of arithmetic operations of
order o? even when the Padé-Hermite table is non-perfect.

max’

When we know the factors r;, all coefficients of all components of the fundamental
vectors a?“, 1= 1,2,...,n, can be computed simultaneously. Therefore, if we have
order Opq: processors, the algorithm can be executed in parallel in order o,,q. time.
Let us give an example. Suppose we have 0,4, processors with 0., > n. Using
n of these processors, we can first compute the n factors r; in the time required to
do one division operation. To go from order o to order o + 1, we can secondly use
0+1 < Oz processors to compute all coefficients of all components of the fundamental
vectors altt, i =1,2,... n, in the time required to execute n(n-+1) multiplications and
n(n+1) additions. Using (Opmaz — 1) — 0 < Opmax processors in parallel, we can compute
all coefficients of all residual series R§’+1, 1=1,2,...,n, in the time required to do n
multiplications and n additions. When we neglect the time to determine r, to derive
al™ and R3T using shift operations and to update the T-degree vector 07 we get a
total execution time of Opap divisions, (n%+2n)0,,ae multiplications and (n? +2n)0 .
additions. This execution time can be decreased further. For example, if we can use
n((n+1)(0+ 1)+ (Omaz — 1) — 0) < (n* + n)0pmas processors in parallel, we get a total
execution time of Opae AIVISIONS, Opmar multiplications and 0,4, additions.

Instead of using parallel processors, we could easily run this algorithm on a vector
processor. If we store all coefficients of all components of the fundamental vector aJ™*
and all coefficients of the residual series RZ™ in one big vector, we get (n+ 1) of such
coefficient vectors. The arithmetic operations involved can be interpreted as operations
with the coefficient vectors. To go from order o to order o + 1, a shift operation on
a coefficient vector and n additions of a coefficient vector multiplied by a scalar to
another coefficient vector are needed, together with n scalar divisions to compute the
scalar factors r;. Of course, we could use n of these vector processors in parallel to

speed up the computations.

In [2], Beckermann has developed a recursive algorithm to compute all M-Padé approz-
imants on an “arbitrary staircase” in the M-Padé table, even if this table is non-perfect.
The algorithm consists of three steps to go from order o to order o+ 1. However, when
all interpolation points coincide and when a “diagonal” path is taken in the Padé-
Hermite table, the third step of the algorithm can be skipped resulting in an algorithm
which is very similar to our algorithm PadeHermite. However, there are some differ-
ences. Algorithm PadeHermite computes fundamental vectors satisfying the conditions
of Definition 6. These are conditions on the “constant” coefficients, the residual series
and the T-degrees of these vectors. Note that the ordering of these fundamental vectors
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is in fact irrelevant. Therefore, the permutation operation connected to the permuta-
tion matriz § in algorithm PadeHermite is not necessary. In contrast, the fundamental
vectors defined by Beckermann have to satisfy conditions on the “defects” and on the
“highest degree” coefficients where the ordering plays an important role. Hence, our
fundamental vectors and those described by Beckermann are equivalent but character-
ized in a different way. The characterization used by Beckermann implies the necessity
of a reordering in step 2 of his algorithm and the computation of an integer value K
besides d (called r in our context).

5 Example

Let us take example 4.1 and 4.4 from Paszkowski [39]. We are given the n+ 1 = 3 formal
power Series

folz) = —1+224+2° =28 +27+ 22429+ ..
fi(z) = 14+2=2"+2"+22-2"+...
folz) = —2—22 4285 2"+ 28 4+220+ ...

We are looking for all Padé-Hermite forms of type (1,1,1) and type (2,2,2). Hence, the
solutions lie on the “diagonal” of the Padé-Hermite table. Therefore, we can choose T =
(0,0,0), determining the parameter T of the T-degree. In fact, we could have chosen any
T of the form (k,k,k). Using the fundamental vectors of order |(k,k,k)| + n, we can write
down all Padé-Hermite forms of type (k,k, k), i.e. in this example the fundamental vectors
of order 2,5,8 are the ones to be used. We use the following notation to show the results of
the algorithm at each step

(Vo e Il A7 |l R,

where we represent V7 and A° using the polynomial representation with respect to the clas-
sical basis 1,z,2%,.... The residual series R"7 are represented coefficient-wise to show the
importance of the residuals and the increasing of the order in each step. We summarize the
results of the algorithm in table 1.

Notes:

1. The results of the algorithm allow us to write down a basis of any solution space S§ of
the generalized Padé-Hermite problem of type 7 = (0,0,0) and order o = 0,1,2,...,8
and any degree d. This basis is constructed using the fundamental vectors and their
shifted versions.

2. All Padé-Hermite forms of type (0,0,0) are given by the solution space Si excluding
the zero vector. This space is spanned by shift chains of fundamental vectors of order
2 and of (T-)degree less than 1. There is only one such chain and it contains only one
element: the fundamental vector (1,1,1). Thus all Padé-Hermite forms S3 \ {0} of
type (0,0,0) are of the form c(1,1,1) with ¢ a nonzero constant to exclude the trivial
solution.

The solution space S7 has a basis consisting of two shift chains. The fundamental vector
(1,1,1) has T-degree 0 and its chain contains therefore two elements, while the vector
(1,1 — 2,0) has T-degree 1 and its chain consists only of the vector itself. Hence we
can describe all Padé-Hermite forms of type (1,1,1) explicitly as S} = {d(z)(1,1,1) +
e(l,—z+1,0) with d(z) = dy + d12} excluding the zero vector.
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Table 1: Summary of the results of algorithm PadeHermite

L ve o] A’ | 1 2[22 2 2t[2° 2 T[22

The results for order 0

0 1 0 of-r oj 1 0 oO0]1 -1 1|1 1

0 0 1 O 1 1 0O o0o|-1 0 1| 2 -1

0 0 0 140 -1(-1 0 0] 0 2 -1]1 2
The results for order 1

z 0 0] 1 z 0 0 0 -1 1 0|0 1 -1|1 1

1 1 0 0 1 1 ofo 1{y1 0 0|0 -1 2|3 0

0 0 1] 0 0 0 140 -1(-1 0 0] 0 2 -1]1 2
The results for order 2

0 2 0] 1 z z oo o1 1 00 0 -1|2 3

1 1 01 z+1 1 oo o1 1 0|0 0 1| 4 1

0 1 1] 0 1 1 140 00 O OO0 1 1] 4 2
The results for order 3

z 0 0 2 P 22 oo o0 1 1] 0 0 O0f-1 2

-11 01 1 —z+1 oo oo O OO0 O 22 -2

0 0 1] 0 1 1 140 00 O OO0 1 1] 4 2
The results for order 4

z 0 0] 3 23 23 ofo oo O 1|1 0 OO0 -1

0 1 0] 1 1 —z+1 oo ojo0 O OO0 O 22 -2

0 0 1] 0 1 1 140 00 O OO0 1 1] 4 2
The results for order 5

z 0 0] 4 24 24 oo o0 O O 1 1 0O 0

0 1 0] 1 1 —z+1 oo oj,o0 O o]0 0O 22 -2

0 0 1] 0 1 1 140 00 O OO0 1 1] 4 2
The results for order 6

z 0 0 5 2° 2° oo o0 O 0,0 1 1[0 0

0 1 0] 1 1 —z+1 oo ojo0 O OO0 O 22 -2

0 0 1] 0 1 1 140 00 O OO0 1 1] 4 2
The results for order 7

0 0 =z| 1 z z z{l O 0] 0O O O] 0 O 1|1 4

1 0 -1} 5 25 —1 -1 -1/ 0 0|0 O O] 0 0O O0|-4 -2

0 1 0] 1 1 —z+1 oo oj,o0 O o]0 0O 22 -2
The results for order 8

2 0 01 2 22 2? 210 00 0 00 0 Of1 1

0O 1 0] 5 25 —1 2—-1 =10 0,0 0 0|0 O Of-4 -2

2 0 1|1 |-2241 —-32z+1 -2z 0 00 O O} 0 O O] 0 -10
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Similarly, the set of all Padé-Hermite forms of type (2,2,2) is given as S5 = {g(2)(1—
22,1 — 32, —22) + h(2?, 22, 2%) with g(2) = go + g12} excluding the zero vector. Note
that these results are equivalent to those obtained by Paszkowski [39]. However, his
results don’t show the shift structure of the basis vectors.

. Because the fundamental vectors allow us to describe all solutions of (7-8), we can
characterize (generalized) Padé-Hermite forms that satisfy some extra conditions.

For example, Paszkowski [39] defines a Padé-Hermite form to be a solution of (1)-(3)
with the extra condition that p(0) # 0. Once we have computed the fundamental vectors
A7, and found all solutions described as the linear polynomial combination q(z)A°(z),
then it is easy to pick out the constant coefficient q(0)A?(0) and put additional con-
ditions upon q(0). Note that, even when we do not compute the fundamental vectors
explicitly, we can compute the A°(0) very easily by multiplying the matrices V°(0).

For our example, we get for type (1,1, 1) the additional condition dy(1,1,1)+e(1,1,0) #
(0,0,0) or equivalently dy # 0 and dy + e # 0. For type (2,2,2), we get the additional
condition go(1,1,0)+ h(0,0,0) # (0,0,0) or go # 0. Hence, we obtain the same results
as Paszkowski in a very simple and efficient way.

Another application of this idea gives another result of Paszkowski. He defines the
optimal Hermite-Padé form as the Hermite-Padé form satisfying the order relation (7)
as far as possible. He proves that this optimal form is unique up to a constant factor.
Using our framework of fundamental vectors and corresponding residual series. We can
give a constructive proof of this result. We shall not do this explicitly. Instead we shall
illustrate the technique for our example. Consider the type (2,2, 2) corresponding to the
fundamental vectors of order 8. Looking at the residual series and the T-degrees of the
fundamental vectors into play, we see immediately that the maximal order is obtained
for the solution dyz(—2z + 1, =3z + 1, —2z). Its residual series has mazimal order 10.
Paszkowski would not consider this as the optimal Padé-Hermite form because it is
divisible by z. He would say the optimal form does not exist.

Another way to get the optimal form is the following. Consider the optimal form of type
(0,0,0). The rule to find the optimal solution is as follows. Since all Padé-Hermite
forms of type (0,0,0) need fundamental vectors of order 2, we start in the table from
the results for order 2. We then search the table for increasing orders o until we find
the last order for which there is still a fundamental vector of T-degree = 0. This is
order 6 in our example. Hence, there will be only one fundamental vector of order 6
and of T-degree 0. In the example this is (1,1,1). It is the optimal form (up to a
constant factor).

With respect to the Padé-Hermite form problem, we have drawn our attention especially
to the fundamental vectors of orders |(k,k,k)| + n. However, also the fundamental
vectors of orders in between can be used to find a minimal Padé-Hermite form, which
is yet another criterion for optimality. We could define it as a Padé-Hermite form
which has a certain given order o for which the T-degree is minimal. This problem is
solved by taking all linear combinations (not polynomial) of the fundamental vectors
of order o having minimal T-degree. It is also easy to add the additional condition
that the solution should have a non-zero constant coefficient and/or that it should be
optimal.
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6 Conclusion

In this paper, we have shown that we can embed the classical Padé-Hermite problem into
a generalized Padé-Hermite problem. The solution of this generalized problem and several
variants of it can be written down in terms of fundamental vectors. We have developed here
a simple and efficient algorithm to compute these fundamental vectors. FEven in the non-
normal case, this algorithm requires only order o operations to find Padé-Hermite forms
of order o. We remark also that it can be easily parallelized and/or vectorized. Working
through an example, we have shown how simple it is to solve related problems which impose
some extra conditions on the Padé-Hermite forms. In this paper, we followed a “diagonal”
path through the Padé-Hermite table. In a forthcoming paper, we shall indicate that we can
use a similar algorithm to go along any path we like in the Padé-Hermite table, even if it is
a non-perfect one.
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