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Abstract

Let w(#) be a positive weight function on the interval [—7, 7] and associate the
positive definite inner product on the unit circle of the complex plane by (I, G),, =
= [T F(e")G(e?)w(h) db. For a sequence of points {ay}72 , included in a compact
subset of the open unit disk, we consider the orthogonal rational functions (ORF)
{¢r}52, that are obtained by orthogonalization of the sequence {1, z/my, 22 /7, .. .}
where 71(2) = H_I;=1(1 — @, z), with respect to this inner product.

In this paper we prove that s,(z) — S, (2) tends to zero in |z| < 1 if n tends to
oo, where s,, is the nth partial sum of the expansion of a bounded analytic function
F in terms of the ORF {¢.}72, and S,, is the nth partial sum of the ordinary
power series expansion of F. The main condition on the weight is that it satisfies a
Dini-Lipschitz condition and that it is bounded away from zero. This generalizes a
theorem given by Szeg6 in the polynomial case, that is when all a = 0.

As an important consequence we find that under the above conditions on the
weight w and the points {ay}72,, the Cesaro means of the series s, converge uni-
formly to the function F in |z| < 1 if the boundary function f(8) := F(e") is
continous on [0, 27]. This can be seen as a generalization of Fejér’s Theorem.
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1 Introduction

First we define the spaces of rational functions that play a central role in this
paper. For a given sequence of points {ax}32,, we define the factors

mo=1, m=][(1-az), n=12...

=1

If IT,, denotes the space of all polynomials of degree at most n, then we set

Lo = {pn(2)/ma() : po € LY.

There are several ways to give bases for these spaces. We shall use here the
Blaschke products defined as

By=1, B,(z)=0G(z)---((z), n=1,2,...

with Blaschke factors, defined for £ = 1,2,... as

z— ay Y= ak/|ak|, 1fak7é0 (1 1)

1 otherwise.

Gilz) = i,

Then it is clear that £, = span{By,..., B,}.

We shall now consider some weight function w on [—m, 7] and the correspond-
ing inner product

and orthogonalize the basis By, By, ... with respect to this inner product, to
get the system of orthonormal rational functions (ORF) ¢, ¢1,. ... Thus

(D, D1),, = O,

where §;; is the Kronecker-delta.

We suppose that the weight function w we consider here satisfies a Dini-
Lipschitz condition

lw(f + ) — w(h)] < L|log 6|7+, (1.2)



where L is a fixed positive constant and A > 0. If we also assume that w is
non-zero, we can find positive numbers m and M such that

0<m<wl) <M<oo, Vb€|[—m,mn]. (1.3)

A related condition considered in [5, p. 227] is

0/“’(";; ) 45 < o0, (1.4)

where w(w;d) denotes the modulus of continuity
w(w;d) = sup{|w(z) —w(y)|: |+ —y| < 5}.
Note that the form (1.2) of the Dini-Lipschitz condition is stronger than (1.4)
in the sense that (1.2) implies (1.4).
A third form of the Dini-Lipschitz condition can be found in [4]

lim w(w; ) log(d) = 0. (1.5)

§—0

This one is weaker than (1.4) in the sense that (1.4) implies (1.5). So we have
the following implications

(1.2) = (1.4) = (1.5).

Unless stated otherwise, we mean the condition (1.2) when we refer to the
Dini-Lipschitz condition. It is the most informative since the parameter A
describes the speed of convergence precisely. Note that in the literature it is
usually (1.5) that is referred to as the Dini-Lipschitz condition.

We denote the unit circle as T = {z € C: |z| = 1} and the open unit disk as
D = {z € C:|z| < 1}. The closure is denoted as D = DU T.

Because logw € L'(T), we can define the spectral factor

1 [z :
o(z) = exp {E / i g log w(#) d9} . E=¢",

z —
-

This ¢ is an outer function in H?(D) which has a nontangential boundary
value on T. Also |o(e?)|* = w(f) a.e.



Without loss of generality, we shall also assume that [ w(8)df = 27, so that
we have ¢y = 1. For the sequence of points {a;}2, we make the following
two assumptions:

(1) The {ax}2, are compactly included in the open unit disk, thus |a;| <
1 — d with d a positive number not depending on k;

(2) The counting measures v, that is the discrete measure v := =377, 85,
that assigns a mass 1/n to the points ay for k = 1,...,n, has a weak star
limit v, that is lim,e [ F(2)dvg(2) = [ F(z) dv®(z) for all continuous
functions F'. This is a mild condition on the distribution of the {a}32;.

Under these conditions on the weight w and on the points {a;}$2,, we gave in
a previous paper [3], the asymptotics for the ORF {¢;}32, on the unit circle.
We even got the rate of convergence, namely O(log n)~*. The main result was
the following.

Theorem 1.1 Suppose that the weight is uniformly bounded and satisfies a
Dini-Lipschitz condition (1.2). Furthermore, suppose that the above conditions
on the {ay }32, are satisfied. Then, asn — oo, we have uniformly for z € DUT

(I —an)dp(z) _ 1 + O(log n)™,

e o(2)

where ¢f(z) = By(2)$,(1/Z) denotes the generalized reciprocal of the ORF

&én, and p, € T is a normalizing constant.

We shall in this paper consider the uniform convergence of a general Fourier
expansion with respect to the ORF {¢;}72,. Consider a function F'(z) analytic
in |z| < 1 that has a (bounded) non-tangential boundary value for |z| — 1,
which we also denote as F/(z). Obviously, since we have an orthonormal system,
we get for such a function the formal expansion Y272 (F, ¢z),, ¢x. Let us denote
the partial sums as

=D (F,éx),, on(2).
k=0

We are interested in finding conditions under which s, converges uniformly
to F in D. It is clear that in the simplest possible case, that is when we
consider the weight w = 1 and set all o = 0, then the ORF are just the
powers fi(z) = z, and even then the uniform convergence of s, to F(z)
is not guaranteed on T. Indeed, in this case we obtain the Maclaurin series
expansion of F. Thus if F' is analytic in the open unit disk, then we have
uniform convergence there, but it is not guaranteed that there is uniform

convergence on the circle itself. Let us introduce some notation for this special



case. The inner product with w = 1, i.e., with the Lebesgue measure, is
denoted as (-,-), rather than (-,-),. The partial sum of the expansion with
respect to the orthogonal functions fi(z) = z* is denoted as

n

Sn(2) = > (F. fi) fi(2).

k=0

Rather than proving that s, converges to F', we shall first prove that s, — S,
converges uniformly to zero under a somewhat stronger Dini-Lipschitz condi-
tion on the weight w: it shall be assumed that A > 1. For the function F' it
will only be required that it is regular and bounded in . This means that
F e H*(D).

The main objective of this paper is to prove the following theorem.

Theorem 1.2 Let w be a non-zero weight function on [—m, 7| that satisfies
the following Dini-Lipschilz condition (6 >0)

lw(f + ) — w(8)] < L|log |77, (1.6)

where L >0 and XA > 1 are fired numbers. Thus (1.3) holds. For the {ax}32,
we assume that they are all in a compact subset of D and that the assoctated
counting measure v, converges in the weak star topology to the measure v=.

Let F € H*(D). If s, denotes the nth partial sum of the expansion of the
boundary function F(z), z € T, in terms of the ORF {¢y}32, assoctated with
w, and if S, is the nth partial sum of the ordinary power series expansion of
F, then we have

lim {s,(z) — S.(z)} =0,

n—oo

uniformly in the whole closed unit disc D.

In the second section we deduce the lemmas we need to prove this theorem.
The proof is then given in the third section. In the last section a number of
corollaries of our main theorem are given. The most important result here
is a generalization of Fejér’s Theorem [4] stating that under the conditions of
Theorem 1.2 for the weight w and the points {ay }32,, the Cesaro means of the
partial sums s,, converge uniformly on DUT to the function F'if this function
F' is bounded and analytic in D and if its boundary function f(8) := F(e') is
continous on [0, 27]. This means that F'is in the disc algebra A(D).

Before entering the next section, let us recall that throughout this paper,
the {a;}72, and the ORF {¢;}32, will always satisfy the properties given



above. Furthermore, we define for any complex function F' the para-hermitian
conjugate as Fi(z) = F(1/Z) and we define L. = {F : F,. € L,}. Finally we
define for a function F,, € £, \ £,-; the generalized reciprocal function F’* as
Fr(z) = Bp(2)Fre(2).

2 Some preliminaries

Notice that it is sufficient to discuss the statement for z € T, because we

are dealing with analytic functions. The following integral expressions for the
114

partial sums are easy to obtain. Setting £ = €'’ we get

Zn: F. i), &i :Zn:qbz(z)%/F(f)@Z(f)w(G) dé

=0 =0

=5 / (w; z,&§)w(0) dd

We have used the notation k,(w;z,£) to denote the kernel k,(w;z,§) =
Sr o ¢i(x)di(€). Note that k, is the reproducing kernel for £, with respect

to the inner product (-,-) . For the power series expansion we have (recall

Ji(z) = 2*)

Here the reproducing kernel is

[an(Z,.f) = zn:fz(Z)f?(f) = zn:zzgz = ﬁ

i=0 i=0 1—¢=

We denote with A, (z,§) the difference of the kernels multiplied by their re-
spective weight functions

Bu(§) = b2, o) - L5

Thus our main theorem will be proved if we show that (recall ¢ = ¢')

m

lim [ F(6)Au(2,6)d0 =0, VzeT.



We now give a sequence of lemma’s that are necessary to prove the main
theorem.

From [2] we get the Christoffel-Darboux relations for orthonormal rational
functions.

Lemma 2.1 The following relation holds between the reproducing kernel k, (w; z, )
and the ORF {¢p}72,:

e (w; 2, €) = o*1+1(2)</57*1+1(§) - M¢n+1(f)
n(W; 2, 1= Guy1(2)Cat1(§)

Remember that the (, are the Blaschke factors (1.1).

We recall the simple fact that if w satisfies a Dini-Lipschitz condition then
also 1/w satisfies a Dini-Lipschitz condition (see [3,7]).

We now prove the following lemma, which says that also the spectral factor o
satisfies a Dini-Lipschitz condition.

Lemma 2.2 [f the weight w satisfies the Dini-Lipschitz condition (1.6), then
the spectral factor o satisfies the following Dini-Lipschitz condilion

15(0 4+ 8) — s(0)] < L'|log 6|77,

where s(0) := o(e") and where L' is a positive constant and X > 1 is the same

as in (1.6).

PROOF. This lemma was proved in [7]. It relies on a Jackson [6] Theorem
for trigonometric polynomials, usually referred to as the Jackson IIT Theorem

[4, p 144]. We give a brief sketch of the proof.

Let n be an arbitrary positive integer. Applying the Jackson Theorem to the
function 1/w, we find a trigonometric polynomial g, of order n, so that

lw(8) —1/g,(0)] < P(log n)_l_k,

where we used the Dini-Lipschitz condition of the function 1/w. We know that
there exists a polynomial H, of degree n, so that g,(0) = |H,(¢")|*. We can
show that [7]

|o(2) = 1/ Ha(2)] < Q(logn)™, (2.1)



uniformly for |z| < 1. The constant @) only depends on the minimum and
maximum of the weight w as well as on L and A, the parameters of the Dini-
Lipschitz condition (1.6). Making use of (2.1) we obtain

o () — o ()] < 2Q(log )™ + [H, (¢'"+) =1 — Hy ()71,

By the Theorem of Bernstein [7, Theorem 1.22.1] the second term on the
right-hand side is equal to §O(n). So we found the bound O(logn)= +§0(n).
When we put n = O(67"|log §|=*) the statement of the lemma follows. O

The previous proof can be given using rational functions as well. Indeed, a
Jackson IIT type Theorem was derived in [1, Lemma 4.6] and except for tech-
nicalities, the proof can be given along the same line. This is however an
unnecessary complication.

We remark here that by (2.1) and using the same kind of arguments as above,
we can obtain the following more general inequality

lo(21) — 0(2)| < L' [log |21 — z||™", V21,20 € DUT, (2.2)
We now derive an approximation of the ORF {¢y}72, in terms of the spectral
factor o.

Lemma 2.3 With the notations of Theorem 1.1, we find for z € DUT and
forn — oo

1(2) =P G = + Ollog )™ (2.9
I —l|onl? 2B, _i(z _
bt = L) g 2.4)

where p, € T is for normalization and z, € T as defined in (1.1).

PROOF. The first relation is simply a rewriting of the result from Theorem
1.1. The second equation can be obtained by the definition of the generalized
reciprocal of the function.

1_|Oé’fl|2 1 —A
— Ba()pn ) +0llogn)

1 — an/z O'*(Z)



1 - |OZ’TL|2 ZB’)’L—I(Z)

1 —a,z o.(2)

+ O(log n)_)‘.

= Pn<n

This proves the lemma. O

The next lemma gives a boundary for the modulus of the kernel on T.

Lemma 2.4 [If k,(w; z,() denotes the kernel for the ORF {¢p}72,, then for

n — o0

|k (w; 2,¢)| < O(n), =z, (e€DUT.

PROOF. From [3, Lemma 4.8] we find (for k — o0)

max |:(1)] = O(1).

teT

Because ¢y is analytic in D, we find for 2, e DUT

i 2,€)] < 3 164(2)] [310)] < kiou) = O(m). ©

For a more detailed expression of this bound see [3, Lemma 4.6].

An asymptotic expression for the kernel can be given as in the next lemma. Its
explicit form is not really needed in the sequel, but it gives an introduction to
the proof of Lemma 2.6 and the result is interesting enough in its own right.

Lemma 2.5 Let k,(w;z,§) be the kernel for the ORF {¢y}72,. Let the as-
sumptions made above on the weight w and the points a be satisfied. Then for
2€D=DUT, we have uniformly for £ € D\ {z} as n — oo

pap o L [ 1 EB()BE] , Ologn)™
CENS T2 lo(2)0@)  o(e)o®) | 1-

PROOF. This follows immediately from substituting the asymptotics for the
ORF of Lemma 2.3 into the Christoffel-Darboux relation of Lemma 2.1 and

by using the relation
(€= 2)(1 = |ann[*)

(] - an+12>(§ - O4n+1>

1= G (2) G (€) =

for the denominator of the Chistoffel-Darboux relation. O



The next lemma gives us an explicit form of A, (z,§) for z, £ € T.

Lemma 2.6 Forz € T the following equality holds uniformly for & in compact
subsets of T\ {z} and n — oo

/ _ U(£)/0<Z> —1 (T 10(2) 2" B..(¢) O(log TZ)_/\
An(z,8) = 1 —¢- (€2) " 1 —¢2 + 1

PROOF. Suppose z, £ € T, but z # £ = ¢, From the first Christoffel-

Darboux relation (Lemma 2.1) we find

_ @2+1(Z)¢2+1(§) — Gnt1(2)Pnt1(€) |0_<§)|2 . 1 — (ZZ_)H-H
1 - Cn+1(2>gn+1(§) 1 —¢=

A, (z,€) . (2.5)

For the first term, we use the asymptotic expression that was obtained in the
previous lemma, applying it for z, £ € T so that 0.(z) = o(2) and 0.(&) = o(£).

This gives
(&)/o(z) - 2025 £yt .
Az, 6)= T T G O 1= () | Oflogn)
o 1—¢& 1—¢z 1—¢z
7€) Bn(z) ¢ _ B
— o()/o(z) 1 (Ez)t! o(z) " Bn(§) ! n O(logn)=*
l-¢& 1—-¢&2 1—§&z

This proves the lemma. O

3 Proof of the main theorem

Now we are able to prove the main theorem

Proof of Theorem 1.2 We have to prove that for F' € H*(D)

nh—>rg'> F(f)An(Za f) df = 0, f = eiﬁ’

uniformly for z € T. We split the integral into two parts

[ FOA( 0+ [ F©A(=,€)d0, (3.1)

E

10



where F' = E(n,e,z) istheset {£ € T: |z —£&| >en™'} and F' = E'(n,e, 2)

is the complementary set T \ F. Here ¢ is an arbitrary small positive number.

The second integral in (3.1) is easy to bound. By Lemma 2.4 we find that
A, (z,€) = O(n). So we have

/F(S)An(z,f) d0 = O(n)en~" = 0(1),

This is arbitrarily small as ¢ — 0.

Before looking at the first integral, we take a look at the integrals (¢ = ')

oot 1 . OB ey
/ P 6 and / F(6)(Ez)rHt 2 =" 2O gy
1 — &z 1—¢z

Because F' € H*°(D) and because also the rest of the integrand is analytic
inside the unit disk (the pole £ = z is canceled by a zero in the numerator)
we can apply Cauchy’s Theorem to find the following result

m

%/F(g)%d@ - ﬁ / FoZ&/oE) Z1dE g
“r =1

Next we take a look at the function F),, defined as (z € T is a parameter)

oz 2" Bn(¢
Fo(€) = 70 “

We see that the numerator of F), has a simple zero at ¢ = z. This cancels the
simple zero of the denominator and thus F), is a rational function which has all
its poles strictly inside the unit disc (this is a consequence of the assumption
that the {ay};2, are all in a compact subset of D and because ¢ is uniformly
bounded). Therefore we can use Cauchy’s Theorem to find (£ = ¢')

f Fo(€)do =

Thus F, € L'(T). Because F' is bounded, we see that the product F'F, is also
in L'(T). According to the Riemann-Lebesgue Lemma (see [8, p. 45]), we now

11



find

lim / F(€)(E2)" Fo(€) d = 0. (3.3)

n—oo

When we combine Lemma 2.6, (3.2) and (3.3), we find

ks

[ o (e - 2B o — o)

-

We use this equation to bound the first integral in (3.1) as follows

/F(g)An(z,f) df = O(log ")_A/ 1 iwle

GEACNI
_/F { ( >_1 (ZZ>TL+102) zm f) }d9+0(1)

1 —¢z

log |- — €[]

= Oflogn)'~ —o(1) [ FEE=2

El

+/F®@W“ﬂ®w+dw
= O(logn)'™" +o(1) = o(1), n — .

The second equality follows from (2.2) and the third from (3.3). This proves
our statement. O

4 Some important consequences

In this last section we give some consequences of Theorem 1.2. We have shown
that certain some conditions on the weight w and the points {ax } 32, and under
some mild conditions for the function F', the general ORF-Fourier series and
the ordinary Fourier series for F' behave in the same way. Thus, if we impose
extra conditions on the function F' that guarantee that S, converges uniformly
to Fin D =DUT, then also s, shall convergerge uniformly to F in D.

Two examples are given below: either the boundary function f(6) := F(e')
is 2m-periodic and satisfies a Dini-Lipschitz condition of the form (1.5) or it is
continuous and of bounded variation.

As we mentioned before, since F'is analytic in I, it is sufficient to consider
convergence on T, since this immediately implies convergence in D. Indeed,

12



F'—S,, is analytic in D and by the maximum modulus Theorem, the maximum
is reached on T.

Since we are interested in uniform convergence of the generalized Fourier series
s, on the unit circle T, we need to impose some constraints on the boundary

function f(#) := F(e%).

If we assume Dini-Lipschitz conditions for the boundary function f we get the
following generalization of the Dini-Lipschitz Theorem [4, p 146].

Theorem 4.1 (Dini-Lipschitz) Suppose that the weight w and the points
{ap}i2, salisfy the conditions of theorem 1.2. If F' € A(D) and ils boundary
Junction f(0) := F(e') satisfies a Dini-Lipschitz condition of the form (1.5)

w(f;0)log(d) =0, §—0,
then the series s, converges uniformly to F in D.

PROOF. This can be proved by combining Theorem 1.2 and the Dini-Lipschitz
Theorem for ordinary Fourier series (see e.g. [4, p 146] or [8, p 63]). This the-
orem states that under the same conditions the series S,, converges uniformly
to Fon T. O

When the boundary function f is of bounded variation we can find the fol-
lowing.

Theorem 4.2 Suppose that the weight w and the points {ay}32, salisfy the
conditions of Theorem 1.2. If F' € A(D) and its boundary function f(0) :=
F(e) is of bounded variation over [0,2m], then the series s, converges uni-
formly to F in D.

PROOF. This can also be proved by combining two theorems, namely Theo-
rem 1.2 and the Dirichlet-Jordan-test [8, Theorem 8.14] that states that under
the same conditions the series S,, converges uniformly to F on T. O

Finally we generalize the Fejér Theorem (see e.g. [8, p 89] or [4, p 123]) which
says that the Cesaro means of the Fourier series S,, converges uniformly for a
continuous function. We now prove that under our conditions on the weight w
and the points {ay }32,, this also holds in the general case of an ORF-Fourier
series.

Theorem 4.3 (Fejér) Suppose thal the weight w and the points {ag}32,

13



salisfy the conditions of Theorem 1.2. If F € A(D), then we find (on denotes
the Nth Cesaro mean of s, )

All_r}réo max |F(z) —on(2)| = 0.

Thus the Cesaro means of s, converge uniformly to the function F in D.

PROOF. This is a combination of Theorem 1.2 and the well-known Fejér
Theorem, that states that if f(0) = F(e') is continous, then the Cesaro
means of S, converge uniformly to Fin D. O
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