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Abstract. Consider a hermitian positive-definite linear functional F, and assume we have m

distinct nodes fixed in advance anywhere on the real line. In this paper we then study the existence
and construction of nth rational Gauss-Radau (m = 1) and Gauss-Lobatto (m = 2) quadrature
formulas that approximate F{f}. These are quadrature formulas with n positive weights and with
the n−m remaining nodes real and distinct, so that the quadrature is exact in a (2n−m)-dimensional
space of rational functions.
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1. Introduction. The central object of study in this paper is the numerical
approximation of a hermitian positive-definite functional F by means of an n-point
positive interpolatory quadrature rule with real distinct nodes {xk}n

k=1 and positive
weights {λk}n

k=1:

F{f} ≈
n
∑

k=1

λkf(xk).

When taking as nodes the zeros of an nth orthogonal polynomial (OP) (where orthog-
onality is with respect to the inner product defined by 〈f , g〉 = F{f(x) · g(x)}), we
obtain the nth Gaussian quadrature rule, which has a maximal polynomial domain of
validity; i.e., the approximation is exact for every polynomial of degree less than or
equal to 2n− 1. Clearly, the existence of the nth Gaussian quadrature rule depends
on whether an nth OP exists. If one or two nodes in the quadrature formula are fixed
in advance, and the remaining nodes are chosen to obtain exactness for at least every
polynomial of degree less than or equal to 2n− 2 or 2n− 3 respectively, we get more
general nth Gauss-type quadrature rules. In this case, the nodes are zeros of an nth
quasi-orthogonal polynomial, and the existence depends on the fixed node(s) as well
(i.e., for certain choices, one of the remaining nodes may lie at infinity and/or some
of the corresponding weights may be non-positive).

When f has singularities, it is often more appropriate to not consider a maximal
polynomial domain of validity, but rather consider more general spaces of rational
functions. In such a case the OPs are replaced by orthogonal rational functions
(ORFs) with preassigned poles (to simulate the singularities of f).

ORFs were first introduced by Džrbašian in the 1960s. Most of his papers ap-
peared in Russian literature, but an accessible survey in English can be found in [9, 13].
These ORFs are a generalization of OPs in such a way that they are of increasing
degree with a given sequence of poles, and the OPs result if all the poles are at infinity.
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So, when taking as nodes the zeros of an nth ORF instead, we obtain the nth
rational Gaussian quadrature rule; see e.g. [1, Chapt. 11.6] and [2, 7, 8, 10, 11, 12,
14, 15, 17, 18, 19, 20]. Here we can also consider more general rational Gauss-type
quadrature rules obtained by fixing one or two nodes in the quadrature rule. However,
the existence of these quadrature rules now also depends on the sequence of poles.

The aim of this paper is to investigate the existence and construction of rational
Gauss-type quadrature rules. The outline is as follows. After giving the necessary
theoretical background in Section 2, in Section 3 we discuss the connection of positive
rational interpolatory quadrature formulas with certain kinds of quasi-orthogonal ra-
tional functions. Next, in Section 4 we use this connection to study the existence and
construction of rational Gauss-type quadrature formulas for a given (set of) node(s)
fixed in advance. Finally, some illustrative numerical examples are given in Section 5.

2. Preliminaries. The field of complex numbers will be denoted by C and the
Riemann sphere by C = C ∪ {∞}. For the real line we use the symbol R and for the
extended real line R = R ∪ {∞}. Further, the positive half line will be represented
by R+ = {x ∈ R : x ≥ 0}. Whenever the value zero is omitted in a set X ⊆ C, this
will be represented by X0. Similarly, the complement of a set Y ⊂ C with respect to
a set X ⊆ C will be given by XY ; i.e., XY = {t ∈ X : t /∈ Y }.

Let a ∈ C, then Re{a} refers to the real part of a, while Im{a} refers to the
imaginary part, and the imaginary unit will be denoted by i. For a 6= 0 we will also
use the short notation T{a}, defined by

T{a} = −Im{1/a} =

{

Im{a}

|a|2
, a ∈ C0

0, a = ∞ .

For any complex function f , we define the involution operation or super-c con-
jugate by f c(x) = f(x). With Pk we denote the space of polynomials of degree less
than or equal to k, while P represents the space of all polynomials. Further, we will
use the short notation [f(x)]x=a to denote limx→a f(x).

Let a sequence of poles A = {α1, α2, . . .} ⊂ C0 be fixed, where the poles are
arbitrary complex or infinite; hence, they do not have to appear in pairs of complex
conjugates. The rational functions we then deal with, are of the form

fk(x) =
ckx

k + ck−1x
k−1 + · · · + c0x

0

(1 − x/α1)(1 − x/α2) · · · (1 − x/αk)
, k = 1, 2, . . . . (2.1)

Note that, whenever αj = ∞ for every j > 1, the “rational functions” fk(x) in (2.1) are
in fact polynomials of degree k. Thus the polynomial case is automatically accounted
for.

Define the factors

Zk(x) := Zαk
(x) =

x

1 − x/αk
, k = 1, 2, . . . , (2.2)

and the basis functions

b0(x) ≡ 1, bk(x) = bk−1(x)Zk(x), k = 1, 2, . . . . (2.3)

These basis functions generate the nested spaces of rational functions with poles in
A defined by

L−1 = {0}, L0 = C, Lk := L{α1, . . . , αk} = span{b0, . . . , bk}, k = 1, 2, . . . .
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With L we then denote the closed linear span of all {bk}∞k=0. Let

π0(x) ≡ 1, πk(x) =

k
∏

j=1

(1 − x/αj), k = 1, 2, . . . ,

then for k > 0 we may write equivalently

bk(x) =
xk

πk(x)
and Lk = {pk/πk : pk ∈ Pk}.

In the remainder we will also use the short notation L[α]
k := L{α1, . . . , αk−1, α} (i.e.,

the space of rational functions with the same dimension as Lk, but with the last pole
αk replaced by the pole α) and Lk(α) := {f = pk

πk
∈ Lk : pk(α) = 0} = Zk

Zα
Lk−1.

Note that Lk and L are rational generalizations of Pk and P . Indeed, if αj = ∞
for every j > 1, the expression in (2.2) becomes Zk(x) = x and the expression in (2.3)
becomes bk(x) = xk.

With the definition of the super-c conjugate we introduce Lc
k = {f c : f ∈ Lk}.

Further, with Rk,j and Sk = S{α1, . . . , αk} we denote the space of rational functions
defined by Rk,j = Lk · Lc

j := {f · gc : f ∈ Lk and g ∈ Lj} and Sk = Lk + Lc
k :=

{f + gc : f ∈ Lk and g ∈ Lk} respectively.
Consider an inner product defined by a linear functional F:

〈f , g〉
F

= F{fgc}, f, g ∈ L,

where the linear functional F is assumed to be hermitian positive-definite (HPD); i.e.,

F{fgc} = F{f cg} and F{ff c} > 0 for f 6= 0.

Orthogonalizing the basis functions {b0, b1, . . .} with respect to this inner product, we
obtain a sequence of orthogonal rational functions (ORFs) {φ0, φ1, . . .}, with φk ∈
Lk \ Lk−1, so that φk ⊥F Lk−1; i.e.,

〈φk , φj〉F =
1

|dk|2
δk,j , dk ∈ C0, k, j = 0, 1, . . . ,

where δk,j is the Kronecker Delta. In the special case in which ϕk(x) = dkφk(x), so
that

‖ϕk‖F
:=
√

〈ϕk , ϕk〉F = 1,

we say that ϕk is an orthonormal rational function (nORF).
Put by convention α−1 = α0 = ∞. We then call a rational function fk =

pk

πk
∈ Lk \ Lk−1, with k > 0, exceptional (respectively degenerate) iff pk(αk−1) = 0

(respectively pk(αk−1) = 0). A zero of pk at ∞ means that the degree of pk is less
than k. Further, for k > 1 we say that fk is singular iff pk(αj) = 0 for at least one
j ∈ {0, . . . , k − 2}. Finally, fk is called regular iff fk is not singular, not degenerate
and not exceptional. With these definitions we now introduce the following spaces of
rational functions:

eLk := {f ∈ Lk \ Lk−1 : f is not exceptional} ,
dLk := {f ∈ Lk \ Lk−1 : f is not degenerate} ,

deLk := eLk ∩ dLk ,
rLk := {f ∈ Lk \ Lk−1 : f is regular}.
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In [18, Thm. 2.1.1] (and [1, Chapt. 11.1] for the special case of all real poles) the
following three-term recurrence relation has been proved for nORFs ϕk ∈ Lk \ Lk−1.

Theorem 2.1. Consider the nORFs ϕj ∈ Lj \ Lj−1, with j = k, k− 1, k− 2 and
k > 0. Then these nORFs satisfy a three-term recurrence relation of the form

ϕk(x) = EkZk(x)

{[

1 +
Dk

Zk−1(x)

]

ϕk−1(x) −
Ck

Zc
k−2(x)

ϕk−2(x)

}

(2.4)

= Ekψk(x),

with |Ek| = ‖ψk‖−1
F

∈ R
+
0 , Ck ∈ C0 and Dk ∈ C iff ϕk ∈ eLk and ϕk−1 ∈ dLk−1. The

initial conditions are α−1 = α0 = ∞, ϕ−1(x) ≡ 0, and |ϕ0(x)| ≡ ‖1‖−1
F

= |E0|. In

the special case in which ϕk−1 ∈ deLk−1 and ϕk−2 ∈ dLk−2 for k > 1, it holds that
(see [4, Thm. 3.3])

Ck =
1 −Dk/Z

c
k−1(αk−1)

Ek−1

∈ C0.

In this case the coefficient Dk can be expressed in terms of inner products as follows
(see [4, Thm. 3.7 and Thm. 3.9]):

Dk =
Kk,j − Lk,j

Lk,j

Zk−1(αk) +
Kk,j

Zc
k−1(αk−1)

+ δk−1,jEk−1

, 0 6 j < k,

with

Kk,j =
1

Zc
k−2(αk)

〈Zkϕk−2 , ϕj〉F + δk−2,j and Lk,j = Ek−1 〈Zkϕk−1 , ϕj〉F ,

while for αk /∈ R, the modulus of the coefficient Ek can also be computed as follows:

|Ek|2 =
T{αk} |Ek−1|2

(

Im{Dk} − |Dk|2 T{αk−1}
)

·
(

|Ek−1|2 − 4T{αk−1} · T{αk−2}
)

+ T{αk−2}
.

In the opposite direction as in Theorem 2.1, the following Favard-type theorem
has been proved in [3].

Theorem 2.2. Let {χk}∞k=0 be a sequence of rational functions in L, and assume
that the following conditions are satisfied:

(A1) α−1 = α0 = ∞ and αk ∈ C0, k = 1, 2, . . . ;
(A2) χk is generated by the three-term recurrence relation (2.4) ;
(A3) χk ∈ Lk \ Lk−1, k = 0, 1, 2, . . . , and χ−1 ≡ 0 ;
(A4) Dk ∈ C and Ek ∈ C0, k = 1, 2, . . . ;
(A5)

Im{Dk} =
T{αk}
|Ek|2

− T{αk−2}
|Ek−1|2

if αk−1 ∈ R0, respectively

Re{Dk}2 + {Im{Dk} − iZk−1(αk−1)}2
= −{Zk−1(αk−1)}2 |Ek−1|2

|Ek|2
· ∆k

∆k−1

if αk−1 /∈ R, where ∆k = |Ek|2 − 4T{αk} · T{αk−1} > 0, k = 1, 2, . . . , with
E0 ∈ C0;
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(A6) Ck =
1−Dk/Zc

k−1(αk−1)

Ek−1
∈ C0, k = 1, 2, . . . .

Then there exists a HPD linear functional G on L · Lc so that

〈f , g〉
G

= G{fgc}

defines an inner product on L for which the χk form an orthonormal system.
The above three-term recurrence relation can also be written as follows:

x

{

ϕk−1(x) −
a
[ϕ]
k−1

Zc
k−2(αk−2)

ϕk−2(x)

}

= a
[ϕ]
k−1

(

1 − x

αk−2

)

ϕk−2(x)

+ b
[ϕ]
k−1

(

1 − x

αk−1

)

ϕk−1(x) + c
[ϕ]
k−1

(

1 − x

αk

)

ϕk(x), 0 < k 6 n,

where

b
[ϕ]
k−1 = −Dk , c

[ϕ]
k−1 = E−1

k , and a
[ϕ]
k−1 = Ck =

{

1 +
b
[ϕ]
k−1

Zc
k−1(αk−1)

}

c
[ϕ]
k−2 . (2.5)

Let In denote the n by n identity matrix, and define the matrices

Jn =





















b
[ϕ]
0 c

[ϕ]
0 0 . . . 0

a
[ϕ]
1 b

[ϕ]
1 c

[ϕ]
1

. . .
...

0
. . .

. . .
. . . 0

...
. . . a

[ϕ]
n−2 b

[ϕ]
n−2 c

[ϕ]
n−2

0 . . . 0 a
[ϕ]
n−1 b

[ϕ]
n−1





















, Dn = diag
(

α−1
0 , α−1

1 , . . . , α−1
n−1

)

,

Sn =























0 . . . . . . . . . 0

a
[ϕ]
1

Zc
0(α0)

. . .
...

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0
a
[ϕ]
n−1

Zc
n−2(αn−2)

0























, and Bn = JnDn + In − Sn ,

and column vectors

~ϕn(x) =
(

ϕ0(x) ϕ1(x) . . . ϕn−1(x)
)T

and ~en =
(

0 . . . 0 1
)T ∈ C

n.

Assuming the nORFs ϕk ∈ deLk for k = 0, . . . , n− 1, and ϕn ∈ eLn, we obtain that

Jn~ϕn(x) = xBn~ϕn(x) − c
[ϕ]
n−1

(

1 − x

αn

)

ϕn(x)~en. (2.6)

The following theorem has then be proved in [16, Sec. 4].
Theorem 2.3. Suppose the nORFs ϕk ∈ deLk for k = 0, . . . , n − 1. Then the

zeros xn,j, j = 1, . . . , n, of a nORF ϕn(x) ∈ eLn are eigenvalues of the generalized
eigenvalue problem (GEP)

Jn~vn,j = xn,jBn~vn,j , (2.7)
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with

~vn,j = ηn

{

n−1
∑

k=0

|ϕk(xn,j)|2
}−1/2

~ϕn(xn,j), |ηn| = 1,

the corresponding normalized eigenvector.
In the remainder of this paper we will assume that the sequence of nORFs {ϕk}n

k=0

exists and that ϕk ∈ deLk for k = 0, . . . , n.1

3. Positive rational interpolatory quadrature rules. Consider the set of n
nodes {xF

n,k}n
k=1 ⊂ RAn

, where An = {αk}n
k=1 and xF

n,k 6= xF
n,j if k 6= j, and weights

{λn,k}n
k=1 ⊂ R

+
0 . We then call a quadrature formula of the form

Fn{f} :=

n
∑

k=1

λF
n,kf(xF

n,k), (3.1)

an nth positive rational interpolatory quadrature formula (abbreviated PRIQ) iff

Rn{f} := F{f}−Fn{f} = 0 for every f ∈ Rn−1,j̃ = Ln−1·L̃c
j , where L0 ⊆ L̃j ⊂ L[αn]

n+1.
If Rn−1,j̃ is the largest space for which Rn{f} = 0, then it is called the domain of
validity. Clearly, a necessary (but not sufficient) condition for the existence of a PRIQ
is that Rn−1,j̃ = Rc

n−1,j̃
; i.e., for every function f in the domain of validity it should

hold that f c is in the domain of validity too.2

With ‘(n+i−1 : n−i−m,An,F)-PRIQ’, where i ∈ {0, 1} andm ∈ {1−i, . . . , n−i},
we denote an nth PRIQ for which the space Rn+i−1,n−i−m is contained in the domain
of validity (i.e., the quadrature is exact for at least every f ∈ Rn+i−1,n−i−m). To
study (n+ i− 1 : n− i−m,An,F)-PRIQs we will need the so-called quasi-orthogonal
rational functions (qORFs), which are defined as follows.

Definition 3.1. Let 0 6 m 6 n. We then call a rational function Qn,~am+1
∈ Ln

an m-qORF of the first kind iff Qn,~am+1
is of the form

Qn,~am+1
(x) =

m
∑

j=0

ajϕn−j(x), ~am+1 =
(

a0 . . . am

)T ∈ C
m+1.

Definition 3.2. Let 0 6 m 6 n. We then call a rational function Pn,~am+1
∈ Ln

an m-qORF of the second kind iff Pn,~am+1
is of the form

Pn,~am+1
(x) = a0ϕn(x)+

m
∑

j=1

aj
Zn(x)

Zc
n−j(x)

ϕn−j(x), ~am+1 =
(

a0 . . . am

)T ∈ C
m+1.

From the previous definitions it clearly follows that Qn,~am+1
⊥F Ln−(m+1) and

that

Pn,~am+1
⊥F







Ln−1, m = 0

Ln−m(αn) ≡ Zn−m

Zc
n

Ln−(m+1), 0 < m < n

L0(αn) ≡ L−1, m = n.

1It is easily proved by induction over k = 1, . . . , n, with the aid of (2.5)–(2.6) and Theorem 2.1,

that ϕk ∈ deLk for k = 0, . . . , n iff
n

a
[ϕ]
k+1, c

[ϕ]
k

on−2

k=0
⊂ C0, {b

[ϕ]
k

}n−1
k=0 ⊂ C and det

n

1
αk

Jk − Bk

o

6= 0

for k = 1, . . . , n.
2If this condition is not satisfied, the weights cannot be all real; see [5, Sect. 2].
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Conversely, for every rn ∈ Ln and every m ∈ {0, . . . , n} it holds that rn ⊥F Ln−(m+1)

iff rn is an m-qORF of the first kind. Further, assume that there exists a rational

function ϕ
[αn−m]
n ∈ eL[αn−m]

n so that ϕ
[αn−m]
n ⊥F Ln−1 and

∥

∥

∥ϕ
[αn−m]
n

∥

∥

∥

F
= 1. Then

it holds that rn ⊥F Ln−m(αn) iff rn is an m-qORF of the second kind. The first
statement is trivial. To prove the second statement, we first need the following lemma.

Lemma 3.3. Let 1 6 m 6 n. Then for every sequence of constants {aj}m
j=1 ⊂ C

there exists a sequence of constants {bj}m+1
j=0 ⊂ C so that

Zn(x)

m
∑

j=1

ajϕn−j(x) ≡ b0ϕn(x) +

m+1
∑

j=1

bj
Zn(x)

Zc
n−j(x)

ϕn−j(x).

Proof. For m = 1 it follows from Theorem 2.1 that

1

En
ϕn(x) = Zn(x)

[

1 +
Dn

Zn−1(x)

]

ϕn−1(x) − Cn
Zn(x)

Zc
n−2(x)

ϕn−2(x),

where it holds that

1 +
Dn

Zn−1(x)
= En−1Cn +

Dn

Zc
n−1(x)

.

Consequently, the statement follows for m = 1 by taking b0 = a1

EnEn−1Cn
∈ C, b1 =

− a1Dn

En−1Cn
∈ C and b2 = a1

En−1
∈ C.

So, suppose now that the statement holds true for 1 6 m−1 < n. For m we then
have that

Zn(x)
m
∑

j=1

ajϕn−j(x) = Zn(x)
m−1
∑

j=1

ajϕn−j(x) + amZn(x)ϕn−m(x) ≡

b0ϕn(x) +
m
∑

j=1

bj
Zn(x)

Zc
n−j(x)

ϕn−j(x) + amZn(x)ϕn−m(x).

From Theorem 2.1 it now follows that

1

En−(m−1)

Zn(x)

Zn−(m−1)(x)
ϕn−(m−1)(x) =

Zn(x)

[

1 +
Dn−(m−1)

Zn−m(x)

]

ϕn−m(x) − Cn−(m−1)
Zn(x)

Zc
n−(m+1)(x)

ϕn−(m+1)(x),

where it holds that

1 +
Dn−(m−1)

Zn−m(x)
= En−mCn−(m−1) +

Dn−(m−1)

Zc
n−m(x)

and
1

Zn−(m−1)(x)
=

1

Zc
n−(m−1)(x)

− 1

Zc
n−(m−1)(αn−(m−1))

.

As a result we find that

amZn(x)ϕn−m(x) =

m+1
∑

j=m−1

dj
Zn(x)

Zc
n−j(x)

ϕn−j(x) + emZn(x)ϕn−(m−1)(x),
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with dm−1 = am

En−(m−1)En−mCn−(m−1)
∈ C, dm = − amDn−(m−1)

En−mCn−(m−1)
∈ C, dm+1 =

am

En−m
∈ C and em = − am

En−(m−1)En−mCn−(m−1)Z
c
n−(m−1)

(αn−(m−1))
∈ C. Finally, from

the induction hypothesis it follows that there exist constants {ĉj}m
j=0 ⊂ C so that

Zn(x)ϕn−(m−1)(x) ≡ ĉ0ϕn(x) +

m
∑

j=1

ĉj
Zn(x)

Zc
n−j(x)

ϕn−j(x).

This ends the proof.
We are now able to prove the following.
Theorem 3.4. Let 1 6 m 6 n, and suppose rn ∈ Ln. Further, assume that

ϕ[αn−m]
n ∈ eL[αn−m]

n : ϕ[αn−m]
n ⊥F Ln−1 and

∥

∥

∥
ϕ[αn−m]

n

∥

∥

∥

F
= 1. (3.2)

Then it then holds that rn ⊥F Ln−m(αn) iff rn is an m-qORF of the second kind.
Proof. From the definition of an m-qORF of the second kind it is clear that

rn ⊥F Ln−m(αn) if rn is an m-qORF of the second kind. So, we only need to prove
that rn is an m-qORF of the second kind if rn ⊥F Ln−m(αn).

The case in which m = 1 has already been proved in [6, Thm. 5] under the less

restrictive condition that ϕ
[αn−1]
n ∈ L[αn−1]

n \ Ln−1. Thus, suppose that 1 < m 6 n.

Since rn ⊥F Ln−m(αn), it follows that
Zc

n−m

Zn
rn ∈ L[αn−m]

n and
Zc

n−m

Zn
rn ⊥F Ln−(m+1).

Consider now the nORF ϕ
[αn−m]
n ∈ eL[αn−m]

n . Then there exist constants {bj}m
j=0 ⊂ C

so that

Zc
n−m(x)

Zn(x)
rn(x) = b0ϕ

[αn−m]
n (x) +

m
∑

j=1

bjϕn−j(x),

and hence,

rn(x) = b0
Zn(x)

Zc
n−m(x)

ϕ[αn−m]
n (x) +

m
∑

j=1

bj
Zn(x)

Zc
n−m(x)

ϕn−j(x) =

b0
Zn(x)

Zc
n−m(x)

ϕ[αn−m]
n (x) +Zn(x)

m−1
∑

j=1

bj
Zc

n−m(αn−j)
ϕn−j(x) +

m
∑

j=1

bj
Zn(x)

Zc
n−j(x)

ϕn−j(x).

From the previous lemma it now follows that there exist constants {cj}m
j=0 ⊂ C so

that

rn(x) = b0
Zn(x)

Zc
n−m(x)

ϕ[αn−m]
n (x) + c0ϕn(x) +

m
∑

j=1

cj
Zn(x)

Zc
n−j(x)

ϕn−j(x).

Thus, it remains to prove that Zn

Zc
n−m

ϕ
[αn−m]
n is an m-qORF of the second kind. Since

ϕ
[αn−m]
n ∈ eL[αn−m]

n , we deduce from Theorem 2.1 that

1

E
[αn−m]
n

Zn(x)

Zc
n−m(x)

ϕ[αn−m]
n (x) =

Zn(x)

[

1 +
D

[αn−m]
n

Zn−1(x)

]

ϕn−1(x) − C [αn−m]
n

Zn(x)

Zc
n−2(x)

ϕn−2(x) =

En−1C
[αn−m]
n Zn(x)ϕn−1(x)+D

[αn−m]
n

Zn(x)

Zc
n−1(x)

ϕn−1(x)−C [αn−m]
n

Zn(x)

Zc
n−2(x)

ϕn−2(x).
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Finally, because Znϕn−1 is a 2-qORF of the second kind due to the previous lemma,

it follows that Zn

Zc
n−m

ϕ
[αn−m]
n is an m-qORF of the second kind. This concludes the

proof.

In everything that follows, we will assume that the nORF ϕ
[αn−m]
n in (3.2) exists.

The following two theorems now give the connection between m-qORFs and (n :
n− 1 −m,An,F)-PRIQs, where i ∈ {0, 1} and m ∈ {1 − i, . . . , n− i}.

Theorem 3.5. Let 0 6 m 6 n− 1, and consider a (n : n− 1 −m,An,F)-PRIQ
of the form (3.1). Then there exists an m-qORF of the first kind Qn,~am+1

∈ rLn so

that Qn,~am+1
(xF

n,k) = 0 for k = 1, . . . , n, and

λF
n,k = F{L[Q]

n,k}, k = 1, . . . , n, (3.3)

with L
[Q]
n,k the fundamental interpolating rational functions defined by

L
[Q]
n,k(x) =

(1 − x/αn)

(1 − xF
n,k/αn)

· Qn,~am+1
(x)

(x− xF
n,k)Q′

n,~am+1
(xF

n,k)
∈ Ln−1, k = 1, . . . , n,

where the prime denotes the derivative with respect to x.
Proof. (The proof is similar to the proof of [1, Thm. 11.6.1].) First, note that

L
[Q]
n,k(xn,j) = δk,j , 1 6 k, j 6 n. Consider now the auxiliary function

h(x) = f(x) −
n
∑

k=1

f(xn,k) · L[Q]
n,k(x). (3.4)

For f ∈ Rn,n−1−m, this can be written as

h(x) =
p2n−1−m(x)

πn(x) · πc
n−1−m(x)

, p2n−1−m ∈ P2n−1−m.

Since h(xn,k) = 0 for k = 1, . . . , n (interpolation property), and since the numerator
of Qn,~am+1

is a nonzero constant times the nodal polynomial (x− xn,1) · · · (x− xn,n),
we can write

h(x) = Qn,~am+1
(x) · gc(x), g ∈ Ln−1−m.

From (3.4), together with (3.1) and (3.3), it now follows that

F{h} = F{Qn,~am+1
· gc} = Rn{f}.

Finally, since the quadrature is exact for every f ∈ Rn,n−1−m (i.e., Rn{f} = 0 for
every f ∈ Rn,n−1−m), it follows that Qn,~am+1

is an m-qORF of the first kind. This
ends the proof.

Theorem 3.6. Let 1 6 m 6 n, and consider a (n − 1 : n −m,An,F)-PRIQ of
the form (3.1). Then there exists an m-qORF of the second kind Pn,~am+1

∈ rLn so

that Pn,~am+1
(xF

n,k) = 0 for k = 1, . . . , n, and

λF
n,k = F{L[P ]

n,k}, k = 1, . . . , n, (3.5)

with L
[P ]
n,k the fundamental interpolating rational functions defined by

L
[P ]
n,k(x) =

(1 − x/αn)

(1 − xF
n,k/αn)

· Pn,~am+1
(x)

(x− xF
n,k)P ′

n,~am+1
(xF

n,k)
∈ Ln−1, k = 1, . . . , n,
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where the prime denotes the derivative with respect to x.

Proof. (The proof is similar as above.) First, note that L
[P ]
n,k(xn,j) = δk,j , 1 6

k, j 6 n. Consider the auxiliary function

h(x) = f(x) −
n
∑

k=1

f(xn,k) · L[P ]
n,k(x). (3.6)

For f ∈ Rn−1,n−m, this can be written as

h(x) =
p2n−1−m(x)

πn−1(x) · πc
n−m(x)

, p2n−1−m ∈ P2n−1−m.

Since h(xn,k) = 0 for k = 1, . . . , n (interpolation property), and since the numerator
of Pn,~am+1

is a nonzero constant times the nodal polynomial (x− xn,1) · · · (x− xn,n),
we can write

h(x) = Pn,~am+1
(x) · gc(x),

where

g(x) =
(1 − x/αn)pn−1−m(x)

πc
n−m(x)

, pn−1−m ∈ Pn−1−m.

Hence, g ∈ Ln−m(αn). From (3.6), together with (3.1) and (3.5), it follows that

F{h} = F{Pn,~am+1
· gc} = Rn{f}.

Finally, since the quadrature is exact for every f ∈ Rn−1,n−m (i.e., Rn{f} = 0 for
every f ∈ Rn−1,n−m), it follows that Pn,~am+1

is an m-qORF of the second kind. This
ends the proof.

4. Existence of rational Gauss-type quadrature rules. The rational Gaus-
sian quadrature rule is a special kind of PRIQ that has maximal domain of validity
Rn,n−1; hence, it is a (n + i − 1 : n − i − m,An,F)-PRIQ with i = 1 and m = 0.
It is well known that the rational Gaussian quadrature rule exists iff αn ∈ R0 and
ϕn ∈ rLn. Whenever it exists, it is unique, and the nodes can be computed by solv-
ing the GEP (2.7), while the corresponding weights can be found by means of the
corresponding eigenvectors as follows:

λF
n,k = |vn,k|2 ‖1‖2

F
, (4.1)

where vn,k denotes the first entry in the normalized eigenvector ~vn,k. See e.g. [6, Sect.
5].

From the previous two theorems we can deduce thatm-qORFs, with 1 6 m 6 n−i
and i ∈ {0, 1}, can be used to construct (n+ i− 1 : n− i−m,An,F)-PRIQs with m
nodes fixed in advance. Indeed, consider an nth PRIQ of the form

Fn{f} =

m
∑

k=1

λF
n,kf(xF

n,k) +

n
∑

k=m+1

λF
n,kf(xF

n,k), (4.2)

where the sequence of m distinct nodes Xm = {xF
n,k}m

k=1 ⊂ RAn
are fixed in advance,

and the remaining nodes and corresponding weights are chosen such that the PRIQ is

10



a (n+ i− 1 : n− i−m,An,F)-PRIQ. Then these remaining nodes and corresponding
weights can be found by means of the m-qORF Qn,~am+1

(for i = 1) or Pn,~am+1
(for

i = 0), with the coefficients ~am+1 chosen in such a way that the m-qORF has zeros
in Xm. Clearly, the existence of the (n+ i− 1 : n− i−m,An,F)-PRIQ (4.2) depends
on the sequence of poles An+i−1 and the sequence of nodes Xm (i.e., on whether the
zeros of the m-qORF are all distinct real, and the corresponding weights are positive,
for the given sequences An+i−1 and Xm).

A special kind of PRIQs with nodes fixed in advance are the rational Gauss-
Radau (m = 1) and Gauss-Lobatto (m = 2) quadrature rules. The existence of
rational Gauss-Radau quadrature rules has been studied in [6, Sect. 5] for the case
of i = 0. In this reference it has been proved that, if Pn,~a2

∈ deLn, there exist
HPD linear functionals G, for which {ϕj}n−1

j=0 forms an orthonormal system in Ln−1

with respect to the inner product 〈f , g〉
G

= G{fgc}, and poles α ∈ C0, so that
Zα

Zn
Pn,~a2

⊥G Ln−1. For this reason, whenever a (n − 1 : n − 1,An,F)-PRIQ exists,
it is a (n : n − 1, {α1, . . . , αn−1, α},G)-PRIQ (i.e., a rational Gaussian quadrature
rule) too. Consequently, its nodes can be computed by solving a modified GEP of

the form (2.7), with the coefficients a
[ϕ]
n−1 and b

[ϕ]
n−1 that appear in the last row of

the matrices Jn and Sn replaced with a
[P ]
n−1,xn,1

and b
[P ]
n−1,xn,1

(depending on the fixed

node; see [6, Sect. 3]), while the corresponding weights again can be found by means
of the corresponding eigenvectors.

The aim of this section now is to study the existence and construction of the
rational Gauss-Radau quadrature rules for i = 1, and the rational Gauss-Lobatto
quadrature rules for i = 0.

4.1. Rational Gauss-Radau quadrature rules for i = 1. Recall from Sec-
tion 3 that a necessary (but not sufficient) condition for the existence of a PRIQ is
that for every function f in the domain of validity it should hold that f c is in the
domain of validity too. Since a (n : n − 2,An,F)-PRIQ should at least be exact
for every f ∈ Rn,n−2, it follows that it should also be exact for every f ∈ Rn−2,n,
and hence, for every f ∈ Rn−2,n−2 · S{αn−1, αn}. This leaves us with the following
possible situations:

1. If {αn−1, αn} ⊂ CR, then
(a) for αn = αn−1 it follows that Rn−2,n−2 · S{αn−1, αn} = Rn−1,n−1

( = Rn,n−2 ), so that the (n : n−2,An,F)-PRIQ is a (n−1 : n−1,An,F)-
PRIQ (i.e., a rational Gauss-Radau quadrature rule with i = 0) too;

(b) for αn 6= αn−1 it follows that Rn−2,n−2 · S{αn−1, αn} = Rn,n, so that
the (n : n− 2,An,F)-PRIQ does not exist.

2. If αn−1 ∈ CR and αn ∈ R0, it follows that Rn−2,n−2 · S{αn−1, αn} = Rn,n−1

( ⊃ Rn,n−2 ), so that the (n : n−2,An,F)-PRIQ is a (n : n−1,An,F)-PRIQ
(i.e., the rational Gaussian quadrature rule) too.

3. If αn−1 ∈ R0 and αn ∈ CR, it follows that Rn−2,n−2 · S{αn−1, αn} =
Rn,n−2 · L{αn} ( ⊃ Rn,n−2 ), so that the (n : n − 2,An,F)-PRIQ is a (n :
n− 1, {α1, . . . , αn−2, αn, αn−1},F)-PRIQ (i.e., the rational Gaussian quadra-
ture rule for the case in which the last two poles are interchanged) too.

4. If {αn−1, αn} ⊂ R0, then
(a) for αn = αn−1 it follows that Rn−2,n−2 · S{αn−1, αn} = Rn−1,n−1

( = Rn,n−2 ), so that the (n : n−2,An,F)-PRIQ is a (n−1 : n−1,An,F)-
PRIQ (i.e., a rational Gauss-Radau quadrature rule with i = 0) too;

(b) for αn 6= αn−1 it follows that Rn−2,n−2 · S{αn−1, αn} = Rn,n−2.
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For the first two situations (1. and 2.), the existence of the rational Gauss-Radau
quadrature rule (with i = 1) can easily be verified by checking the existence of the
corresponding rational Gauss-Radau quadrature rule (with i = 0) or rational Gaussian
quadrature rule for the given sequence of poles An and fixed node xF

n,1. Thus, in what

follows we can restrict ourselves to the case in which αn−1 ∈ R0 and αn ∈ C{0,αn−1}.
3

We then have the following lemma.
Lemma 4.1. A 1-qORF of the first kind

Qn,~a2
(x) = a0ϕn(x) + a1ϕn−1(x) ∈ deLn

satisfies a relation of the form

Qn,~a2
(x) = E[Q]

n Zn(x)

{[

1 +
D

[Q]
n

Zn−1(x)

]

Knϕn−1(x) −
C

[Q]
n

Zc
n−2(x)

ϕn−2(x)

}

,

where Kn ∈ C0,

E[Q]
n =

a0En + a1/Zn(αn−1)

Kn
∈ C0, D[Q]

n =
a0EnDn + a1

a0En + a1/Zn(αn−1)
,

C [Q]
n =

|Kn|2 a0En

E
[Q]

n−1[a0En + a1/Zn(αn−1)]
∈ C0, and E

[Q]
n−1 = KnEn−1 ∈ C0.

Proof. From Theorem 2.1 it follows that

Qn,~a2
(x) =

a0EnZn(x)

{

[

1 +
Dn

Zn−1(x)

]

ϕn−1(x) −
1

En−1Zc
n−2(x)

ϕn−2(x)

}

+ a1ϕn−1(x),

where a0 6= 0 due to Qn,~a2
∈ Ln \ Ln−1. Setting

ϕn−1(x) =
Zn(x)

Zn(x)
ϕn−1(x) = Zn

[

1

Zn(αn−1)
+

1

Zn−1(x)

]

ϕn−1(x),

we obtain that

Qn,~a2
(x) = Zn(x)

{[

Ẽn +
D̃n

Zn−1(x)

]

ϕn−1(x) −
C̃n

Zc
n−2(x)

ϕn−2(x)

}

,

where

Ẽn = a0En +
a1

Zn(αn−1)
, D̃n = a0EnDn + a1 and C̃n =

a0En

En−1

.

Further, for Qn,~a2
= qn

πn
∈ deLn we find with ϕk = pk

πk
that

qn(αn−1) = Ẽnαn−1pn−1(αn−1) 6= 0,

3Because of the re-ordering of the last two poles in the rational Gaussian quadrature rule for the
case in which αn−1 ∈ R0 and αn ∈ CR, we will allow αn to be arbitrary complex.
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so that Ẽn 6= 0. The relation now follows by setting Ẽn = E
[Q]
n Kn (for an arbitrary

Kn ∈ C0), D̃n = D
[Q]
n E

[Q]
n Kn, and C̃n = E

[Q]
n C

[Q]
n .

As a consequence of the previous lemma and Theorem 2.2, we now can prove the
following.

Lemma 4.2. Consider a 1-qORF of the first kind

Qn,~a2
(x) = a0ϕn(x) + a1ϕn−1(x) =

qn(x)

πn(x)
∈ deLn.

Let α ∈ C0 be chosen in such a way that qn(α) 6= 0 and

T{α} = k ·
(

Im{a1En/a0} + T{αn}
)

for some k ∈ R
+
0 . Then there exist HPD linear functionals G, for which {ϕj}n−2

j=0

forms an orthonormal system in Ln−2 and ϕn−1 ⊥G Ln−2 with respect to the inner

product defined by 〈f , g〉
G

= G{fgc}, so that Zα

Zn
Qn,~a2

∈ deL[α]
n and Zα

Zn
Qn,~a2

⊥G Ln−1

iff χ
[Q]
n := a1

a0En

(

1
αn−1

− 1
αn

)

∈ (−1,∞).

Proof. Since αn−1 ∈ R0, it follows from assumptions (A4)–(A5) in Theorem 2.2
that for every Kn ∈ C0, there exist HPD linear functionals G̃ so that Knϕn−1 is a
nORF in deLn−1 with respect to the inner product defined by 〈f , g〉

G̃
= G̃{fgc}. So,

let ϕ
[α]
n be given by

ϕ[α]
n =

E
[α]
n

E
[Q]
n

Zα(x)

Zn(x)
Qn,~a2

(x) =

E[α]
n Zα(x)

{[

1 +
D

[Q]
n

Zn−1(x)

]

Knϕn−1(x) −
C

[Q]
n

Zc
n−2(x)

ϕn−2(x)

}

,

where E
[α]
n ∈ C0. Then it holds that ϕ

[α]
n satisfies assumptions (A1)–(A4) in Theo-

rem 2.2. From assumption (A6) it now follows thatC
[Q]
n should be equal to (KnEn−1)

−1.

From the previous lemma we deduce that this can only be for |Kn|2 = 1+χ
[Q]
n , which

implies that χ
[Q]
n should be in (−1,∞). Finally, we have that

Im{D[Q]
n } =

Im{Dn} + Im
{

a1

a0En

}

1 + χ
[Q]
n

=
Im{a1En/a0} + T{αn}

(1 + χ
[Q]
n ) |En|2

− T{αn−2}
∣

∣

∣E
[Q]
n−1

∣

∣

∣

2 =

T{α}
k(1 + χ

[Q]
n ) |En|2

− T{αn−2}
∣

∣

∣
E

[Q]
n−1

∣

∣

∣

2 ,

where the second equality follows from assumption (A5) applied onDn. Consequently,

assumption (A5) in Theorem 2.2 is satisfied too for every E
[α]
n ∈ C0 if T{α} = 0,

respectively for
∣

∣

∣E
[α]
n

∣

∣

∣

2

= k(1 + χ
[Q]
n ) |En|2 ∈ R

+
0 if T{α} 6= 0.

The previous lemma now allows us to prove our first main result.
Theorem 4.3. Consider a quadrature formula of the form

Fn{f} = λF
n,1f(xF

n,1) +
n
∑

k=2

λF
n,kf(xF

n,k), (4.3)
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with fixed node in xF
n,1 ∈ RAn

. Further, suppose that the nodes {xF
n,k}n

k=1 are zeros
of the 1-qORF of the first kind:

Qn,~a2
(x) = a0ϕn(x)+a1ϕn−1(x), A

[Q]
n,1 :=

a1

a0
= −

[

ϕn(x)

ϕn−1(x)

]

x=xF
n,1

(

= A
[Q]
n,1(x

F
n,1)

)

,

and let the corresponding weights be given by (3.3). Then (4.3) is a rational Gauss-
Radau quadrature rule with Rn{f} = F{f} − Fn{f} = 0 for (at least) every f ∈
Rn,n−2 iff the following conditions are satisfied:

1. A
[Q]
n,1 ∈ C and A

[Q]
n,1 6= −EnZn(αn−1);

2. χ
[Q]
n ∈ (−1,∞), where χ

[Q]
n is defined as before in Lemma 4.2;

3. Im{A[Q]
n,1En} = −T{αn};

4.

A
[Q]
n,1 6= −

[

ϕn(x)

ϕn−1(x)

]

x=α̃

for every α̃ ∈
[

(An−2 ∪ {∞}) ∩ R{αn−1,αn}

]

.

If αn ∈ R0, then the third condition is automatically satisfied when the second con-
dition is satisfied. On the other hand, if αn /∈ R, then the first three conditions are
satisfied iff

A
[Q]
n,1 =

1

En

(

1

αn−1
− 1

αn

)

∈ C0.

Proof. First, note that Qn,~a2
∈ deLn iff the first condition is satisfied. Next, from

Lemma 4.2 it follows that there exist poles α ∈ C0, constants {kn−1, kn} ⊂ C0, and
HPD linear functionals G so that the sequence of rational functions {ϕ0, . . . , ϕn−2,

kn−1ϕn−1, kn
Zα

Zn
Qn,~a2

}, with Zα

Zn
Qn,~a2

∈ deL[α]
n , forms an orthonormal system in L[α]

n

with respect to the inner product defined by 〈f , g〉
G

= G{fgc} iff the second con-
dition is satisfied. The third condition then follows from the expression for T{α} in
Lemma 4.2 and the fact that the nodes of an (n)ORF are all real and distinct iff the
last pole is in R0 (i.e, iff T{α} = 0). Finally, we have that Qn,~a2

∈ rLn iff the last
condition is satisfied too.

Thus, the conditions given in the statement ensure the existence of the rational
Gaussian quadrature formula

Gn{f} :=
n
∑

k=1

λG
n,kf(xG

n,k),

where xG
n,k = xF

n,k for k = 1, . . . , n, and (G{f} − Gn{f}) = 0 for every f ∈ L[α]
n ·Lc

n−1.
Furthermore, because

G{f} = F{f} for every f ∈ Rn−1,n−2,

it follows that

F{f} = Gn{f} for every f ∈ Rn−1,n−2 ⊇ Ln−1. (4.4)

Due to the uniqueness of a (n− 1, 0,An,F)-PRIQ with n fixed nodes, it follows that

λF
n,k = λG

n,k ∈ R
+
0 , k = 1, . . . , n.
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Moreover, from the proof of Theorem 3.5 we deduce that the equality in (4.4) holds
for every f ∈ Rn,n−2 due to the fact that the nodes are zeros of a 1-qORF of the first
kind.

Suppose now that αn ∈ R0. From the second condition it then follows that

Im{χ[Q]
n } = 0 ⇔ Im{a1En/a0}

1

|En|2
(

1

αn−1
− 1

αn

)

= 0.

Since we assumed that αn 6= αn−1, this implies that

Im{a1En/a0} = 0 = −T{αn}.

On the other hand, for αn /∈ R, it follows from the second and third condition that

{

Im{a1En/a0} (1/αn−1 −Re{1/αn}) −Re{a1En/a0}Im{1/αn} = 0
Im{a1En/a0} = Im{1/αn} 6= 0

⇔
{

Im{a1En/a0}
(

1/αn−1 −Re{1/αn} −Re{a1En/a0}
)

= 0
Im{a1En/a0} = Im{1/αn} 6= 0

⇔
{

Re{a1En/a0} = 1/αn−1 −Re{1/αn}
Im{a1En/a0} = Im{1/αn} 6= 0

⇔ a1En

a0
=

1

αn−1
− 1

αn
.

As a result, χ
[Q]
n =

A
[Q]
n,1

EnZn(αn−1)
= |EnZn(αn−1)|−2 ∈ R

+
0 .

Finally, suppose (4.3) is a rational Gauss-Radau quadrature with Rn{f} = 0 for
(at least) every f ∈ Rn,n−2, while the second condition is not satisfied. We then have
that

λF
n,1

∣

∣

∣ϕn−1(x
F
n,1)
∣

∣

∣

2

+

n
∑

k=2

λF
n,k

∣

∣

∣ϕn−1(x
F
n,k)

∣

∣

∣

2

= |kn−1|−2
> 0.

Consider now a rational function ϕ
[αn−1]
n ∈ deLn, defined by

ϕ[αn−1]
n (x) =

E[αn−1]
n Zn−1(x)

{[

1 +
D

[αn−1]
n

Zn−1(x)

]

kn−1ϕn−1(x) −
1

kn−1En−1Zc
k−2(x)

ϕn−2(x)

}

,

where E
[αn−1]
n ∈ C0 and Im{D[αn−1]

n } = − T{αn−2}

|kn−1En−1|
2 . From Theorem 2.2 it then

follows that there exist HPD linear functionals G̃ so that the sequence of rational

functions {ϕ0, . . . , ϕn−2, kn−1ϕn−1, ϕ
[αn−1]
n } forms an orthonormal system in L[αn−1]

n

with respect to the inner product defined by 〈f , g〉
G̃

= G̃{fgc}. Moreover, the quadra-

ture rule (4.3) is then a (n− 1, n− 1, {α1, . . . , αn−1, αn−1}, G̃)-PRIQ. Since assump-
tion (3.2) is satisfied, it follows from Theorem 3.6 that the nodes {xF

n,k}n
k=1 are zeros

of a 1-qORF of the second kind of the form

Pn,~b2
(x) = b0ϕ

[αn−1]
n (x) + b1

Zn−1(x)

Zc
n−1(x)

ϕn−1(x) ∈ rL[αn−1]
n ,

with Zn(x)
Zn−1(x)Pn,~b2

(x) ≡ Qn,~a2
(x). In [6, Thm. 7] it has been proved then that there

exists poles α̃ ∈ R0 so that for every kn ∈ C0, the sequence of rational functions
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{ϕ0, . . . , ϕn−2, kn−1ϕn−1, kn
Zα̂

Zn−1
Pn,~b2

} forms an orthonormal system in L[α̂]
n with re-

spect to inner products defined by certain HPD linear functionals Ĝ on L · Lc. But
this is in contradiction with Lemma 4.2 and our assumption that the second condition
is not satisfied. This concludes the proof.

4.2. Rational Gauss-Lobatto quadrature rules for i = 0. In a similar way
as above, we can now study the existence of rational Gauss-Lobatto quadrature rules
for i = 0. Since a (n − 1 : n − 2,An,F)-PRIQ should at least be exact for every
f ∈ Rn−1,n−2, it follows that it should also be exact for every f ∈ Rn−2,n−1, and
hence, for every f ∈ Rn−2,n−2 · S{αn−1}. This leaves us with the following possible
situations:

1. If αn−1 /∈ R, it follows that Rn−2,n−2 · S{αn−1} = Rn−1,n−1 ( ⊃ Rn,n−2 ),
so that the (n− 1 : n− 2,An,F)-PRIQ is a (n− 1 : n− 1,An,F)-PRIQ (i.e.,
a rational Gauss-Radau quadrature rule with i = 0) too.

2. If αn−1 ∈ R0, it follows that Rn−2,n−2 · S{αn−1} = Rn−1,n−2.
For the first situation, the existence of the rational Gauss-Lobatto quadrature rule
(with i = 0) can easily be verified by checking the existence of the corresponding
rational Gauss-Radau quadrature rule (with i = 0) for the given sequence of poles An

and fixed nodes X2 = {xF
n,1, x

F
n,2}. Thus, in what follows we can restrict ourselves to

the case in which αn−1 ∈ R0. We then have the following lemma.
Lemma 4.4. A 2-qORF of the second kind

Pn,~a3
(x) = a0ϕn(x) + a1

Zn(x)

Zc
n−1(x)

ϕn−1(x) + a2
Zn(x)

Zc
n−2(x)

ϕn−2(x) ∈ deLn,

with αn−1 ∈ R0 (hence, Zc
n−1(x) ≡ Zn−1(x)), satisfies a relation of the form

Pn,~a3
(x) = E[P ]

n Zn(x)

{[

1 +
D

[P ]
n

Zn−1(x)

]

Knϕn−1(x) −
C

[P ]
n

Zc
n−2(x)

ϕn−2(x)

}

, (4.5)

where Kn ∈ C0,

E[P ]
n =

a0En

Kn
∈ C0, D[P ]

n = Dn +
a1

a0En
,

C [P ]
n =

|Kn|2

E
[P ]

n−1

(

1 − a2En−1

a0En

)

∈ C, and E
[P ]
n−1 = KnEn−1 ∈ C0.

Proof. (The proof is similar to the proof of Lemma 4.1.) From Theorem 2.1 it
follows that

Pn,~a3
(x) = a0EnZn(x)

{

[

1 +
Dn

Zn−1(x)

]

ϕn−1(x) −
1

En−1Zc
n−2(x)

ϕn−2(x)

}

+

a1
Zn(x)

Zn−1(x)
ϕn−1(x) + a2

Zn(x)

Zc
n−2(x)

ϕn−2(x) =

Zn(x)

{[

Ẽn +
D̃n

Zn−1(x)

]

ϕn−1(x) −
C̃n

Zc
n−2(x)

ϕn−2(x)

}

,

where

Ẽn = a0En, D̃n = a0EnDn + a1 and C̃n =
a0En

En−1

− a2.
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Further, for Pn,~a3
= qn

πn
∈ deLn we find with ϕk = pk

πk
that

qn(αn−1) = Ẽnαn−1pn−1(αn−1) 6= 0,

so that Ẽn 6= 0. The relation now follows by setting Ẽn = E
[P ]
n Kn (for an arbitrary

Kn ∈ C0), D̃n = D
[P ]
n E

[P ]
n Kn, and C̃n = E

[P ]
n C

[P ]
n .

As a consequence of the previous lemma and Theorem 2.2, we now can prove the
following.

Lemma 4.5. Consider a 2-qORF of the second kind

Pn,~a3
(x) = a0ϕn(x) + a1

Zn(x)

Zc
n−1(x)

ϕn−1(x) + a2
Zn(x)

Zc
n−2(x)

ϕn−2(x) =
qn(x)

πn(x)
∈ deLn.

Let α ∈ C0 be chosen in such a way that qn(α) 6= 0 and

T{α} = k ·
(

Im
{

a1En

a0

}

+ T{αn} −Re
{

a2En

a0En−1

}

T{αn−2}
)

for some k ∈ R
+
0 . Then there exist HPD linear functionals G, for which {ϕj}n−2

j=0

forms an orthonormal system in Ln−2 and ϕn−1 ⊥G Ln−2 with respect to the inner

product defined by 〈f , g〉
G

= G{fgc}, so that Zα

Zn
Pn,~a3

∈ deL[α]
n and Zα

Zn
Pn,~a3

⊥G Ln−1

iff χ
[P ]
n := a2En−1

a0En
∈ (−∞, 1).

Proof. (The proof is similar to the proof of Lemma 4.2.) Since αn−1 ∈ R0, it
follows from assumptions (A4)–(A5) in Theorem 2.2 that for every Kn ∈ C0, there
exist HPD linear functionals G̃ so that Knϕn−1 is a nORF in deLn−1 with respect to

the inner product defined by 〈f , g〉
G̃

= G̃{fgc}. So, let ϕ
[α]
n be given by

ϕ[α]
n =

E
[α]
n

E
[P ]
n

Zα(x)

Zn(x)
Pn,~a3

(x) =

E[α]
n Zα(x)

{[

1 +
D

[P ]
n

Zn−1(x)

]

Knϕn−1(x) −
C

[P ]
n

Zc
n−2(x)

ϕn−2(x)

}

,

where E
[α]
n ∈ C0. Then it holds that ϕ

[α]
n satisfies assumptions (A1)–(A4) in Theo-

rem 2.2. From assumption (A6) it now follows thatC
[P ]
n should be equal to (KnEn−1)

−1.

From the previous lemma we deduce that this can only be for |Kn|−2
= 1−χ[P ]

n , which

implies that χ
[P ]
n should be in (−∞, 1). Finally, we have that

Im{D[P ]
n } = Im{Dn} + Im

{

a1

a0En

}

= Im
{

a1

a0En

}

+
T{αn}
|En|2

− T{αn−2}
|En−1|2

=

Im
{

a1En

a0

}

+ T{αn}

|En|2
− χ[P ]

n

T{αn−2}
|En−1|2

− T{αn−2}
∣

∣

∣E
[P ]
n−1

∣

∣

∣

2 =

Im
{

a1En

a0

}

+ T{αn} −
∣

∣

∣

En

En−1

∣

∣

∣

2

χ
[P ]
n T{αn−2}

|En|2
− T{αn−2}
∣

∣

∣E
[P ]
n−1

∣

∣

∣

2 =
T{α}
k |En|2

− T{αn−2}
∣

∣

∣E
[P ]
n−1

∣

∣

∣

2 ,
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where the second equality follows from assumption (A5) applied on Dn, and the last
equality is due to

∣

∣

∣

∣

En

En−1

∣

∣

∣

∣

2

χ[P ]
n =

a2En

a0En−1
∈ R.

Consequently, assumption (A5) in Theorem 2.2 is satisfied too for every E
[α]
n ∈ C0 if

T{α} = 0, respectively for
∣

∣

∣E
[α]
n

∣

∣

∣

2

= k |En|2 ∈ R
+
0 if T{α} 6= 0.

Before we can prove our second main result, we need the following lemma.
Lemma 4.6. Suppose the nORFs ϕk ∈ deLk, k = 1, . . . , n. Then the nORFs ϕn

and ϕn−1 have no common zeros.
Proof. Set ϕk = pk

πk
. From Theorem 2.1 it then follows that there exist polyno-

mials q
(k)
1 ∈ P1 and constants q

(k)
0 ∈ C0 so that

pk(x) = q
(k)
1 (x)pk−1(x) + q

(k)
0 (1 − x/αk−1)(1 − x/αk−2)pk−2(x), k = 2, . . . , n.

So, let k = n and suppose that pk−1(α) = pk(α) = 0 for α ∈ C (recall that ‘pk(∞) = 0’
means that ‘pk ∈ Pk−1’). Since ϕk ∈ eLk and ϕk−1 ∈ dLk−1, it follows that α 6= αk−1

and α 6= αk−2, and hence, that pk−2(α) = pk−1(α) = 0. Thus, continuing for k =
n − 1, . . . , 2, we find that α /∈ {αk−1, αk−2}n

k=2, and that p0(α) = p1(α) = 0. This,
however, contradicts the fact that ϕ0 ≡ p0 ∈ C0.

Finally, we are able to prove the following.
Theorem 4.7. Consider a quadrature formula of the form

Fn{f} = λF
n,1f(xF

n,1) + λF
n,2f(xF

n,2) +

n
∑

k=3

λF
n,kf(xF

n,k), (4.6)

with fixed distinct nodes in {xF
n,1, x

F
n,2} ∈ RAn

. Further, let the functions a(x̃) and
b(x̃) be defined by

a(x̃) =

[

Zn−1(x)

Zn(x)

]

x=x̃

·
[

ϕn(x)

ϕn−1(x)

]

x=x̃

and b(x̃) =

[

Zn−1(x)

Zc
n−2(x)

]

x=x̃

·
[

ϕn−2(x)

ϕn−1(x)

]

x=x̃

.

Suppose the nodes {xF
n,k}n

k=1 are zeros of the 2-qORF of the second kind:

Pn,~a3
(x) = a0ϕn(x)+a1

Zn(x)

Zn−1(x)
ϕn−1(x)+a2

Zn(x)

Zc
n−2(x)

ϕn−2(x)
(

Zn−1(x) ≡ Zc
n−1(x)

)

,

with

A
[P ]
n,1 :=

a1

a0
=
a(xF

n,1)b(x
F
n,2) − a(xF

n,2)b(x
F
n,1)

b(xF
n,1) − b(xF

n,2)

(

= A
[P ]
n,1(x

F
n,1, x

F
n,2)

)

and

A
[P ]
n,2 :=

a2

a0
=
a(xF

n,2) − a(xF
n,1)

b(xF
n,1) − b(xF

n,2)

(

= A
[P ]
n,2(x

F
n,1, x

F
n,2)

)

,

and let the corresponding weights be given by (3.5). Then (4.6) is a rational Gauss-
Lobatto quadrature rule with Rn{f} = F{f} − Fn{f} = 0 for (at least) every f ∈
Rn−1,n−2 iff the following conditions are satisfied:
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1.
{

b(xF
n,1), b(x

F
n,2)
}

⊂ C, and b(xF
n,1) − b(xF

n,2) 6= 0;

2.

En−1[Zn−1(αn) +Dn +A
[P ]
n,1/En]

1 − χ
[P ]
n

6= b(αn) if αn 6= αn−1 and αn ∈ R0,

where χ
[P ]
n is defined as before in Lemma 4.5;

3. χ
[P ]
n ∈ (−∞, 1);

4. Im{A[P ]
n,1En} −A

[P ]
n,2

En

En−1
T{αn−2} = −T{αn};

5. a(α̃) +A
[P ]
n,1 +A

[P ]
n,2b(α̃) 6= 0 for every α̃ ∈

[

(An−2 ∪ {∞}) ∩ R{αn−1,αn}

]

.

Proof. First, note that Pn,~a3
/∈ deLn if a0 = 0. Hence, we may assume that

a0 6= 0 so that the coefficients A
[P ]
n,1 and A

[P ]
n,2 are well defined. We then have that xF

n,j ,
j = 1, 2, are zeros of Pn,~a3

iff

ϕn(xF
n,j) +A

[P ]
n,1

Zn(xF
n,j)

Zn−1(x
F
n,j)

ϕn−1(x
F
n,j) +A

[P ]
n,2

Zn(xF
n,j)

Zc
n−2(x

F
n,j)

ϕn−2(x
F
n,j) = 0, j = 1, 2.

(4.7)
Suppose now that the jth node is a zero of ϕn−1. From (4.5) it then follows that

0 = C [P ]
n

Zn(xF
n,j)

Zc
n−2(x

F
n,j)

ϕn−2(x
F
n,j).

Due to the previous lemma, a zero of ϕn−1 cannot be a zero of ϕn−2, so that C
[P ]
n = 0.

As a result, the third condition is not satisfied. For this reason, the first part of the

first condition ensures that none of the nodes are zeros of ϕn−1, and that χ
[P ]
n 6= 1. The

expressions for A
[P ]
n,1 and A

[P ]
n,2 then follow by dividing the left-hand side in (4.7) with

Zn(xF

n,j)

Zn−1(x
F

n,j)
ϕn−1(x

F
n,j), and solving for A

[P ]
n,1 and A

[P ]
n,2. Further, for b(xF

n,1) = b(xF
n,2) it

holds that

a(xF
n,1) − a(xF

n,2) = En

[

Zn−1(x
F
n,1) − Zn−1(x

F
n,2)
]

6= 0,

so that a0 6= 0 iff the second part of the first condition is satisfied.

Next, for αn 6= αn−1 we deduce from (4.5) that Pn,~a3
∈ Ln \ Ln−1 (and hence,

in deLn due to a0 6= 0) iff the second condition is satisfied. Note that b(αn) is well

defined. Indeed, since ϕn−1 ∈ deLn−1, it follows that
[

ϕn−2(x)
ϕn−1(x)

]

x=αn

is finite whenever

αn = αn−2. Similar as in the proof of Theorem 4.3, we then have that

1. conditions 3–5 ensure the existence of a rational Gaussian quadrature formula
Gn{f} so that F{f} = G{f} = Gn{f} for every f ∈ Rn−1,n−2, and hence,

xF
n,k = xG

n,k and λF
n,k = λG

n,k ∈ R
+
0 for k = 1, . . . , n;

2. supposing the rational Gauss-Lobatto quadrature exists, while the fixed nodes
are zeros of a 2-qORF of the second kind that does not satisfy the third
condition, leads to a contradiction.

Finally, note that we only need to verify the second condition if αn ∈ R0, because
conditions 3 and 4 ensure that all the zeros are real. This ends the proof.
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4.3. Construction of rational Gauss-type quadrature rules. In the previ-
ous subsections, we related the rational Gauss-Radau and Gauss-Lobatto quadrature
rules (for respectively i = 1 and i = 0) with certain rational Gaussian quadrature
rules by means of the Lemmas 4.2 and 4.5 respectively. Supposing the quadrature
rule exists for a given (set of) node(s), the aim of this subsection is then to investi-
gate the construction of the quadrature rule (i.e., the computation of the nodes and
weights in the quadrature formula). For this, let X be fixed to either Q or P , and
suppose that the matrices Jn, Dn, In and Sn, are defined as above in Theorem 2.3.

Further, let χ
[Q]
n , χ

[P ]
n , A

[Q]
n,1 and A

[P ]
n,1, be defined as before in Lemmas 4.2 and 4.5,

and Theorems 4.3 and 4.7, and set

c
[X]
n−2 =

c
[ϕ]
n−2

ηK
[X]
n

, a
[X]
n−1 = c

[X]
n−2, and b

[X]
n−1 =

(

b
[ϕ]
n−1 −A

[X]
n,1c

[ϕ]
n−1

)

/L[X]
n , (4.8)

where |η| = 1,

K [X]
n =







√

1 + χ
[Q]
n , X = Q

1/

√

1 − χ
[P ]
n , X = P

and L[X]
n =

{

1 + χ
[Q]
n , X = Q

1, X = P.

With this we can define the modified matrices

J[X]
n =







Jn−1

~0n−2

c
[X]
n−2

~0 T
n−2 a

[X]
n−1 b

[X]
n−1






, S[X]

n =

(

Sn−1
~0n−2

~0 T
n−2

a
[X]
n−1

Zc
n−2(αn−2)

0

)

,

and

B[X]
n = J[X]

n Dn + In − S[X]
n , where ~0n−2 = ( 0 . . . 0 )T ∈ C

n−2,

and modified column vector

~ϕ[X]
n (x) =

(

ϕ0(x) ϕ1(x) . . . K
[X]
n ϕn−1(x)

)T

.

We then have the following theorem for the construction of the rational Gauss-Radau
and Gauss-Lobatto quadrature rules from the previous subsections.

Theorem 4.8. Given the notation introduced above, the nodes {xF
n,k} in the

rational Gauss-Radau quadrature rule (4.3) (X = Q), respectively in the rational
Gauss-Lobatto quadrature rule (4.6) (X = P ), are eigenvalues of the GEP

J[X]
n ~v

[X]
n,k = xF

n,kB
[X]
n ~v

[X]
n,k , (4.9)

with

~v
[X]
n,k = η[X]

n







n−2
∑

j=0

∣

∣

∣ϕj(x
F
n,k)

∣

∣

∣

2

+
[

K [X]
n

]2

·
∣

∣

∣ϕn−1(x
F
n,k)

∣

∣

∣

2







−1/2

~ϕ[X]
n (xF

n,k),
∣

∣

∣η[X]
n

∣

∣

∣ = 1,

the corresponding normalized eigenvector. The corresponding weights satisfy

λF
n,k =

∣

∣

∣v
[X]
n,k

∣

∣

∣

2

‖1‖2
F ,

where v
[X]
n,k denotes the first entry in ~v

[X]
n,k .

Proof. The statement directly follows from Lemmas 4.1 and 4.2 for X = Q (re-
spectively from Lemmas 4.4 and 4.5 for X = P ), together with (4.1) and Theorem 2.1.
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5. Numerical examples. In the numerical examples that follow, we construct
rational Gauss-type quadrature formulas for the approximation of

F{f} = Jw(f) :=

∫

I

f(x)w(x)dx,

where I = [−1, 1] and w(x) is the Chebyshev weight function of the first kind w(x) =
1/

√
1 − x2.
Let x = J(z) denote the Joukowski Transformation x = 1

2 (z + z−1), which maps

the open unit disc D = {z ∈ C : |z| < 1} onto the cut Riemann sphere CI and
the unit circle T = {z ∈ C : |z| = 1} onto the interval I. The inverse mapping is
denoted by z = J inv(x) and is chosen so that z ∈ D if x ∈ CI . Further, with the
sequence A = {α1, α2, . . .} ⊂ CI we associate a sequence B = {β1, β2, . . .} ⊂ D, so
that βk = J inv(αk). The so-called Chebyshev nORFs (with respect to the Chebyshev
weight function w(x) and inner product 〈f , g〉w = Jw(fgc)), with arbitrary complex
poles outside I, are then given by (see [8])

ϕ0(x) ≡
1√
π
, ϕk(x) =

√

1 − |βk|2
2π

(

zBc
k−1(z)

1 − βkz
+

1

(z − βk)Bk−1(z)

)

, k > 1, (5.1)

where

B0(z) ≡ 1, Bk(z) =

k
∏

j=1

z − βj

1 − βjz
, k > 1.

These nORFs are regular and satisfy the three-term recurrence relation (2.4) with
coefficients (see [16, Sect. 4] and [19, Thm. 3.5])

Ek =
2

√

(1 − |βk|2)(1 − |βk−1|2)(1 − βkβk−1)

(1 + β2
k)(1 + β2

k−1)
, k > 1,

and

Dk = −
1 + β2

k−1

2(1 − |βk−1|2)
×

(1 − |βk−1|2)(βk + βk−2) + 2Re{βk−1}(1 − βkβk−2)

(1 − βkβk−1)(1 − βk−1βk−2)
, k > 1,

were we put by convention β0 = J inv(α0) = 0. For k = 1, the coefficients are given
by

E1 =

√

2(1 − |β1|2)
1 + β2

1

and D1 = −β1.

Unless stated differently, the computations in the examples were done in double
precision using MATLABr 7. 4

4MATLAB is a registered trademark of The MathWorks, Inc.
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Example 5.1. For the first example, we consider the sequence of poles A1 =
{−α, α,−α, α, . . .} ⊂ RI , with α > 1. We then numerically approximate

Jw(ϕkϕ
c
l ) = δk,l, n− 2 6 k 6 n, n− 2 6 l < n,

where the ϕk’s are the Chebyshev nORFs (5.1) with poles in A1, by means of an nth
rational Gauss-Radau quadrature formula

Jn(ϕkϕ
c
l ) = λn,1ϕk(xn,1)ϕ

c
l (xn,1) +

n
∑

j=2

λn,jϕk(xn,j)ϕ
c
l (xn,j)

with fixed node in xn,1 = 1 or xn,1 = −1. Thus, for n > 1 we have with β = J inv(α) ∈
(0, 1) that

A
[Q]
n,1(−1) = −1/A

[Q]
n,1(1) =

{

1+β
1−β , n = odd
1−β
1+β , n = even.

Further, the coefficients (2.5) are given by

c
[ϕ]
0 = a

[ϕ]
1 =

1 + β2

√

2(1 − β2)
, c

[ϕ]
k−1 = a

[ϕ]
k =

1 + β2

2(1 − β2)
, k > 1,

and

b
[ϕ]
0 = −β, b

[ϕ]
1 = −β(1 + β2)

2(1 − β2)
, b

[ϕ]
k = 0, k > 1.

Thus, we have that A
[Q]
n,1(±1) ∈ C, while

χ[Q]
n (1) =

{

− 2β
(1+β)2 , n = odd
2β

(1−β)2 , n = even
and χ[Q]

n (−1) =

{

2β
(1−β)2 , n = odd

− 2β
(1+β)2 , n = even,

so that the four conditions in Theorem 4.3 are all satisfied. Hence, these rational
Gauss-Radau quadrature rules exist, and we can use Theorem 4.8 to compute their
nodes and weights. Tables 5.1 and 5.2 then show the absolute error of the approxi-
mation for several values of n and α. To get an idea of the accuracy of the computed
nodes and weights, we included the absolute error ǫn(|ϕ0|2) of the approximation of

Jw(|ϕ0|2) = 1 too, as well as the difference in absolute value between the fixed node xn,1

and the nearest computed node x
[comp]
n,j . The numerical results clearly show that the

quadrature rules are exact for every f ∈ Rn,n−2, but not for f ∈ Rn−1,n−1\Rn−1,n−2.
Example 5.2. For the second and last example, we consider the function

f(x) =
1

π
sin

{

1

(x2 − J(β)2)(x2 − J(iβ)2)

}

, β ∈ (0, 1), (5.2)

which is analogous to the one in Example 5.4 from [19]. This function has essential
singularities in x = J(ijβ), j = 0, . . . , 3. For β very close to one, this function is
extremely oscillating near the center and near the endpoints of the interval I. Since
an essential singularity can be viewed as a pole of infinity multiplicity, this suggests
taking

A2 = {αk = J(ik−1β), k = 1, 2, . . . }.
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Table 5.1

Absoloute error in the rational Gauss-Radau quadrature formulas with fixed node in 1 for the

estimation of Jw(ϕkϕc
l
).

α n (k, l) error ǫn(|ϕ0|2) min16j6n

{∣

∣

∣x
[comp]
n,j − 1

∣

∣

∣

}

2 8 (6, 6) 3.1107e− 015 1.1102e− 015 4.4409e− 016
(7, 6) 6.7671e− 016
(8, 6) 3.7793e− 015
(7, 7) 5.0000e− 001

32 (30, 30) 6.5060e− 014 2.2204e− 016 6.6613e− 016
(31, 30) 3.4982e− 014
(32, 30) 6.9833e− 014
(31, 31) 5.0000e− 001

128 (126, 126) 8.6710e− 014 8.6597e− 015 2.2204e− 016
(127, 126) 2.4629e− 013
(128, 126) 1.6776e− 013
(127, 127) 5.0000e− 001

1.1 8 (6, 6) 2.8869e− 015 6.6613e− 016 3.3307e− 016
(7, 6) 5.9539e− 015
(8, 6) 2.9089e− 014
(7, 7) 9.0909e− 001

32 (30, 30) 2.5824e− 013 5.3291e− 015 4.4409e− 016
(31, 30) 4.6078e− 014
(32, 30) 3.0015e− 013
(31, 31) 9.0909e− 001

128 (126, 126) 5.8576e− 013 6.2728e− 014 4.4409e− 016
(127, 126) 5.0504e− 016
(128, 126) 7.8601e− 013
(127, 127) 9.0909e− 001

1.001 8 (6, 6) 2.6725e− 012 8.9040e− 014 8.8818e− 016
(7, 6) 6.9373e− 014
(8, 6) 3.7845e− 012
(7, 7) 9.9900e− 001

32 (30, 30) 1.9464e− 011 1.8097e− 013 4.4409e− 016
(31, 30) 3.3857e− 013
(32, 30) 2.2508e− 011
(31, 31) 9.9900e− 001

128 (126, 126) 5.3282e− 010 5.8442e− 013 2.2204e− 015
(127, 126) 1.1467e− 011
(128, 126) 5.2787e− 010
(127, 127) 9.9900e− 001

We then numerical approximate Jw(f) by means of an nth rational Gauss-type (Gaus-
sian, Gauss-Radau and/or Gauss-Lobatto) quadrature rule Jn(f).

Note that the rational Gaussian quadrature rule only exists for n odd, while the
rational Gauss-Radau and Gauss-Lobatto quadrature rules can only exist for n even.
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Table 5.2

Absoloute error in the rational Gauss-Radau quadrature formulas with fixed node in −1 for the

estimation of Jw(ϕkϕc
l
).

α n (k, l) error ǫn(|ϕ0|2) min16j6n

{∣

∣

∣x
[comp]
n,j + 1

∣

∣

∣

}

2 7 (5, 5) 2.1101e− 015 6.6613e− 016 4.4409e− 016
(6, 5) 6.9117e− 015
(7, 5) 9.2753e− 015
(6, 6) 5.0000e− 001

31 (29, 29) 7.5829e− 014 3.7748e− 015 4.4409e− 016
(30, 29) 3.8533e− 014
(31, 29) 6.8099e− 014
(30, 30) 5.0000e− 001

127 (125, 125) 3.2041e− 013 5.5511e− 015 6.6613e− 016
(126, 125) 7.0064e− 014
(127, 125) 3.1795e− 013
(126, 126) 5.0000e− 001

1.1 7 (5, 5) 1.8874e− 014 3.9968e− 015 2.2204e− 016
(6, 5) 7.4455e− 015
(7, 5) 1.0161e− 014
(6, 6) 9.0909e− 001

31 (29, 29) 4.8961e− 013 2.4425e− 015 8.8818e− 016
(30, 29) 1.2114e− 013
(31, 29) 5.6687e− 013
(30, 30) 9.0909e− 001

127 (125, 125) 1.4577e− 012 7.9492e− 014 8.8818e− 016
(126, 125) 2.8959e− 013
(127, 125) 1.6543e− 012
(126, 126) 9.0909e− 001

1.001 7 (5, 5) 5.5702e− 012 6.8834e− 014 2.2204e− 016
(6, 5) 1.3406e− 013
(7, 5) 4.2642e− 012
(6, 6) 9.9900e− 001

31 (29, 29) 3.0297e− 011 1.1113e− 013 1.1102e− 016
(30, 29) 6.5270e− 013
(31, 29) 2.2020e− 011
(30, 30) 9.9900e− 001

127 (125, 125) 3.4639e− 010 8.6042e− 013 1.5543e− 015
(126, 125) 8.8512e− 012
(127, 125) 3.5332e− 010
(126, 126) 9.9900e− 001

The coefficients (2.5) are now given by

c
[ϕ]
k−1 = a

[ϕ]
k =







1+β2√
2(1−β2)

, k = 1

1+β2

2(1−(−1)kiβ2)
, k > 1,
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and

b
[ϕ]
k−1 =



















β, k = 1
β(1+β2)[2+i(1−β2)]

2(1−β2)(1−iβ2) , k = 2

0, k = 2m+ 1

(−1)m β(1+β2)[(1+β2)+i(1−β2))]
(1−β2)(1−iβ2)2 , k = 2m+ 2,

m = 1, 2, . . . .

Further, since the last pole is complex for n even, the nth rational Gauss-Radau
quadrature rule is unique (it is the nth rational Gaussian quadrature rule with the
last two poles interchanged), so that (see Theorem 4.3),

A
[Q]
2m,1 = −(−1)mβ[(1 − β2) + i(1 + β2)]

(1 + iβ2)(1 − β2)
and χ

[Q]
2m =

2β2

(1 − β2)2
, m = 1, 2, . . . .

For the nth rational Gauss-Lobatto quadrature rule, with n = 2m > 4, we consider
the case of fixed nodes in xn,1 = −xn,2 = 1. We then have that

A
[P ]
2m,1(1,−1) = 0, A

[P ]
2m,2(1,−1) = −1, and χ

[P ]
2m(1,−1) = −1, m = 2, 3, . . . .

It can be verified that the coefficients A
[P ]
2m,j(1,−1), j = 1, 2, satisfy the five conditions

in Theorem 4.7, so that these rational Gauss-Lobatto quadrature rules exist. Thus, we
can again use Theorem 4.8 to compute the nodes and weights in the rational Gauss-
type quadrature rules.

For β = 4
5 we find with the aid of MAPLE

r 10 5 that Jw(f) ≈ 0.2888276658908954.
Figure 5.1 then shows the relative error of the approximation in terms of the num-
ber of interpolation points n. Note that for n = 4m + 1, m = 1, 2, . . ., the rational
functions in Ln−1 = L4m that interpolate the function f(x) in the nth rational Gaus-
sian nodes, have poles in the four different singularities of f(x), each with the same
multiplicity m. This may explain the oscillating behavior of the relative errors for
the rational Gaussian quadrature formulas as a function of n, with better results for
the (4m + 1)th rational Gaussian quadrature formulas compared with the (4m+ 3)th
rational Gaussian, and (4m+ 2)th and (4m+ 4)th rational Gauss-Radau quadrature
formulas. Further, note that the graph for the rational Gauss-Lobatto quadrature rule
(more or less) coincides with the graph for the rational Gaussian quadrature rule when
shifting the latter to the right (the (n+ 1)th rational Gauss-Lobatto and nth rational
Gaussian quadrature formulas also have the same domain of validity). Due to this
shift, we obtain that the rational Gauss-Lobatto quadrature rule performs a little bit
better compared with the rational Gauss-Radau quadrature rule, although the latter
has larger domain of validity.

Finally, to get an idea of the accuracy of the computed nodes and weights in the
rational Gaussian and Gauss-Radau quadrature formulas, we also computed the nodes
and weights with the aid of the MATLABr function rcheb, as described in [20]. For
each n, the difference in absolute value between the nodes and weights computed by
means of the (modified) GEP and the nodes and weights computed by means of the
MATLABr function rcheb was less than 5.22e− 015 and 1.32e− 013 respectively.
On the other hand, for the rational Gauss-Lobatto quadrature formulas the difference
in absolute value between the fixed nodes and the nearest computed nodes was less than
2.11e− 015, while the absolute error of the approximation of Jw(|ϕ0|2) = 1 was less
than 9.66e− 014.

5MAPLE is a registered trademark of Waterloo Maple, Inc.
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Fig. 5.1. Relative error in the rational Gauss-type quadrature formulas for the estimation of

Jw(f), where f is given by (5.2).
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quadrature formulas on the unit circle and the interval”, Applied Numerical Mathematics,
2010. (Accepted)

[6] K. Deckers, A. Bultheel, and J. Van Deun. “A generalized eigenvalue problem for quasi-
orthogonal rational functions”, Technical Report TW571, Department of Computer Sci-
ence, K.U.Leuven, August 2010.

[7] K. Deckers, J. Van Deun, and A. Bultheel. “Computing rational Gauss-Chebyshev quadra-
ture formulas with complex poles: The algorithm”, Advances in Engineering Software

40(8):707-717, 2009.
[8] K. Deckers, J. Van Deun, and A. Bultheel. “Rational Gauss-Chebyshev quadrature formulas

for complex poles outside [-1,1]”, Mathematics of Computation 77(262):967-983, 2008.
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