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Abstract

We consider for n = 0,1, ... the nested spaces £,, of rational functions of degree n at most
with given poles 1/@;, |a;| < 1,4 = 1,...,n. Given a finite measure supported on the unit
circle, we associate with it a nested orthogonal basis of rational functions ¢y, ..., ¢, for L,,
n = 0,1,... These ¢, satisfy a recurrence relation that generalizes the recurrence for Szegd
polynomials.

In this paper we shall prove a Favard type theorem which says that if you have a sequence
of rational functions ¢,, € £, which are generated by such a recurrence, then there will be a
measure p supported on the unit circle to which they are orthogonal. We shall give a sufficient
condition for the uniqueness of this measure.

1 Introduction

We consider for n = 0,1, ... the nested spaces L, of rational functions of degree n at most which
are spanned by the basis of partial Blaschke products {By}}_, where By = 1, B, = By _1(, for
n =1,2,... and the Blaschke factors are defined as

Op OQp — 2
Cn(z) = ﬁliﬁ for |ay,| < 1. (1.1)
n n
By convention we set @y, /|a,| = —1 for oy, = 0.

These spaces of rationals have been studied for example in connection with the Pick-Nevanlinna
problem [17, 18, 19, 13, 14, 15, 16] and in many applications [2, 20, 3, 7, 4, 5, 6, 8]. Note that if all
the a; are equal to zero, the spaces £, collapse to the spaces of polynomials of degree n.

Next we consider a finite positive measure y on the unit circle and orthogonalize the basis with
respect to the inner product

(o= [ 1)o@ du(o)

to generate an orthonormal system ¢y € Ly and ¢, € L, \ L1, n = 1,2,... It has been proved
[3, 7, 4, 5, 6] that these ¢; satisfy a recurrence relation that generalizes the recurrence for Szegd
polynomials.

*Department of Computer Science, K.U.Leuven, Belgium

tDepartment of Mathematical Analysis, University of La Laguna, Tenerife, Spain
iDepartment of Mathematics, University of Amsterdam, The Netherlands
8Department of Mathematics, University of Trondheim-NTH, Norway



In this paper we shall prove a Favard type theorem which says that if you have a sequence of
rational functions ¢, € L, which are generated by such a recurrence, then there will be a measure
1 supported on the unit circle to which they are orthogonal.

The present paper completes in several respects earlier papers [11, 5] where such a theorem had
already been given.

Most important is that in the earlier papers, there were only a finite number of different points
ay, that were cyclically repeated. Here we shall discard this condition and let the points vary freely
inside the unit disk.

A formal difference is that the orthogonality considered in [11, 5] is with respect to a linear
functional (the moment functional) whereas here we shall work with an inner product defined by
a measure supported on the unit circle. But it is again new that we shall give in this paper a
sufficient condition for the uniqueness of this measure. In the previous papers, uniqueness has not
been considered, but in the repetitive case, this condition will always be satisfied.

Another difference between the papers is the choice of the recurrence relations. In [11], the
recurrence relations used are rational generalizations of the three-term recurrence relations of or-
thogonal polynomials while in [5] and also in the present paper, they are generalizations of the
Szegd recurrence for polynomials orthogonal on the unit circle.

In [11, 5], the moment functional was found by direct construction. Also here we shall use
a constructive approach for the measure which follows closely the elegant proof for the Szeg6
polynomials which was recently given in [9].

In the polynomial case, uniqueness of the measure follows easily because the polynomials are
dense in the set of continuous functions. To obtain density of the rationals, one needs an extra
condition on the numbers ay.

2 The recurrence relations

We shall need the following notations and assumptions. D C C is used to denote the open unit
disc of complex numbers and T denotes its boundary, the unit circle. Let y be a finite positive
measure on T whose support is an infinite set. Hence the distribution function u(t) = f(f dp has an
infinite number of points of increase. Suppose it is normalized so that [ du = 1. The normalized
Lebesgue measure for the unit circle is denoted by A: dA(8) = (27r)~1df. For any measure v on T,
the inner product (-,-), is defined by

(Fabv= [ 5(e)gleav(o)

If v is replaced by A, we drop the subscript. The metric space Ls(u) of square integrable functions is
well known. When g is replaced by A, we simply denote it as Lo. The Hardy subspace of functions
analytic in D is denoted by Hy. The Nevanlina class N is the set of ratios g/h with g,h € Hy it
contains all Hardy spaces Hp, 0 < p < oo.

B is the unit ball of holomorphic functions in the unit disc:

B = {f holomorphic in D and |f| < 1}.
P(z,w) denotes the Poisson kernel

_1-juwp

We also introduce the substar transformation as f.(z) = f(1/%).



For o; € D, (;(2) denotes the Blaschke factor (1.1) and By = 1, B,, = B,,_1(, are finite Blaschke
products. Recall @;/|a;| = —1 if a; = 0. We shall also use the notation B\, to mean B, /By,
where m <n. L, =span{By : k =0,...,n} is the space of rational functions with poles 1/@;.

If f € L,,, then we define f*(z) = By (2)f«(2) € Ly.

By ¢, we shall denote rational functions ¢9 € Ly and ¢, € L, \ L,—1, n > 1 which are
orthonormal with respect to (-,-),,. We shall suppose that their leading coefficients «,, with respect
to the basis By,..., By are positive, namely x, = ¢ (ap) > 0, by which the ¢, are now uniquely
defined.

J denotes a 2 x 2 indefinite signature matrix J = 1 @ —1. A matrix § = [0;;] € N?*2 is called
J-unitary if 8,J60 = J a.e. where the substar for a matrix is defined by

[911 912] :[911* 921*]
01 02 012« 022« |~

Such a matrix 6 is called J-contractive (in D) if #7.J§ < J a.e. in D, where the superscript
denotes complex conjugate transpose. Note that for z € T, 0.(z) = [0(2)]".
A result from Dewilde and Dym [7, p.448] says that if 6 is J-contractive, then

(922 + 921)_1 € Ho (2.1)

The following type of recurrence relation has been proved in [4, 6] (the expression for €2 is only
implicit in [4])

Theorem 2.1 For the orthonormal basis functions in L,,, a recursion of the following form ezists

(80wl [} 2[00 0][%9] e

where the matriz Ny is a constant e, > 0 times a unitary matrizc

1
0
Nn:en[%" nQ]
n

with n. and n2 € T. The constant n) is chosen such that ¢}, () > 0. The other constant n?2 is
related to 1} by

772 _ 1 %1 Qpn
" " |an—1] o]
The parameter A\, is given by
)\n _ n¢:(0én—1) with n= 1-—- gnan—l an Qp_q cT
¢n(0‘n—1) 1 —Qpan_1 |on| |an—1]

which can also be written as

Qp—1 <¢n—la Zf_aaj_zl ¢n—1>u

n

n = T—an_
len—1] {$p—1, e bn 1w

A

7

and the value of e, > 0 can be obtained as the positive square root of

2 _ 1 — |on[? 1
R e e P

€

The formula (2.2) holds from n =1 on if we define oy = 0, i.e. (p(z) = z.



It will be useful to write an inverse form of the recursion formulas as in the next theorem which
was also proved in [4, 6].

Theorem 2.2 Given the orthonormal function ¢, with ¢} (an) = kn > 0, all the previous or-
thonormal functions ¢, k < n are uniquely defined if they are normalized by ¢y (o) = K > 0.
They can be found with the recursions

] o[ 6

~— —

} (2.3

nfl(z) | ¢;’kl(z
with ) . 1 ) _
. — Qpz 1 Cn—l z 0 1 _)\n -1
Va(2) = 1= A2 1 —@,_12 | 0 1 ] [ 1 ]Nn

with all the quantities appearing in this formula as in Theorem 2.1.

3 Favard theorem for orthogonal functions

We have seen how the orthogonal functions satisfied certain recurrence relations which generalize
the Szegd recurrence relations. The converse is known as a Favard Theorem, named after Favard’s
paper [10]. Such a Favard Theorem states that if functions satisfy such recurrence relations, then
they will be orthogonal rational functions with respect to a positive measure on the unit circle. A
simple proof for the Szegé polynomials was recently given in [9]. There, not only the existence of
a measure is proved, but it is shown to be unique and it is actually constructed during the proof.
We shall follow in this section a similar approach for the rational case.

We shall give a sequence of lemmas which will eventually lead to the proof of the Favard
Theorem. We start with the orthogonal functions.

Lemma 3.1 Suppose we are given two sequences of numbers oy € D and A\, € D for k=1,2,...and
set ag = 0. Define the numbers e > 0 by their squares

1 — |og|? 1
2
er = ork=12,... 3.1
ET T a2 1 (3.1
Finally define the functions ¢y by
1—ag_ 12 ~ Lk
po=1, ¢ = ew;ﬁﬁm_@k_l + M1l E=12,... (3.2)

where the numbers i, € T are chosen such that ¢} (ay) > 0.
Then the functions ¢}, satisfy the following recurrence

do=1, ¢ =-exn —— [Ce-1 kb1 + dp1)s k=1,2,... (3.3)
— Rz
with .
2 1 Q-1 Cf
= —. 3.4
M nklak—ll ‘akl ( )

Moreover, 1/¢}, € Ho.

Proof. We can leave the first part of the proof to the reader because it comes down to simple
calculus. For the second part note that we can couple the two recurrences (3.2) and (3.3) into the
form (2.2). We can use this form recursively and end up with (recall ap = 0)

bn _ Cn 1
[¢;]_1—anz@”[1]
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where ¢, = [[;_; ex and where ©,, is given by O, = 0,0, --- 0, with

o[ 3112 ][0

which is J-contractive being the product of J-contractive factors. Hence, because

b = = z[(@n)m + (On)22]

it follows by property (2.1) that
/¢y = et (1 = @n2)[(On)21 + (On)22] ™' € Ho
which concludes the proof. O

Lemma 3.2 Under the conditions of Lemma 3.1, it holds that

_ 1— oo
A = ¢f(0‘k 1) with 1 Qg Q1 UOp—1 (3.5)
b (k1) " Jog] Jag—1| T — @
Proof. From the recurrences for ¢, and ¢, we find
2
- k
Belan 1) = sty 0 v () (3.6)
and )
* |ak 1| *
b (ag—1) = 6kﬂkm[0 + dr—1(ak—1)]- (3.7)
Dividing (3.6) by (3.7) gives
br(ak-1) _ 1 = Togr L= Okl 1- T T
Pr(ok—1) Ml — aplp_1 log—1| [og| 1 — aptrp—1
The result now follows. O
Lemma 3.3 Define the positive measure py, on T by
P(z,ap)
i) = T SHANE) (38)

with P(z,w) the Poisson kernel. Then the functions constructed in Lemma 3.1 satisfy the orthog-
onality relations

(Pks D), = Ok for 0 < byl <. (3.9)
Proof. We shall first prove that ¢, is orthonormal with respect to all its predecessors :
<¢na ¢m>un = Opm for 0 <m < n. (3.10)
This is shown as follows
, w = — = P(z,ay)dX\(z
= P(z,
o (2) o )dA(2)
~ [ Ban 2P i)
(z
= B = Onm-
n\m( ) ¢n (z) o nm




The general orthogonality follows from Theorem 2.2 which says that all the previous orthogonal
functions are defined in terms of ¢,, orthonormal to £, 1, by the inverse recurrence, and we have
just proved by the previous Lemma 3.2 that the recurrence in Lemma 3.1 is the same as the one
from Theorem 2.1. O

One final result we shall need is

Lemma 3.4 Let us define Ry, = Ly + Lypx where Ly = {fs: f € Ly}, and R = R, then R is
dense in the set C(T) of continuous functions on T iff Y (1 — |ag|) = 0.

Proof. This is a direct consequence of the “closure criterion” discussed in Addendum A.2 of [1,
p. 244]. O

We are now ready to prove the following Favard-type Theorem.

Theorem 3.5 There exists a Borel measure on T for which the ¢, as constructed in Lemma 3.1
are the orthonormal functions. If the Blaschke condition Y (1 —|ag|) = oo is satisfied, the measure
18 unique.

Proof. Define

619

These are all increasing functions and umformly bounded (f dun = 1). Hence, there exists a
subsequence such that

im0, (6) = s6) and Jim [ (), (6) = [ fd

for all functions f continuous on T. Thus the {¢,} are an orthonormal system with respect to this
measure p. Since the linear functional defined on R through

(ki) = O, k1 =0,1,...

exists and is bounded. The uniqueness now follows from Lemma 3.4 and the representation of
bounded linear functionals on C(T) (F. Riesz). O

Note: The Blaschke condition ) (1 — |ag|) = oo is equivalent to the rationals R being dense in
the set C(T). However, the latter is not necessary for the uniqueness of the measure u. Note that
when there is only a finite number of different points aj some of which are repeated an infinite
number of times, the Blaschke condition is satisfied and uniqueness of the measure holds.

The question of weaker, sufficient conditions ensuring uniqueness, is related to the interpolation
problem being determinate and the convergence of multipoint Padé approximants. This is a much
more difficult question which shall be treated in another paper. See in this respect [12] for the
Stieltjes case.
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