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Abstract

For classical polynomials orthogonal with respect to a positive measure supported
on the real line, the moment matrix is Hankel and positive definite. The polynomials
satisfy a three term recurrence relation. When the measure is supported on the complex
unit circle, the moment matrix is positive definite and Toeplitz. They satisfy a coupled
Szegb recurrence relation but also a three term recurrence relation. In this paper we
study the generalization for formal polynomials orthogonal with respect to an arbitrary
moment matrix and consider arbitrary Hankel and Toeplitz matrices as special cases.
The relation with Padé approximation and with Krylov subspace iterative methods is
also outlined.

1 Introduction

In classical situations, formal orthogonal polynomials (OPs) are studied with respect to some
linear functional. The “inner product” (p,q) of two polynomials is defined as

(p,q) = 1(pq)

where p is a linear functional defined on the set of polynomials through the moments
k
p(z") = pr, k=0,1,2,...

This implies that (2%, 27) = (2*71) = (1,2*7) = p;4; and therefore, we get a moment
matrix for the basis {* : k = 0,1,...} which has a Hankel structure:

M = [pig) = [(',27)] = [pigs), 6,5 =0,1,...

In the so called normal situation, all leading submatrices M, of size n are regular. (The
matrix M is then called strongly regular.) This situation is well understood. A classical
treatment is [2].
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In general there are singular leading submatrices of the moment matrix, but there is a
certain structure in the grouping of singular submatrices of a Hankel matrix. This is usually
reflected in a Block Structure Theorem of some kind [17]. The OPs will also be grouped in
blocks which will be block orthogonal, that is, each polynomial in a block will be orthogonal
to all polynomials in previous blocks, but they need not be orthogonal to other polynomials
in the same block. Instead of speaking about formal block orthogonal polynomials, we shall
go on calling them OPs for simplicity.

These formal OPs are generalizations of classical OPs with respect to a positive measure
supported on (part of) the real line. See [13]. They still satisfy formal analogs of a three term
recurrence relation and a Christoffel-Darboux type formula. These properties can be written
in matrix notation and so they give rise to Hankel factorization properties, Hankel inversion
formulas, Jacobi matrices etc. See [18]. They are also related to Padé approximation and
continued fractions [39, Chap. 11],[40]. And they also deliver the formulas in Lanczos-type
methods for the iterative solution of large (sparse) linear systems or eigenvalueproblems
33, 23, 24, 22].

On the other hand, there is a Szego theory of OPs with respect to a measure supported
on the complex unit circle. These Szeg6é polynomials also satisfy a three term recurrence
relation, but also a coupled recurrence relation for the polynomials and their reciprocals.
In this classical situation, the moment matrix is Toeplitz, Hermitian, strongly regular and
positive definite. Here the formal generalization is to consider a moment matrix which is
an arbitrary Toeplitz matrix. They will also satisfy a block orthogonality relation. There
are many correspondences with the Hankel case, but also many differences. One thing that
is lost is the symmetry and one should in fact speak about biorthogonal polynomials since
left and right OPs are not the same. This was not the case for the Hankel matrix since
a Hankel matrix is always symmetric. Again it is possible to generalize the recurrence
relations, Christoffel-Darboux formulas, factorization and inversion formulas for Toeplitz
matrices (usually referred to as Gohberg-Semencul formulas). The Jacobi matrix, which is
tridiagonal (or block tridiagonal) in the Hankel case has however to be replaced by an upper
Hessenberg matrix (which is tridiagonal again in the symmetric case). These OPs are related
to Laurent-Padé and two-point Padé approximation.

The next step in the generalization is to consider a moment matrix which has no structure
whatsoever. How much of the previous properties can be generalized and what is lost? This
would be a generalization of OPs with respect to a measure with a support somewhere
in the complex plane (e.g., somewhere on a Jordan curve or on some Julia set). Such
formal orthogonalities were also considered by Brezinski [6, 4, 3]. Of course there is a
big gap between the highly structured Hankel or Toeplitz matrices and arbitrary matrices.
Several intermediate possibilities can be considered. There are other kinds of structured
matrices (Sylvester, Bezoutian, Lowner, Cauchy, Vandermonde, etc.), there is the notion
of displacement rank [28, 26], which covers the whole gap. Also block Hankel and Toeplitz
matrices can be considered. The vector orthogonal polynomials of dimension d as considered
in [6, 38], correspond to Hankel (d > 0) or Toeplitz (d < 0) matrices whose blocks are |d| x 1.

Formal orthogonal polynomials appear implicitly or explicitly in different situations.
They are known and used for a long time in connection with Padé approximation and con-
tinued fractions. Nowadays they became popular in connection with Lanczos type iterative
methods of linear algebra. See in this connection the contribution of C. Brezinski in the
na-digest [5], which contains several references.

The purpose of this paper is to bring together all these applications and at the same time



place them in a more general framework of formal orthogonal polynomials. This is done in
Section 2. As far as we know, this has never been done before. It will be shown how much
of the classical theory of Hankel and Toeplitz matrices can be generalized.

In section 3, these results are specialized to the Hankel case. Most of the results in this
section are of course well known: the relation with Padé approximation, continued fractions
and Krylov subspace methods in linear algebra. We include these results anyway to make
the connection with the general case clear. The relation between Schur complements and
the Euclidean algorithm seems to be new.

For the Toeplitz case, considered in Section 4, also the literature can provide several algo-
rithms to solve the problems for a matrix which is not strongly regular. A survey of all these
results and their interconnection is not readily available though. In particular, the results
about the block factorization of the Hessenberg matrix as a product of a block bidiagonal
and the inverse of a block bidiagonal has not been considered before.

One note of warning: although this paper ties up with many numerical problems (or-
thogonal polynomials, moment problems, continued fractions, solution of linear systems,
eigenvalue computation, Gram-Schmidt orthogonalization, difference equations, Schur com-
plements, rational approximation, ...) and algorithms (Euclidean algorithm and the Schur
algorithm, fast algorithms for structured matrices and interpolation problems, iterative
methods in linear algebra, etc.), we do not discuss their numerical aspects in detail and
suppose that computations are performed in exact arithmetic. Our only objective is reveal
their common backbone of formal orthogonal polynomials. Discussing the numerical aspects
would lead us too far since each of these numerical problems has its own requirements for
the way a practical implementation is realized and the technicalities may be divergent. We
can however mention that an important tool to cope with stability problems is the design
of look-ahead versions of the proposed algorithms. Such versions exist for the Hankel and
Toeplitz case for which we refer to the existing literature. This look-ahead idea is adaptable
for the general situation but we do not discuss it here.

We now introduce some notation. If p is a polynomial p(z) = 3. piz*, then p will denote
its coefficient vector, i.e., the column matrix of its coefficients P = [pg, p1,...]7. If we denote
z=[1,2,2%,...]7, then p(z) = z2"P. On occasion we also use x, w, y with a meaning similar
to z. If p(z) is monic, then, we shall use the notation p(z) to denote the polynomial p without
its highest degree term, i.e., if p is of degree n, then p(z) = p(z) — 2". Of course P will be its
coeflicient vector. The coefficient vectors will be of flexible length, i.e., they can be extended
with a number of zeros, possibly infinitely many, to match the dimensions in the formula
where they appear. The Frobenius or companion matrix for the monic polynomial p(z) is

defined as

0 0 e 0
1

F(p) = 1 —p | pT =T 1.

1

The matrix Z will denote the down shift matrix. It will also be assumed to have a flexible
length. The effect of the multiplication M Z is that all the elements of M are shifted one
place to the left. We shall indicate this by the notation M< = MZ. Similarly, ZT M will

shift the elements one place up and we shall denote it as M» = ZT M.



For a matrix M = [p;;], we shall use the notation Mk : [, m : n] to denote the submatrix

Hekm -+ Hkn
Mk :l,m:n]= : :

Him -« Hin
We abbreviate the leading k x [ submatrix M[0: k —1,0: 1 — 1] as M[k,[] and we use Ml

to mean the i-th row M[i : 1,0 : co] and similarly, M9 denotes column j.

2 Formal orthogonality: general moment matrix

2.1 Moment matrix and generator

Consider a complex bilinear form (-, -) defined on the set of complex polynomials C[z], which
is linear in the second factor and conjugate linear in the first one:

(a1p1 + azp2,q) = @ (p1,q) + a2 (ps2,q)
(p,arq + azqe) = ai{p,q1) + a2 (p,q) .

It is defined by its moments

piy = {2y, 4,7=0,1,2,... (2.1)

If it is Hermitian, then u;; = f;; but we shall not preassume this symmetry in general. The
moments are collected in a moment matrix M = [p;;]. In general we shall not suppose that
M is positive definite nor that it is strongly regular. The latter means that the leading
submatrices M[v, v] are not necessarily regular for all v.

We call the formal bivariate series

M(w,z) = w' Mz = Z i 2
0,§=0
the generator for the moment matrix M. The generator for row 7 is given by

o0

MEA(2) = pged = (¢ (1= 20)7")

i=0

where we wrote (1 —z{)™" for the formal series Z;io (727, A similar definition holds for the

columns. Thus,

M(w,z) = <(1 - w() J(1—20) ZMU *] ZM[*J]

2.2 Block biorthogonality

Using the coefficient vectors of the polynomials and the moment matrix, we can express the
inner product as follows

(p,q) =P"Mq, p,qeC[z].

4



If the moment matrix were strongly regular, then we could use the two-sided Gram-
Schmidt procedure to orthogonalize the system of polynomials 1,z, 2%, ... to generate the
biorthogonal system {b;, a;}i>0, where a; and b; may be chosen to be monic polynomials of
degree i. Biorthogonality means that the polynomials satisfy (b;,a;) = &;;D;;, D;; # 0. The
set {b;} is the set of left orthogonal polynomials (LOP) and {a;} is the set of right orthogonal
polynomials (ROP). Defining the unit upper triangular matrices A and B by

[a0(2),a1(2),...] =2"A and [bo(2),bi(2),..]=2"B
then biorthogonality means that we have
BPMA =D, D = diag(Dgo, Di1,--.) (2.2)

where the entries Dy are nonzero.

In general however, we can only guarantee the existence of a block biorthogonal system.
This means the following. Suppose the submatrices M[v,v| of the moment matrix M for
v = uv,l,...,vN are the successive regular ones. If N is finite, we define vx41 = oo and
in any case set vy = 0. Then a,41 = vy — v, for n = 0,1,..., N will be the number of
polynomials that will be grouped in block n.

So let block n consist of the a, ;7 ROPs

— _ 1 2 An41
a, = [al/n7 (VS8 P al/n+04n+1—1] - [dn, L ]

Thus we use the notation a* to denote the kth polynomial of block n, i.e., a® = a,, 111,

E=1,...,a,41. Using a similar notation for the LOPs, one has
ko I\N1I=1h0541
(bi,a;) = [(bF,a5)] " " =6, D;

where D;; is a square matrix of size a4, and d;; represents the Kronecker delta. We have
again the relation (2.2), but now with D,; square matrices. The choice of the block sizes
will guarantee that the D;; are regular. In fact it guarantees that there is no factorization of
the form (2.2) with smaller blocks that are regular. For further reference we state its finite
dimensional version. Suppose that an index n for the matrices below means that we take
the vp41 X g1 leading submatrices!, then we get from (2.2)

BPM,A, =D,. (2.3)

In fact such a relation holds for any v X v leading submatrix (not only the regular ones). It
then follows that also all the leading submatrices of each block Dy of D are singular, except
for the complete block which is regular. Indeed, B and A are unit lower triangular matrices.
Hence any of its leading submatrices has determinant 1 and thus is det M[v,v] = det D[y, v].
Since M|v,v] is nonsingular iff v is equal to some index v, the result follows.

In what follows, we shall concentrate on the right biorthogonal polynomials and call
them ROPs for short. Of course, similar results can be obtained for the left biorthogonal
polynomials.

The first ROP a,, of block n has degree v, and it is right orthogonal to all polynomials
of lower degree:

<zi,a;(z)> =0fore=0,1,...,v, — 1.

"'We stick to the convention that an index v will refer to a scalar numbering, while an index n will refer
to a block numbering.



n

OP. It is also a True right Orthogonal Polynomial in the classical sense (i.e., not in block

Note however, that (2", a,)) can be zero. Following Draux [13], we could call it a regular

sense). Therefore we shall call it the TOP of block n. It is unique if monically normalized
since its coefficient vector has to satisfy a linear system

MTL—IA}’L = _[Iu’oyl/n’ e 7/”’”71,_171‘71,]71 (24)

where Al = [A)T 1]T and M,_; = M[v,,v,] is a regular submatrix of M. The remaining
polynomials in block n will be called Internal OPs (IOPs). These IOPs are not uniquely
defined in general. We do require that they have precise degree, i.e. a* has degree v, + k—1
(we could, e.g. make them monic) but they need only be orthogonal to all polynomials
in previous blocks but not to previous polynomials in the same block. The latter would be
impossible for all polynomials in a block because of the singularity of the leading submatrices
when one is inside a block.

There is a way to make them uniquely defined though, when apart from being monic,
we require a® to be not only right orthogonal to all b;, j < n of corresponding previous left
blocks, but also to all & polynomials in the corresponding left block, with the exception
of one. Thus a is orthogonal to all b! for m = 0,1,...,n — 1,4 = 1,...,a,41 and also
tobl, Il =1,...,an, | # lgn with {l, 1k =1,...,an1} = {l,...,anp1}. That is, we
require D,,, = (b,.a,) to be a permuted diagonal matrix. This is always possible since one
Gaussian elimination with pivoting shows that for every regular matrix D, there exists a
unit upper triangular matrix U/ and a unit lower triangular matrix L such that LDU is a
permuted diagonal.

From the definition, it follows that whenever [ag,a;,...] is a set of monic block ROPs,
then any other set of block ROPs can be obtained as [ag, ai, .. .| diag(So, S1,...) where each
Sk 1s unit upper triangular.

We shall however be liberal in the choice of the IOPs. When we say block orthogonal
we mean that the polynomials in a block are of strict degree (monic) and orthogonal to the
polynomials in the previous blocks where the beginning position and the size of each block
is dictated by the rank structure of M through the indices v, (the block indices) and @41
(the block sizes).

2.3 Schur complements

The two-sided block Gram-Schmidt method produces the block biorthogonal polynomials,
that is, it generates the unit upper triangular matrices A and B which satisfy BIM A = D.
Therefore it computes block UDL factorizations of M~ for all n = 0,1,..., N — 1. We can
however also write M = B~ DA, Defining the unit upper triangular matrices V = B~!
and U = A™", we also get

M=B""DA =VHDU. (2.5)
The latter factorization gives a block LDU decomposition of M itself. Define

[Vo(w)" vy (). ] =w"VT and  [ue(2)”, w(2)",.. ] =2"U"

where v; and u; are series of size ;41 X 1, then the matrix relation M = VH DU corresponds
to the dyadic decomposition

M(w,z) =Y vi(w)" Diuy(z). (2.6)

=0



This decomposition is related to a Schur type algorithm and Schur complements. Consider
a matrix

(2.7)

M:|:MO M01:|

MIO Mll

with My invertible, then the Schur complement of My in M is defined as the matrix My, —
M10M0_1M01- Following Parlett [30], we denote it by M.
Taking the previous LDU decomposition which is

M(w,z) = Vo(w)HDoouo(z) + M'(w, z), M'(w,z) = Z Vi(w)HDZ-Z-uZ-(z).

=1
We shall show that (wz)~*'M'(w, z) is the generator Mg (w, z) for the Schur complement
M(O)
Theorem 2.1 Let M be as in (2.7) with factorization (2.5), or equivalently (2.6). My is
invertible of size ay. Define

My (w, z) = (wz)™™ [M(w, z) — Vo(w)HDoouo(z)] \ (2.8)
then this is the generator for My, the Schur complement of My in M.

Proof. We recall the factorization M, = VOHDOOUO. Also
H | Vo
Vo(w) =W |: VE)H :| and uo(z) = [ U() U01 ]Z
10
where the associated matrices are the first a; columns of V¥ and the first a; rows of U
respectively, so that

VH M,
[ o ] DooUy = [ MIOO} and VOHDOO[ Uy Un } = [ My My }

Therefore the matrix associated with the generator (2.8) is
My, = Vi DoolUor = Myy = Vi DoolUo (Us ' Do Vi) Vo DaolUin = My — Mio My ' Mo,
and this is indeed the Schur complement M. O

This process can be repeated. Define M® = M and recursively M*+! = MZ‘B), E=0,1,...

to be the Schur complement in M* of the smallest invertible leading submatrix MF of M*.
This corresponds to the recursion

M (w,z) = (wz)™" 1 (M*(w, 2) = (0z) ™" vi(w)" Dipu(z))
= (wz)” ™ (Mk(w, z) — hk(w)H[Méc]_lgk(z)) (2.9)
where Mé“ is of size a1, hk(w)H is the generator for the first ay1 columns of M* and

g:(2) is the generator for the first azyq rows of M*. By computing these successive Schur
complements, we obtain a dyadic decomposition

M(w,2) = Y (w2)"hi(w)" [Mg] " gy(2), (2.10)

=0



which corresponds to a block LDU factorization of M. It is just a rescaled version of (2.6)
and (2.5). In the case of an Hermitian matrix, this corresponds to the Jacobi transformation
for diagonalizing an Hermitian form. The result is obtained by successively performing the
steps (1 = 3) for k = 0,1,...: (1) Find M§, the smallest leading submatrix in M* and let
its size be ajt1, (2) Set hi equal to the first azqq columns of M* and g, equal to the first
ag41 rows of M* (3) Compute M*+! = Z\/[Z“O> by forming M* —hi[M}]™'g, and leaving out
the first aj41 rows and columns (which are zero).

This 1s also the basis of a general Schur type algorithm which performs the previous
Jacobi transform for the M* stored in factored form. This algorithm was first developed
by Schur [32] in the context of positive definite Toeplitz matrices, but has been generalized
to matrices with low displacement rank (see e.g., [27, 12]). For quasi Toeplitz matrices,
(1 —wz)M(w, z) is factored as G(w)™ H(z) with G(w) and H(z) of size § x 1 where § is the
displacement rank of M. It is then a simple matter to update the factors Gy and Hj in the
factorizations (1 — wz)M*(w, z) = Gy(w)? H(z) for k =1,2,...

We now give the generalization of this idea for an arbitrary moment matrix. (See also [31].)
We first recall the following lemma.

Lemma 2.2 Let M be as in (2.6) and My the Schur complement of My, then det M =
det MO det M(O)

We shall describe the first step of the algorithm, the subsequent steps are similar. Let M,
be the smallest (size a;) leading submatrix of M. Suppose that we have a factorization for
M of the form (see also the section on Krylov subspace iteration where such a factorization
appears naturally)

. Hy H Goo G
M:HHG th H = 00 01:|7 G:[ 00 01:|7
W |: Hl() Hll GIO Gll

where Gy and Hyg are of size a;. By row permutations on (¢ (and corresponding column
permutations on H¥) we can always assume that Gy is nonsingular. This implies that also
Hyo will be nonsingular. This can be seen as follows. By elementary row operations (), we
can bring (¢ into the form

GOO GAOI

_ e HHo- - | He I
QG—{ 0 Gu} while H" (@) —[ .

HE [H
The left top block of M is My, which is supposed to be regular, thus
My = [H"G] = [HTQ™'Qd],,, = HigGoo.
Since both My and Gy are nonsingular, also Hyg is nonsingular. Thus we can define
B=—-GGy and o= —H Hy'.
We remark that S =171 + o’ and T =T + Ba' are both regular matrices because
S=T+ap =1+ 07 HIGG: = H MyGy),
which proves that S is regular, but then also 7' is regular since by Lemma 2.2

I —aof

BT

det |: 7

8



Then define

st o J— T QT [sE 0
QG_{ 0 T;Hﬁ I } and QH_[—ﬁ I 0 T7'

where S;,Sp = S and T, Tr = T are factorizations of S and T. These definitions imply that

I of S0 I —af
4N 2]

Moreover, the definition of a and 3 was such that 65G and H7 0y have the form

~ ~ - . "
5 o Goo Gou Hy Hn
G=0qG = { 0 o ~ } :

FH  ppHp
] and H" = H QH—{ 0 I,

The matrices o and J generalize the reflection coefficient for the first step in the classical
Schur algorithm for positive definite Toeplitz matrices. We can easily make the connection
with formula (2.9) by taking the generating functions:

M(w,z) = H(w)HG(Z) = H(w)HGHHGG(Z) = ﬁ(w)Hé(z)

Setting

se=ca= [ G = [  T] [ ]

and similarly for ﬁ[(w), it follows that

s = i = [ o6 17 0] 8]

= ho(w)"My'gy(2) + (W2)* Hy(w)" Gy (2)
and this can be rewritten in the form
Hy(w)7Gh(2) = (wz) ™" [M (w, 2) — ho(w)" M g,(2)]

which shows that H;(w)" G (z) is a factorization for Mgy (w, z) (see (2.9)), and the algorithm
can proceed to the next step by following the same procedure. The Schur algorithm thus
updates the successive Schur complements in factored form and at the same time one gets
the block columns and rows (generated by ho(w) and gy(z)) of a block LDU factorization of
M. This procedure will break down when the maximal rank of M has been reached. There
is no more regular leading submatrix of which to take the Schur complement.

2.4 Fourier series and reproducing kernels

The formal Fourier expansions with respect to a biorthogonal polynomial system with

left /right blocks {bx,az}, k =0,1,..., can be given as

N
(1,(2) = Zak(z)ck, with Cp = Dl:k] <bk7a> .



Let M, be a regular submatrix of M of size v,11 and suppose K, = M-" = [mn;;]. Then
define the kernel function K, (y,z) to be the generator for K,,, i.e.,

v
[an(y,x) = yH[(nX = Z yimijxja V= Upy1 — L.

2,7=0
For this kernel, the following properties hold.

Theorem 2.3 Let M be a moment malriz with some block index v,.1 and M, the cor-
responding reqular submatriz. Let K,(y,z) be the kernel as defined above. Then with
V="Vp41 — 1

n

Ku(y,z) = y"B.D;"ATx =" a;(x) D7 bi(y)" (2.11)
1=0
i -
]
1 M,
= — det " : 2.12
det M, ¢ - ( )
)
1z v 0 |

where {by,a,} denotes the kith blocks of left/right orthogonal polynomials and as before
(bi,a;) = di; Dy;.

Moreover, for any polynomial a(x) of degree at most v = v,11 — 1, the kernel K,(y, z) is
reproducing:

(a(z), Kn(y, x)) = aly).
Proof. For (2.12), use the definition

K.(y,z)=[l,z,....2"]M'[1,y,..., y' 1" (2.13)
and Lemma 2.2 to find that the determinant of the bordered matrix in (2.12) equals
det M, det(0 — [1...2"]M 1., y*]")

which proves the first result.

If the coefficient vectors for the ROPs in the blocks Ag, Ay, ..., A, are collected in the unit
upper triangular matrix A, (and similarly for the LOPs) then we know that (2.3) holds.
Filling this into (2.13) gives (2.11).

For the reproducing property note that

n

(). Koly,2)) = Y (ala), au(a)) DF bi(y)”

which is the (formal) Fourier expansion of a(y) because if we set a(y) = Y I, bi(y)d; with
d; € C*#*1 X! then we find from the orthogonality that

4 = (aa), () D7,
which proves the theorem. O

10



Note the duality between (2.6) and (2.11). The first gives a dyadic decomposition of M
and is in fact a (block) LDU decomposition of M which is related to unsymmetric Choleski
and Schur algorithms. The second is a dyadic decomposition of M~ and gives a so called
inverse LDU decomposition of M (a UDL decomposition of M~"). This is related to Gram-
Schmidt type of algorithms, reproducing kernels, biorthogonal polynomials and, if there
is some structure in M, 1t will also result in a Christoffel-Darboux type relation. See for
example [27] for the Hermitian positive definite case of matrices with low displacement rank.

2.5 The Hessenberg matrix

The generalization of the Jacobi matrix for classical orthogonal polynomials is an upper
Hessenberg matrix when the moment matrix has no special structure. Obviously, since all
polynomials ax(z) in a(z) = [ao(2),a1(z),...] are monic and of strict degree k, there should
exist a unit upper Hessenberg matrix T such that

To write down a matrix equivalent of this, define the unit upper triangular matrix A by
a(z) =z" A, and use Z for the downshift matrix, then the previous relation becomes

ZA=AT.

To give a finite dimensional analog and to show the block structure of T', we remark that
T' could be the result of a block two-sided Gram-Schmidt procedure. The latter transforms
the set 1,z,2% ... into a set of block left/right orthogonal polynomials by the following
procedure. Start with ap = 1 and then generate

B
—

a1 (2) = zay(2) = ) ai(z) (bi((), ai(¢)) ™ (bi((); Cau(())

7

Il
=]

for the ROPs in block k, i.e. for v, < v+ 1 < vg41. (A similar relation holds for the LOPs).
If we place all the generated polynomials of block & in the vector ag = [ay,, ..., ay,,, 1] then

we know that the block is complete as soon as the matrix (by,a;) is regular. This defines
k+1

=1 Q.

the block size a4, and together with the previous ones also the block index vy = >
For n > k this can be summarized in the relation

zag(z) = [ag,ar, ..., a,)[To . T, Ty 1, 0. 017 (2.14)

The block T} is a matrix of size o;41 X ag41, the diagonal block is square and has the
form of a companion matrix. Its last column is equal to <bk,ak>_1 <bk,zal,k+1_1>. The
subdiagonal block Ty41 1 is zero except for its right top element which is 1. This last column
is special because it relates the first polynomial a;_, of the next block with the previous
blocks ag,...,a;. Writing this out for £ = 0,...,n and translating this to the matrices of
coeflicient vectors we get

FoA, = AT, (2.15)

11



where as before A,, = A[v,41, Vny1] is unit upper triangular, F, = F(a,,,,) is the companion
matrix for the TOP a,_, of block n + 1, and T,, = T'[Vp41, Vpqa] is unit upper Hessenberg.

TO,O TO,I TO,Q T TO,n
T, ,0 Tl,] T1,2 T "
T, = T2,1 T2,2 . T2,n
Tn—l,n
L Tn n—1 Tn n
k) k)

This is the finite analog of the relation ZA = AT. Note that this truncation changes 7 into
a Frobenius matrix. The infinite matrix 7" is the generalization of the Jacobi matrix (here
written for monic polynomials). In the classical case it is tridiagonal, and as we shall see in
the next section, it is block tridiagonal for a general Hankel moment matrix, reducing to a
scalar tridiagonal when it is strongly regular.

Recall the definition M< = MZ and the relations BIMA = D and ZA = AT, so that

we get immediately the following relations, defining .J
BEM<A=B"MZA=BYMAT = DT = J.

Note that D was block diagonal and T' unit upper Hessenberg, so that .J shall be block upper
Hessenberg.

For the truncation of this relation to submatrices of size v,41, we should note the follow-
ing. The orthogonality of the TOP a711+1 implies (2.4), and hence

M,F, = MZ

where M$ = M<[vp41,Vn41]. Thus we have (the index n means that we take the leading
submatrices of size v,41) M;S = M, F,,, F, A, = A,T, and BTPLIMnAn = D, and we get

BiM<A, =B"M,F,A, = BP"M, A, T, =D, T, = J,. (2.16)
As a direct consequence, we find the following determinant expressions for a) ;.
Theorem 2.4 The TOP a},,, of block n+1 is given by the following determinant expressions

a711+1(2) = det(zl, — F,)
= det M " det(zM,, — M7)
= det(zl, —T,)

Ho,v+1
M, :
= det M det : , v+1l=v,1
/JLu,u-l-l
1 2o ZU‘I'I

where we have used the notation thal was introduced above.

Proof. The first relation holds by definition of companion matrix. The second one follows
by multiplying from the left with M,, and using MS = M, F,,. This result, multiplied from
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the left with BX and from the right with A, gives the next line because det B, = det A, = 1
and zBYM, A, — BEM<A, = zD,, — D, T, while det M,, = det D,,. For the last line, note
that the determinant on the right equals

det My (=4 = [1 2 - 2" IM  ptogn = fluwga]T)-

The rest follows {rom (2.4). O

2.6 Padé approximation

We now give some general rational approximations that can be obtained from the elements

we have collected so far.
Let M[i’*](z) be the generator for row ¢, and define g[i](z) = z_lM[""*](z_l), le.,

o0

g(z) = Zﬁ;zgz@—grw,i:oggwu (2.17)

k=0

Furthermore, using the notation introduced above, define

dz) = M, (M, — M) M,eq (2.18)
- ik .
= E 1=0,1,2, ... vpy — 1
k=0
where ¢; is the ith unit vector. Then p;; = I for E=0,1,...,vp41. We formulate this as

a theorem.

Theorem 2.5 Let gl be defined by (2.17) and the rational function gq[f] by (2.18). With the

notation introduced before, the latter can also be expressed as
gg](z) = e;FB;HDn(ZI' — Tn)_leo (2.19)
or in the rational form ' '
afl(=) = (=) s (2) (2.20)
with the numerator, a polynomial of the second kind, given by

CEL(Z) _ <C2, a711+1(22 : Zi+1(C)> ' (2.21>

It has the determinant expression

i _ M,eq MZ
C£1]+1(Z) = det M " det |: 0 0 w :| (2.22)
with w, the polynomial part of _
[z 22 ... 20 )gll(z).
Moreover, fori=0,1,...,vp41 — 1, gl and 97[31 correspond in theiwr initial terms:

pik = iy Jor k=0,1,... vpgr.
Thus CE;]_I_l(Z) is the polynomial part ofg[i](z)aqll_l_l(z).

13



Proof. The alternative expression (2.19) for g[]

(2.3) and (2.16) and the fact that AZ'eq = €.
To prove the correspondence of the expansions of ¢l and gk], we can start from (2.19)
and use a formal expansion of (z/ — T,)~"

can be easily found from (2.18) when using

i - - Ty
1) = TBDL(S ey
k=0

Because AJ'F, A, = T,, as we can see from (2.15), we also have

T:eo = A;IF:ATLEO = A;lFTlLseo

because A, is unit upper triangular. Thus

d(z) = e'B7"D, A7 Z (+1) pke
k=0
_ I, Z ~(+1) e (2.23)
= ,ulo,...,,u“,Zz k'HFIC
k=0

where v = v, 11 — 1. Tt is easily verified that

e ] oen fork=0,....v=v,11 — 1
n 0 — A

‘1
—An for k = v

This proves that

J() = 3 O TM AL
k=0
Since also
T c 1
62' MnAn+1 — _,ui,l/-i-ly
we have proved the correspondence.
The expression (2.21) follows from the formal equalities

< CE Z;+1<<>> et (o) < o ahal0) > -

z z—(

where we have used the expression (2.17) for gll. Expanding (z=()""as 37 CFem (5+1) one
sees that the second term is of the form Y72 ez~ +1) with 5y the coefficient of » ~(h+1) in

the expansion of g[i]a;_H. Therefore the left hand side of (2.24) is polynomial. Since a,,,, has

degree I/n+1 and p;; = pf for j =0,...,v,41, it follows that the polynomial part of g[] bl
(which is Cn+1 by definition) and of g[l]a n41 18 the same. This proves (2.21).
The determinant expression (2.22) for the numerator can be found as follows. First note

that

M, — M M,eq

det e;TMn 0

= det(=My — M) (=el My (=M, = M) My

14



The first factor equals a) | det M, and the second one equals —g7[f]. Hence the numerator
CEZ]_H is given by

M, — M M,eq

CE]-I-I(Z) = —det M' T M. 0

This gives the desired result after some elementary matrix operations that do not change
the determinant. O

The previous theorem shows a kind of vector Padé approximation. Indeed, when we
consider the vector with components g[i](z), t=0,...,v— 1 where v = 1,41 and the vector
of rational approximants gk](z), then, since deg CEZ]_H < dega, ., the number of parameters
in the latter is v? (for the numerator coefficients) + v (for the monic denominator), giving
a total of (v + 1)v parameters, which is precisely the number of coefficients that is fitted
in the v series. The block two-sided Gram-Schmidt procedure computes the denominators
of the approximants for increasing n. This generates approximants of increasing degree v,
but also the number of series and the number of approximants is increasing! However, it is
possible to keep this number constant when we choose a special moment matrix. We shall
not go into the details here, but the idea is that if we want to have d different series to fit
where d is independent of n, then one should consider a moment matrix which satisfies the
relation g j41 = plitq,; for all 7,5 € N. This means that M is a block Hankel matrix with
blocks of size d x 1. An extreme example is the case d = 1, i.e. the moment matrix is Hankel,
and then only one series is fitted, the other rows being shifted versions. This is also the
idea behind the so called vector orthogonal polynomials of size d as considered in [37]. The
qualification “vector” does not refer to the polynomials, since they are scalar, but to the fact
that they are orthogonal with respect to several (i.e., a vector of) linear functionals, viz.,
each of the d series is a generator for the moments of a functional. This is in contrast with
the classical Hankel case, where there is only one linear functional. An alternative way of
describing the previous pattern in the moment matrix is to apply row permutations, so that
we can think of the moment matrix as consisting of horizontal bands with a Hankel structure.
Then the number of different bands corresponds to the number of series that are fitted. The
number of rows in each band is related to the number of extra coefficients that are fitted (on
top of the number that is always fitted in the general case) for the series that is associated
with that band. The latter approach is more flexible because it allows to make bands with
a different number of rows, hence allowing a different order of approximation per series.
However, when one wants to compute the approximants recursively with an increasing order
of approximation for the different series, then the rearrangement as in the vector orthogonal
polynomials is more appropriate. It is possible to obtain a different order of approximation
per series by including some irregularities in the d-periodicity of the moments.

If row 7 and row 7 + 1 are two rows in the same Hankel band, then ¢;14M = ¢;M< and
one can use M, F, = M< in the formula (2.23) to show that g7[f] fits an extra coeflicient of
the series gll. One can also consult the section on the Hankel case below.

2.7 Krylov subspace iteration

We can make the following connection with Krylov subspace methods.
Consider the Krylov matrices

X = [xolan| -], wp = Prag and Y =[yolyi| -], we = [Q"] w0
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where the zg and yg are arbitrary vectors of the vector space ¥V = C? (with p finite or infinite)
and P and @) some matrices.

The column spaces of the matrices X and Y are Krylov spaces. In general one denotes
a Krylov subspace of order v as

K,(z,P)=span{zy = P’z : k=0,...,v — 1}.

Only when the z; are all linearly independent, the dimension of K, (z, P) will be v.

We set M = YHX = [u,;;] where p;; = yl' Q' P'zy. Associate with M the quantities we
introduced in the previous sections, then X = XA and Y = Y B are matrices whose columns
form a set of block bi-orthogonal vectors since VHX = BIMA = D while

YEPX = BEM<A = DT = J.

In the special case that P = @, M will be a Hankel matrix and when P = Q' M will
be Toeplitz but it is an arbitrary matrix in general. Note also that the generator allows a
natural factorization (recall the Schur algorithm of Section 2.3)

M(w,z) =Y (w)"X(2) =y (I —wQ™)""(I — 2P) ",

with
X(2)=Xz=(I—-2P) 'zy, Y(w)=Yw=(I—wQ")y,.

Thus the generator for M is rational and of finite degree in z and w when the vector space
V is finite dimensional.

Let M, = M[vu41,vn41] be regular; and denote the first v, columns of X and Y by
X, and Y, with column spaces X, = K,,,,(z0, P) and Y, = K,,,,, (vo, QH) respectively. It
is well known that then there exists a unique oblique projection onto &, along ), whose
maftrix representation is

I, = X, (YAX,)"'VH,
Suppose we want to solve the square system Pz = b, but the size of P is very large. One
could then try to approximate it by “projecting” onto the lower dimensional space &,,. That
means we confine = to X, by setting © ~ z, = X, v, and we only satisfy the projected

equations I, Pz, = ,PX,v, = I1,b. Since

I,PX, = X,(VPX,)'VPpX,
= X,D;'D,T, = X, T,

we can solve the “small” system T,v, = ¢, with ¢, = D;IYTLH]) and then take z, = Xnvn
as an approximation for the true solution of the “large” system Px = b. This is the idea
behind the Krylov subspace methods for the iterative solution of linear systems. By setting
b = Az, we can see that the solutions for the small eigenvalue problem T,v, = Av, will
give approximate solutions for the large one Px = Az and this is a justification that the
same Krylov subspace methods can be used as iterative methods for approximating the
eigenvalues of P. The elements in the spectrum o(7T),) of T), are called Ritz values and they
will appoximate the eigenvalues in the spectrum o(P).

A symmetric argumentation will give similar results with respect to Q).

In principle, when the dimension of V is N, then Ky (zo, P) and Ky (yo, Q) will be equal
to the whole vector space V on condition that the rank of X and Y is N. This of course will
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depend upon the choice of the initial vectors zg and yy and the Jordan structure of P and
Q. When the rank of M is smaller than N, the Krylov methods have a breakdown and in
general it is not guaranteed that the spectrum of P and/or of @ will be recovered.

Set r, = rank X, r, = rankY and r = rank M < m = min{r,,r,}. Then the Krylov
method will break down when v,y = r. At that point, the maximal regular leading sub-
matrix of M is reached and one enters an infinite block of OPs and there is no next TOP.
Moreover, the following properties can be easily proved.

Theorem 2.6 With the notation just introduced, we have the following. Whenr = m = r,,
then it is guaranteed that o(T,) C o(P), that the range of X, is P-invariant and if 0 is
an eigenvector of T, i.e., T,0 = A0, then v = X, is an eigenvector of P: Pv = Av. The
eigenvalues X of T,, are the zeros of the polynomial a, . Similar results hold for r = m =r,.

Proof. If X,, = [zg,...,z,], then PX, = [z1,...,2,41]. Since X, has reached its maximal
rank r = m = r,, .41 will be in the column space of X,,. This means that this column
space 1s P-invariant. The column space of X, is equal to the column space of X,.. Thus also
the column space of X, will be P-invariant. Hence, there must exist some matrix 7., such

that PXn = ann In fact, this matrix Tn is just T}, because
D, T,=Y"PX,=Y"X,T, =D,T,
and D,, is nonsingular. Thus, if 0 1s an eigenvector for T, i.e., T,,0 = Av, then
X Tt = PX,0 = AX,0.

Because © # (0 and the columns of X, are linearly independent, also X0 # 0. Hence we
may conclude that if A is an eigenvalue of T,, with corresponding eigenvector v, then A is
also an eigenvalue of P with corresponding eigenvector X, 0.

By Theorem 2.3, we have

det(zI = T,) = a711+1(2) =det(z] — F,),

which means that the eigenvalues of T, are the zeros of the TOP a, ().

This proves the theorem. O

When r < m, however, then it may happen that we do not find any eigenvalue not of P and
not of ().

An example of the latter situation is the choice

121 1 101 1
P=|111]|, zo=|1|, Q=]11 11|, w=1|0],
005 0 103 1

with

o(P) = (5.1£3), (@)= (1,24 V).
The rank of M = Y X is 1, while the rank of X and Y is 2. The algorithm breaks down after

step v = 1 and will give A = 3 as an approximation of o(P) and A = 2 as an approximation
of o(@Q). Both values are wrong,.
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3 Formal orthogonality: the Hankel case

When the moment matrix has a Hankel structure, the theory is well known, and this section
does not contain new results. We only give a brief survey to tie up with the general case
and proofs are only given when they are short and clarify the link with the previous section.
We are somewhat more precise to establish a less known equivalence between the Schur
algorithm for Hankel matrices and the Euclidean slgorithm. For other details, the reader
who is interested should consult the literature. See for example [13, 21, 22, 23, 24, 30].

3.1 The moment matrix and its generator

Now we shall suppose that the moment matrix has a Hankel structure, 1.e., p;; = piy;.
Because j;; = piv; = (2%, 27) = (2" 1) = (1,217), it is clear that we do not really need a
bilinear form. In fact, we can reduce the definition of the bilinear form to the definition of
a linear form p on the set of polynomials defined by

(p.a) = p(pq), with p(z")=pe, k=0,1,...
Thus it holds in general that
(2f(2).9(2)) = (f(2),29(2)), (3.1)
which translates in the matrix relation
M =MN=M<=MZ

where 7 is the downshift operator and M<(= M") is the left (= up) shifted moment matrix
obtained by deleting the first column (or the first row) in M. On the other hand, we also
have

0 | —po —pu ... 0] -H
T_ | Fo _
M- M7 = m M<_M/\ = HT 0

If we introduce the bivariate generator M (w,z) = w! Mz as in the general case, (note that
for notational simplicity we assumed w real) then the previous matrix relation yields the
remarkable property

M(w,z) = wH(w) - ZH(Z), where H(z) = M(0,z) = Hz = i,ukzk. (3.2)

w—z

Thus the bilinear form being defined through a linear form, a Hankel matrix being charac-
terized by its first row (or column) and the bivariate generator M(w, z) being characterized
by the univariate H(z) are three instances of the same phenomenon.

The Hankel structure also implies symmetry. Thus an Hermitian Hankel, it is automati-
cally real. Therefore, classically, real Hankel moment matrices appear in the context of real
orthogonal polynomials on a real (possibly infinite) interval. Here however, we allow the
moments and the polynomials to be complex. The symmetry of the moment matrix then
implies that if az(z) = z'A; is the kth ROP, then we can choose bi(2) = @x(z) = 21 A} to
be the kth LOP. Thus we may replace the matrix B from the previous formulas by A7,
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3.2 Block biorthogonality and block Jacobi matrix

The recurrence relation is well known for the Hankel case [13]. We include its derivation for
completeness. We first determine the block sizes as follows.

Theorem 3.1 Suppose v,, is some block index for the moment matriz M and a), the TOP of
block n which is by definition orthogonal to z* fori =0,...,v where v+1 = v,. Now suppose
it is over-orthogonal in the sense that also (z',al) =0 fori=v+1,v+2,...,v+a—1 but
nonzero for 1 = v + «, then the size of block n will be o.

Proof. We may indeed choose

ayyi(z) = zi_lal,_l_l(z) for 1=1,...,« (3.3)
since it follows from the relation (3.1) and the over-orthogonality of a), that a,; is orthogonal
to all 27 for 5 = 0,1,...,v + a — 7, hence to all polynomials in the previous blocks as
long as 1 < i < a. Collecting these polynomials in a block a, = [ayt1...,0,44], We

find (@,,a,) = D,, which has a lower triangular Hankel structure with nonzero diagonal
element. The Hankel structure follows from the choice (3.3) and the property (3.1). The
diagonal element is nonzero since (ay4q,@yp1) = <z”+a,ay+1> = pn # 0. Thus we cannot
take less than « elements in a block because then D,,, would not be regular. In other words
the block size of block n is a,+1 = a. O

As a consequence of the above construction we can see that the orthogonality of z*»+1a} (2)

to 2’ 1s automatic for 2 = 0,....v, — 2. Therefore we have
) )

Theorem 3.2 For block n, internal polynomials are obtained by just shifting the TOP:
ai*t'(z) = 2'al(z), i = 1,...,an41 — 1, and for computing the TOP of block n + 1, one
can use

Un1(2) = gu(2)ay(2) + pudy_y (2) (3.4)

where q,(z) is a monic polynomial of degree a1 and p, is a nonzero constant.

Proof. The internal polynomials were considered in the previous proof. The recurrence for
a,4q is obtained as follows. Set v + 1 = v,. Note that a’(z) = 2*7*+'a}(2) is orthogonal
to 2% k=0,1,...,v—1 and (z/,a') = (z**+17! al) = p, # 0. Since by definition, also
(2",a}_y) = pn1 # 0, it is obvious that p, = —pn/pn-1 # 0 will make @ = ' + pnay,_,
orthogonal to z*, k =0,...,v. Orthogonality to 2+ for i = 1,..., an41 can be obtained by

subtracting suitable multiples of z'a! from a. O

This implies that the general relation (2.14) reduces to

zap(z) = [ag,ar,...,a,)[0...0, T}, 1, T, Ty 4, 0. 0] (3.5)
while the relation (2.15) becomes
F,A, =A,T,
where as before F), is the companion matrix of a,, and T, has now a block tridiagonal form
[ Too Ton ]
Tio Ty T
T, = Tyn Ty
. Tn—l,n
L Tn,n—l Tn,n i
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If M is strongly regular, all the blocks have size 1 x 1, and then this is an ordinary tridiagonal
matrix which is known as the (nonsymmetric) Jacobi matrix which reflects the three term
recurrence relation. In this regular case each block of A, consists of one polynomial a,(z) =
ar(z) = ay(z) and “n+1( z) = (2 4 Yn)a,(2) + pua,_,(z) corresponds to Tp_y, = —p, and
T.yn = —7n. For the block case, this generalizes to (3.4), so that T, , is the companion
matrix of gn, Tht1,, 18, as 1n the general case, zero except for its right top element, which
is 1 and finally 7,,_q , 1s zero except for its right top element, which is —p,. For the initial
conditions one may choose a';, = 0 and af, = 1.

Note that the block tridiagonal form of T' is immediate from the symmetry of M. Indeed,
J = DT = ATM<A = ATM*"A = TTD = J7T, hence J is symmetric and block upper
Hessenberg. Thus block tridiagonal. Therefore, also T' is block tridiagonal. From J = DT,
it is also easy to find that D and J have a nice lower triangular Hankel structure in their

blocks [21, 30]. More precisely

Lemma 3.3 The blocks of D are lower triangular Hankel, say

70 k
S ‘ Jr—1k - Fy?c
Dy, = and | = T 3.6
K T [ Jeg-1 | Jri } . :1 (3.6)
k k PR k ’
Yo N Ya—1 Y 7{: 7E ]

with o = agy1 and fyé“ = pk.

Proof. The Hankel structure of Dy follows from the Hankel structure of M and the Hankel
structure of the kth block column of A. The structure of J follows from its symmetry and
the structure of T', especially that T}y is a companion matrix. For more details, we refer to

21, 30]. 0

3.3 Reproducing kernel and Christoffel-Darboux relation

We can also give a simple derivation of the Christoffel-Darboux relations. (Compare with
[13, p. 81].)
Recall that the reproducing kernel is given by

Zak )DL ar(y)T =y M x.

We can derive the following Christoffel-Darboux relation.

Theorem 3.4 (Chistoffel-Darboux relation) Suppose M is a Hankel matriz with block
indices v, and block OPs ay, then the following Christoffel-Darboux relation holds

Kolyo) — a;H(:c)a;((g)_—yc;i:l<y>a;<x> )

where p, = (2171 al) £ 0.

2n
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Proof. We compute first 2 K, (y, ). Set a(z) = [ag(z), ..., a,(z)] and use za(z) = a(z)T, +

efa;+1($) (v = Vpg1 — 1) to arrive at

eK,(y,z) = ;L'a(w)DglaT(y)
= a(@)T,D7"a" (y) + apy(w)e, D72’ (y)
Note that eI D! selects the last row of D7!. The latter is block diagonal with last block

equal to D;!. Since D,, is a Hankel matrix with zeros above the second diagonal and
nonzero element p, on this diagonal, its inverse has the form

-1

pn X ot
pn X prt
Therefore eI D71 =10 ... 0 p;1 0 ... 0] where the nonzero element is at position v,. Thus
we have ) )
2Ky, ) = a(a)T,D1al (y) + 1)) (3.8)
Pn
For symmetry reasons, namely T,,D>' = D-'.J, D" is symmetric, we also have
1 1
yKo(y,2) = a(z)T,D-"al (y) + Lt ¥)a(2) (3.9)
Pn
Subtraction of (3.8) and (3.9) leads to the given relation. O

The following results will be used in section 3.5. With the notation of Lemma 3.3, we define
the Hankel matrix S* whose generator for the first row is 7522 +4F29F 4.« 4 4229 where
a = apyy. The last element 7% is the one in the lower right corner of the J-form in (3.6).

It follows from Lemma 3.3, that if ¢x(z) is the monic polynomial appearing in the recursion
for the FOPs aj(z) (with respect to M), then

’ 0
V8 .
: Qr =
k k 0
P)/O FYO( X

Thus gx(z) is the TOP for block number 1 in the sequence of FOPs that can be constructed
for the moment matrix S*. Applying the Chistoffel-Darboux relation to this situation gives
immediately

Lemma 3.5 The generator for Dy is given by

D} (w,z) = qk((;f)_—zgi;iz)

where qi(z) is the monic polynomial appearing in the recursion for the FOPs aj(z).
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3.4 Continued fractions and Padé approximants

Also the relation with continued fractions and Padé approximation has been studied in [13].
Again we include a proof to show that it is a specialization of the general case of the previous
section.

With the generalized ‘three term recurrence relation’ (3.4) we associate the continued

fraction m | P | ps |
1 2 3
+ + +-- 3.10
reMreHre (3:10)
whose convergents are ¢} /ay, k = 1,2,... with the initial conditions

il _[10
aty ap | |0 1|7

We shall see that these convergents are the approximants that were discussed in Section 2.6
for the more general situation.

Recall that with the notation of the general case, gl’)(z) = =" H(2~!) which we denote
in the sequel as g(z). The other gll(z) are now shifted versions of g(z) i.e.,

GH(2) = 2gM(2) = pi = 2™ g(2) = sin(2), silz) = zsi(z) H i so =00 (3.11)

Note that [0 sy --- s,,,,]is the polynomial part of g(z)[1 z --- 2"**!] and corresponds to the
bottom row in the matrix of (2.22). The approximants (take 1 = 0 in the general situation)
are now

Gn(2) = el M, (2 M,, — M) M, ep = Z/“L z(k41) (3.12)

We know that in general p = p; for e = 0,1,...,vp41. We Verlfy that for the Hankel case
the correspondence of the coefficients goes almost twice as far, which makes it an ordinary
Padé approximant.

Theorem 3.6 The approximant g,(z) is a Padé approzimant at infinity for g(z) = z="H(z™").
Proof. We already know from the general Theorem 2.5 for ¢+ = 0 that

z) = Z,Ukz_(k“) + Z(eoTMnF;"'keo)z_(”"'kH).
k=1

We use
M,F, = M< and eTM< = e]_H

v times to get el M,,F” = el M,,. Then by (2.23), it holds for 1 <k < v + 1 that

Mn; 0§j<l/:7/n+1—1

egMnFi+keo = eZMnF:eO = [,ul, .. -,ugl,]Ffeo = fytk-

Hence
2v+1

=S
k=0

This proves that p; and pf correspond for at least £ = 0,1,...,2v+1 = 2v,4; — 1. Because
ay ., is over-orthogonal by a,49 — 1, the fit is even better:

HE = ILLZ, for k = 0)1;---721/71-}-1 +ozn+2 —2= 2Vn-|-2 — Op42 — 2.
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Since a,_, is the denominator of g,, it has degree v,41. The corresponding numerator is the
polynomial part of g(z)a;,,(z) and it can be identified as a polynomial of the second kind
(see Theorem 2.5). Its degree is therefore 1,11 — 11 < vy — 1. Thus, in view of the degrees
of freedom we have (< 2v,,41) and the number of coefficients that are matched (> 2v,,41) we
have proved that the rational function g¢,(z) is a Padé approximant at infinity for g(z). O

Theorem 3.7 The approzimants g,(z) are the convergents of the continued fraction (3.10).

Proof. The recurrence (3.4) gives

9(2)ag 11 (2) = 9(2)qn(2)ay(2) + g(2)pnan s (2).

Each term has a polynomial part and a strictly proper part.

g(2)ag(z) = ex(2) +ri(2) (3.13)

where ¢ (2) = ¢ny1(2) is the polynomial part (the numerator of g,(z)) and r),(2) is
strictly proper (the linearized residual of ¢,(z)). In view of the degrees of the polynomials
and the order of contact, the previous relation can be decoupled as

qu1+1(2) = qn(z)c;(z) + pnc;—l(z> (3-14)
g1 (2) = @u(2)rn(2) 4 parni(2). (3.15)
Thus, after checking the initial conditions, we see that the numerator of g, corresponds to

the numerator of the nth convergent. We proved that g,(z) is the nth convergent of (3.10).
O

Note that the recurrence relation for r}(z) starts with rj(z) = g(z) and rL,(z) = —1. We
now prove that these r}(z) can be associated with columns of the matrix R = M A.

Theorem 3.8 Associate with the block lower triangular matrizc R = M A the strictly proper

[271 272 R = [ro(2), 11 (2), . . ]

where the blocks vy(z) = [r}(2),...,rp "' (2)] reflect the block structure of M. Then these
ri(z) are the linearized residuals of (3 13).

Proof. From (3.11) and since R = M A,

[ro(2),r1(2),12(2),...] = [¢7',272%,.. ]MA
= [9(2),29(2), 2g(2), .. JA = [0, 51(2), 52(2), .. ]A
= g(2)[ao(2), a1(z),...] = [0,t:(2),ta2(2),- -],

where [0,11(z),12(2),...] =[0,s1(2), s2(z),...]A. Since sg(z) is a polynomial, also 1(z) is a
polynomial. Let us consider the first column of block n. Because rl(z) is strictly proper,
the polynomial parts in the right hand side should cancel. Thus (using an obvious notation)

t1(z) is the polynomial part of g(z)a,.(z), which is the numerator ¢}, (z) of g,(z). Therefore
(3.13) holds, which proves the theorem. O
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3.5 The Euclidean algorithm and Schur complements

If t and d are polynomials, then we say that ¢ is the quotient and r the remainder in the
division t/d = q + r/d when ¢ is polynomial and r/d is strictly proper (i.e., contains only
negative powers in its expansion at oo). We apply the same definition when ¢ and d are

formal series in z7!.

The quotient is the polynomial part in the expansion of ¢/d and r/d
is the strictly proper part. This notion of division will be used to formulate the Euclidean
algorithm.

Recall that ¢, is a monic polynomial of degree o, and p, = —p,/pn,_1 is a nonzero

constant. Writing R = A~T D, we get for the nth diagonal block in this relation:

which shows that

ri(2) = ppz”""*t + lower order terms, p, # 0.

This confirms what we have found before in the proof of Theorem 3.6. The form of the r}(z)
implies that [r;_,(2)]/[r}(2)] has a polynomial part of degree a4y while [r}(2)]/[rh(2)] is
strictly proper. Thus from the relation (3.15)

pnﬁ(—;SZ) — () + )

we see that —g,(2) is the quotient of the division [p,r}_,(2)]/[rL(z)] where the constant p,
is chosen to ensure that ¢,(z) is a monic polynomial. The series r),(z) is the remainder.
Thus the p, and g,(z) can be obtained by successive divisions of the series r;(z), normalized
to give a monic polynomial quotient. This is precisely the Euclidean algorithm for power
series in z~!' [9, 10].

Note that the R matrix is block lower triangular and its (nonsingular) leading submatrices
R, feature in

M, =R,D;'R” (3.16)

so that this gives a Choleski type decomposition for all nonsingular leading submatrices of
M. Therefore we can identify the Euclidean algorithm as a fast block Choleski algorithm
for Hankel matrices.

The factorization (3.16) can be rewritten in a symmetric version of the form (2.10),
which links this up with Schur complements and the Schur algorithm. In fact the Schur
algorithm for Hankel matrices is essentially the same as the Euclidean algorithm. To clarify
this statement, we start by embedding the Hankel matrices in the larger class of quasi Hankel
matrices. That are matrices whose generators satisfy

M(w, ) = G(UJ)TZG(Z) _ g2(w)g1(z) —gl(w)gg(z)’ v _ |: (1) —(1) :| Gle) = |: g;gi; :|

w—z w—z

where G(0) # 0. Without loss of generality, we can always choose ¢;(0) # 0 and g2(0) = 0.
For example, the structure (3.2) shows that Hankel matrices are a special case of quasi
Hankels obtained by choosing G(2)T = [1 zH(z)]. Conversely, a quasi Hankel matrix is
Hankel iff it has a generator of this form. Quasi Hankel matrices are congruent to Hankel
matrices because we have
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Lemma 3.9 A matriz Q) is quasi Hankel iff there exists a lower triangular Toeplilz matriz

L such that M = LQL" is Hankel.

Proof. Suppose that ¢;(0) # 0 and ¢2(0) = 0, say g2(z) = zH(z). Let the first column of L
have generator f(z) = 1/¢g1(z). Then f(w)Q(w,z)f(z) is the generator of M. This has the

form M(w,z) = <wH(w) — zH(z))/(w —z), with H(z) = ¢2(2)/¢1(2), which proves that M

is Hankel. The converse is even simpler to prove. O

There are several reasons to use this wider class of quasi Hankels. For example, the Chistoffel-
Darboux formula shows that the inverse of a Hankel matrix is quasi Hankel. Also the Schur
complement in a Hankel matrix is not Hankel but quasi Hankel. In fact this holds for any
quasi Hankel matrix (see [30]). The latter will also follow from the next theorem which makes
the link between the Schur algorithm and the Euclidean algorithm. Indeed the Euclidean
algorithm computes recursive updates of the factors in the generators for the successive
Schur complements. These generators are of the appropriate form to show that the Schur
complements are quasi Hankel. We first need a change of variables. For r(z) as defined in
Theorem 3.8, set

hi(z) = 271, (1/2) = prz®*+ + higher order terms.
The Euclidean algorithm, which provided the recurrence for the r!(z) translates into

higr1(z) = 2721 27 % hy_q (2)pr + ha(2)qu(1/2)].

Define
Grl(2)" = [ itz g (2) | h(2) ] (3.17)
then the previous update leads to
Gk-H(Z) = ak(Z)Gk(Z), Hk(z) = |: 0 p;:l :| z TGk (3.18)
—pr qr(1/z)

The Euclidean algorithm is thus equivalent with this recursive update of G(z). We now show
that these Gy (z) are factors appearing in the generator for the successive Schur complements
which were also considered in the general case.

Theorem 3.10 Introduce the successive Schur complements M*+! = MZ‘B), E>0, M°=M
as in Section 2.3. Then these Schur complements are quasi Hankel and their generators
satisfy

Gr(w) TSGR (2)

Mk(w z) = \

b

w—z

with Gi(z) as in (3.17).

Proof. This is obviously true for & = 0 since M° = M, ayg = 0, ho(z) = zH(z) and
h_l = pP-1= —1.
The induction step is proved as follows. It is clear that (see the proof of Theorem 2.1)

M (w, 2) = (wz) "1 [M*(w, 2) — WTR[*,/C]DI:IJR[ZJC]Z] (3.19)
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where Ry, j is the kth block column of R, after leaving out all the zeros from block rows
0,1,...,k —1. Recall that Ry, ) is Hankel and its generator can be written as

W Rpsg = w hg(w)[1 w™" - w1,

Therefore
WTR[*,;C]D,:,:R[ZJC]Z = (wz)_lhk(w)hk(z)dk(w, z) (3.20)

where di(w, z) = D! (w™, 27'). From Lemma 3.5, we know that

(w2) 7 (w = 2)dy(w, 2) = (=7 = w ) De(w™ 27 = = (ap(w™) = gu(z™)) pr (3:21)
By induction hypothesis,
(w— Z)Mk(w z) = Gk(w)TEGk(z). (3.22)
Multiply (3.19) by (w — z) and plug in (3.20-3.22), then we get
(w—2)M™* (w,2) = (w2)""* {Gy(w)" BGw(2) + p; i (w)hi(2)[ge(w™") = ax(z7")]}
(w2) ™"+ Gr(w)" (2 + Q)G (2)

with Q = pi agr(w™)—qe(27H][0 1]7]0 1]. A straightforward computation gives 85 (w)TX0,(2) =
(wz)~*+1 (X + Q). Thus, using (3.18), we arrive at
)

(w—z Mk"'l(w,z) = Gk('w)TOk(w)TEGk(Z)Gk( ) = G (w ) Y41 (2),
which proves the theorem. O

This theorem thus says that the Schur algorithm for Hankel matrices is basically the same
as the Euclidean algorithm.
The previous theorem was given in the normal case in [29].

3.6 The Lanczos algorithm

When in the general setting of Krylov subspace methods, we take Q = P, then M will be
Hankel with entries px = y& P*zo, k = 0,1,... Tts symbol is H(z) = y} ([ — zP) 2y and
the resulting Krylov iteration can be performed efficiently because of the Hankel structure
of M. This is the well known Lanczos method for nonsymmetric matrices P. The recent
literature is abundant on this subject and we shall not go into details here. See for example
[14] for a survey.

4 Formal orthogonality: the Toeplitz case

Now we shall suppose that the moment matrix M is Toeplitz, i.e., p; ; = p;—;, but in general
it need not be Hermitian or symmetric. Thus we should distinguish between left and right
orthogonality. Again, for simplicity we shall only consider ROPs.

The most popular recurrence relation for polynomials orthogonal on the unit circle with
respect to a positive measure is the coupled recursion for the polynomials and their recip-
rocals. This is the so called Szeg6é recurrence, also used in the Levinson algorithm. The
moment matrix for these polynomials is positive Hermitian Toeplitz. It is possible to pro-
duce recurrence relations which are non symmetric block versions of these coupled recursions
(see e.g. [25]). However, in our development, we shall concentrate on the three term type of
recurrence relation.
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4.1 The generator

The Toeplitz structure of the moment matrix allows to reduce the definition of the bilinear
form for polynomials to a linear form defined on the space of Laurent polynomials by

(p.a) = 1 (P(z7")a(2))

where p is defined by pu(27%) = px, & = 0,£1,42,... For convenience we introduce the
parahermitian transformation as

fuz)=F(z7") = f(1/7)

for any formal series f(z). Thus (p,q) = p(p«q).
The generator of a Toeplitz matrix satisfies

1 —wz

+ -1 ) 00
M(w,2) = wiMz = S ZET) ) Yot () ==Y pozh
k=0 k=1
This is easily seen by noting that (1 — wz)M(w,z) corresponds to the generator of the
displacement difference M — ZM ZT. This can be brought into the form
(1 —w2)M(w,2) = Gw)'XH(z), ¥ = diag(l,-1), (4.1)
with
Gw)" =[3+g7(w), 5 +g" (W), H(=)"=[3-9 ("), —5-97(=7")].

A matrix with generator of the form (4.1) is called a quasi Toeplitz matrix. This class of

N

matrices plays an important role in the recursive construction of Schur complements by the
Schur algorithm. We do not consider this any further in this paper, but the reader who is
interested can find more information for example in [29] for the Hermitian positive definite
case, for the block Toeplitz case in [12], and for a time-varying notion of displacement rank

in [31].

The generator for a Toeplitz matrix can be caught into one single Laurent series. Indeed,

M=) =gz) = 3 me = g*() - g7(2).

k=—0c0

The g* and ¢~ series (including its minus sign) appear naturally in the following context.
Consider v(() = (/(¢ — 2), then there exist two formal expansions for v, namely

ok o .k
FO=35 wmd O=-Y 4%
k=0 k=1

These are precisely the expansions which produce the generators g™ and g~ since g% (z) =
p(y™) and g7 (2) = p(y7).
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4.2 Christoffel-Darboux relation

For the derivation of a Christoffel-Darboux formula, we shall make use of the persymmetry
of a Toeplitz matrix.

Denote by T the permutation matrix (of appropriate size) which has ones on its second
diagonal and is zero elsewhere. Its effect on a column vector is turning it upside down. A
matrix M is persymmetric when 1 M I = MT. Obviously, a Toeplitz matrix is persymmet-
ric. Also its inverse is persymmetric and thus for M,, = M[v,41,v,41], and using the same
notation as before

M-T=1M"'1 =8B,D;TA”.

n

Consequently,

Koy o) = y" M ix = Ku(y, ) + an+1($)D;-|1-1,n+1bn+1(y)H (4.2)

can also be written as

Kaalyoo) = "1, Tx

= y" T A D B TxT
n+1

- Z(JM/)DHH Y7y (y) Dy “br(z)”
k=0

where “a;(y) and “bg(z) are reversed block polynomials namely
Tag(z) = 2’”’“+1_1§k(2’_1) = z”’““_]ak*(z)
and similarly for "by;. This leads to

Kn+1(ya T) = (ch)%“ Kn(ya x) + van+1(y) D;+1 n+1vbn+1($)T
= (:cy)a"“ Kn(y, x) + Vbn+1($)Dn+17n+1 an+1(y)H. (4.3)

Subtracting (4.3) from (4.2) gives the following Christoffel-Darboux relation.

Theorem 4.1 (Christoffel-Darboux relation) Suppose M is Toeplitz with block OPs
{by,ar} of size apy1 and (b;,a;) = 6;;D;;. Let K,(y,z) be the reproducing kernel and
denote by { by, “ap} the reversed block polynomials, then the following Christoffel-Darboux
formula holds

bt ($>D;$1 e+l Ay (y>H - an+1( )D;+1 e+l b,y (?J)H

K,(y,z) =

4.3 Block structure and Iohvidov indices

As in the general case, if the matrix M is not strongly regular, we have to compute the ROPs
in blocks. However, the blocks that will appear here in a natural way are not the same as
the blocks defined in the general case, or as in the section on Hankel matrices.

The block structure is related to the block structure in the M-table. The M-table is
an array whose (k,v) entry is equal to det M|x; 1/] k=0,x£1,£2,..., v =0,1,2,... where
Mr;v] =Mk :k+v—1,6: k+v—1] = [gicj—u]i

iie 1o By conventlon we set det M[x;0] = 1.
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The block structure theorem for the M-table says that the zeros in the table will appear in
square blocks (possibly infinite) and these blocks are separated by nonzero entries [17, §].
Therefore we define an M-block as such a square block of zeros including its bottom border
and its right border of nonzero entries when these borders are not at infinity. Then, when all
the entries of the M-table are nonzero, all M-blocks will be of size 1. In general, the square
M-blocks tile the complete M-table without holes.

The recurrence we propose moves along the row £ = 0 in the M-table (note that M|[0; v] =
M|v,v]) and the blocks of ROPs will correspond to the M-blocks one has to traverse in the
M-table. Unfortunately, these blocks are not necessarily the same as the blocks defined by
the regular leading submatrices of M. Our motivation for changing this concept lies in the
way we shall compute the ROPs recursively.

Because in this section we shall always refer to blocks of ROPs, we shall use the same
terminology (block index, block size, ...) and the same notation (v, ay,...) as in the
previous sections since confusion is very unlikely.

Definition 4.1 (blocks, Iohvidov indices) The block indices are defined asv, =Y, _, ay,
vy = 0. The block sizes oy are obtained as oy = oy + ay . + 1. The lohvidov indices
af_l_l of block n are defined by

a,,; = minfa € N:o = <1,za+1ay> £ 0}
at,, = min{a € N:p=(2""a,) # 0}

where v = v,, i.e. a, = a’ is the TOP of block n.

An interpretation of the Iohvidov indices can be easily given. They indicate how far from
the top (ay,,) and from the bottom (a;f, ) the row x = 0 will hit the nth M-block. Indeed,
det M[0,0] = 1 # 0 by convention and an induction which follows from the theorems below
shows that the submatrices M[v,v] = M[0; v] are regular whenever v = v,,, some block index
so that a,, = al is uniquely defined. The definition of the Iohvidov indices then says that

=0for —a;,, <k <af, +v
MUEAAL L =5, £ 0 for k = —ap, —1
=pn #0for 6 =0of, +v.

This means that an M-block will start at column v+ 1 and that its top row is at position K =
—ag and its (nonzero) bottom row is at kK = O‘;l;+1- Thus its size is @y = an +O‘:L-+1 +1.
As a special case we see that M[0;v + 1] = M[v + 1,v + 1] will be regular iff o, = 0.
However whether a;f,, is zero or not, when o, > 0, then it is simple to define ROPs of
degree v, + 1,...,v, + o, by just shifting a,, = a), i.e., a,,4i(z) = aif'(z) = 2'a}(2),
i=1,...,0,,,. This follows from the definition of o ,,. We shall in the case o;f ; = 0 also
consider these polynomials to belong to the same block as a,,,. Thus block n is in that case

an('Z) = [Clyn(2>, ayn+1(z), o lytan (Z>]a

even though, according to the general definition of Section 2, it covers o, + 1 blocks of
size 1.

When o, > 0, then with v/ = v, + a;,,, M[V/,v/] will still be singular and we have
to add o, more polynomials in block n to reach the next regular submatrix M,y =
Mvpir, Vng]-
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4.4 Row recurrence

The further description of the blocks will be constructive and will involve the explicit com-
putation of the recurrence.

We shall first exclude some trivial situations. First exclude the case where of = oo
since this means that M is strictly upper triangular and then there do not exist (monic)
orthogonal polynomials unless af = co. The case a] = oo is also trivial, since then there is
an infinite block of orthogonal polynomials which are just the powers of z.

Hence we suppose af 4+ a7 < oo. Then block number 0 contains v = v; = af +a] +1
polynomials a; = 2z*, k = 0,1,...,v— 1. The first monic polynomial of block number 1, i.e.,

a, = a} has a coefficient vector that can be found by solving the system
MoAl = —[jicy sy Mo = Mon, ]

Note that the matrix of this system is regular and has a band of zeros of width af +a] =v—1
(which is 0 in the regular case). Hence this system can be solved very efficiently.

Now for the general situation of block n. Suppose we already know that M,_; = M|v,v]
(v = 1vy,) is regular. It follows that the TOP of block n, i.e., al, will be uniquely defined.

ni

By definition of a;_,, we know that the polynomials a,, +1(z) = z%al(z) are orthogonal to
all polynomials of lower degree for £ = 0,1,...,a, ;. This is a consequence of the Toeplitz

structure of M which implies (zf(2),z9(z)) = (f(2),9(z)). Now we define an auxiliary
polynomial for block n as

n(z) = 2%+l (2). (4.4)
The auxiliary polynomial @, is the first one in block n (except for al of course) which is
obtained by shifting the previous one and is not orthogonal to all polynomials of lower degree.
Since it is not an orthogonal polynomial, we shall refer to it as the NOP for block n. Note
that we have

(M an(2)) =0, k=1,2,..  vpp —1

Before treating the generic case where both Iohvidov indices are finite, we shall deal with
the cases of infinite a® and/or a~ first.

Theorem 4.2 Let M be a Toeplitz matriz and suppose v = v, is a block index. Hence
M{v,v] is regular and the TOP a, = a, is uniquely defined. Let the lohvidov index o, for
that block be infinite. Then a,44(2) = zFa,(2), k = 0,1,... is a set of ROPs, i.c., the block
S1Z€ Qpy1 = OQ.

All the leading submatrices M[k,k] for k > v are regular iff the other lohvidov index
oy =0 and they are all singular iff o, > 0.

Proof. The right orthogonality follows immediately from the definition of o, ;.

When we express the fact that [ag,ay,...,a,_1|a,,za,,...] is right orthogonal to zF,
k = 0,1,..., in a matrix form (A is unit upper triangular and contains the coefficient
vectors) we see that M A = R with R a matrix of the form

R()() 0
R =
|: Rio Run :|

with Rgp regular of size v and Ri; infinite lower triangular Toeplitz. The diagonal element
of Ry is p, = (z,a,(z)) which is nonzero iff oz:_l_l = 0. This implies the regularity or
singularity of the leading submatrices Mk, k] for k > v as claimed. O

The previous theorem treated the case where o, = co. The next one discusses a;f, | = oo.

30



Theorem 4.3 Let M be Toeplitz, with block index v = v, and corresponding lohvidov indices
of ) =00 and oy, < oo, then all M[k, k] are singular for k > v.

An infinite block of ROPs can be computed as follows. Set a,y, = 2%a, for k =
0,1,...,a,,,. Shifting the last one of these once more will give a,, the NOP for block
n. Setling w = v+ a, ., + 1, we can find a nonzero constant p, and monic polynomials d;

of degree j such that
utj(2) = P anor (2)pn + Gn(2)d;(2), 7 =0,1,...
fill up the remaining polynomials of (the infinite) block n.

Proof. With A, the coeflicient vector of a,, it follows from the definition of e, ; = oo, that
MAa, = 0. Hence, using the unit upper triangular matrix A defined by

[ao(2), ..., a,(2), 2" Tt 2v12 ] =27 A,

it is obvious from R = M A that the singularity of M[k,k] for & > v follows immediately
from the singularity of R[k, k], since R contains a zero column viz. MA,,.

The first a;; polynomials are indeed ROPs by definition of o, .

The remaining polynomials can be obtained as indicated. For 7 = 0, we know that
<zk,&n> = 0 for £ = 1,2,..., but it equals a nonzero constant o, for & = 0. A similar
observation holds for @,_; namely <zk, &n_1> =0fork=1,...,v, — 1 and equals a nonzero
constant o,_y for k& = 0. Thus the constant p, = —o0,/0,_1 # 0 exists so that a, =
dn_1Pn + Gp is right orthogonal to z* for k =0,1,...,v, — 1.

For y > 0, suppose that a,4; for1 =0,...,7—1 have been computed as ROPs, orthogonal
to ¥ k =0,1,...,v, — 1. Hence z’a, is right orthogonal to z*, k = 4,... v, + 7 — 1. By
adding multiples of z'@,, i = 0,...,7 — 1, we can satisfy the orthogonality relation. The
polynomial d; has a coefficient vector D; that can be found as the solution of the upper
triangular Toeplitz system

to b1 ... lj_ v t
lo li—a | . t;_1 li—1 t, = {1, 7% >
D;=—p, — her A 4.
. j p : : where /= 1,zkan_1>. (4.5)
to ¢ t

The polynomials a,4; thus obtained are monic and of the correct degree. This follows
from deg a,_1 < deg a,. The latter inequality follows from the definitions of v,, and «a,, and
the Tohvidov indices being nonnegative. O

Now we are ready to treat the generic situation in the following theorem.

Theorem 4.4 Let the moment matrix M be Toeplitz and lel v, be a block index. Letl the

corresponding lohvidov indices a:_l_l and o, be finite. Then the a,y = a:_l_l +a,, +1

orthogonal polynomials for block n can be obtained as follows

Upyi(2) = 2'ay,(2), fori=0,... QL (4.6)
and for w = v, + o +1 = dega, (with @, the NOP for block n)
ay4i(2z) = Zjan_1(2>pn +an(z)d;(z), j=0,.. 'aa:+1 —1 (4.7)

with p, # 0, a constant, and d; a monic polynomial of degree j.
The submatrices M[k,k] are all singular for k = v, + 1,... vy — 1 while it is regular
for k = v,4q, unless a;'L'_H =0, in which case they are all regular.
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Proof. The proof of the orthogonality and the recurrence relations is a repetition of the
previous proofs and we shall not repeat it here. We only check the claim about the regularity
of the leading submatrices.

The case where a;|L'+1 = 0 has been considered before, so we only have to discuss a:+1 > 0.
Define the unit upper triangular matrix A, by

lao(2), ..., au,(2), za,,(2),..., 2"+ " a,, (2)) = 2" A,

then with M,, = M[vn41,Vn41], we define the matrix R, as R, = M, A,. This matrix will
have the following form by definition of the Iohvidov indices and the Toeplitz structure of
M

0 T1 0 Tl

_ RTL -1 0 0 _ R;’L 1 O O

fn = 010 | 010
Ty, 0 T3] 0

with R,_; and R/ _, of size v,. The block Tj is upper triangular Toeplitz with nonzero

diagonal element o, = <1,Z“"_L+1+1ay"> and of size oz:_l_l. The block T is lower triangular

Toeplitz with nonzero diagonal element p, = <z”"+a;§+1,aun> and of size a;,; + 1. Since
for all leading submatrices det M[k, k] = det R[k, k], we have det M [k, k] = 0 for k = v, +
1,...,vp41 — 1 when o, > 0.

Because det R, = +detT;det T, det R’

n—13

R, will be regular iff R]_, is regular. For
n = 0, Rl _, is empty and the theorem is proved. For n > 0, we use the block structure
theorem for the M-table. Clearly R _, = M[oz;';_l_l; Up]Ap—1. As we know from the definition

of o;f,,, this M[e;f,;v,] is nonsingular. This proves the theorem.

O

To construct all the ROPs we need a recurrence relation to start a new block. This is given
in the next theorem.

Theorem 4.5 Using the same notlalion as in the previous theorem, it holds that the TOP
of block n + 1 is given by

al g1 (2) = 2% iy (2)pa + al(2)ga(2) (4.8)

where again p, # 0 is a constant and q, is a monic polynomial of degree av,y.

Proof. First we observe that z*n+1d,_, (z) is orthogonal to z* for af | <k <wv,—1+aj,,.
By adding multiples of z'a,, for i = 0,1,... ,oz:_l_], we can construct a polynomial

a(z) = 2,1 (2)pn + dn(2)r(2)
= G,y (2)p + 20l (2)r(2) (4.9)
which is orthogonal to z* for 0 < k < v, + O‘:+1
r(z) a monic polynomial of degree o, ;. The remaining o, ;41 orthogonality conditions can
be satisfied by adding multiples of zlal(z) for I = 0,1, ... , @1 Which are indeed orthogonal
to 2zF for 0 <k <vu, + oz;:_l_l + [ — 1. This then leads to the form proposed in the theorem:

— 1 and where p, is a nonzero constant and

32



-+

ay1(2) = a(z) + s(z)ay(z) with s(z) of degree at most o, and where ¢,(z) = s(z)
2%+t p(2). Scrutinizing the formulas reveals that p, = —,/0,-1 # 0 and ¢,(0) = s(0)
—pnpr—1/pn # 0 where o, = (1,a;) # 0 and p = (2"+1,dx) # 0.

|

Note that the polynomials d; of theorem 4.4 can be simply obtained by the recursion
dj(z) = zdj1(2) + d;(0).

The polynomial r(z) in the previous theorem is obtained in the same way with j = oz:_l_l.

4.5 Factoring the Hessenberg matrix

The recurrence relation that we have just derived for the block orthogonal polynomials gives
rise just like in the general case to a relation of the form (2.15), i.e.,

F. A, = AT,

but unlike in the Hankel case, the upper Hessenberg matrix T, does not simplify considerably.
Although it has a special structure, it is complicated to describe. There is however another
formulation, which does give simple matrices. We should then replace the previous relation
by

F, AU, = AV,

where we have replaced T, by V,U~'. The matrix U, is a simple upper block bidiagonal
matrix and V, is a unit upper Hessenberg matrix which is block bidiagonal too with a
very simple structure. Why is it that we have this extra complication with the expression
F, A, = A, T,?7 In the left-hand side, F), acts like a shift operator, i.e., a; in the kth column
of A, is replaced by zag. The right-hand side expresses these polynomials in terms of the
a;. However, by our recurrence relation, we got expressions which also involved the NOPs
ag-polynomials too. The latter do not correspond to columns of the A, matrix. Thus we
have to express them explicitly in terms of a;’s and this makes T}, so complicated. But the
auxiliary polynomial a,, is a shifted version of one of the a; and it is therefore natural to bring
that part of the recurrence which refers to one of these a; to the left-hand side, where these
shifted polynomials are indeed available. This is the philosophy of the next manipulations
of the formulas.

We use the notation w as before, but we add an index to know which block it refers to:
Wy = Uy + a4 + 1 (this is the degree of the NOP of block n). We now rewrite the different
updating schemes.

The expression (4.6) can be reformulated as

20y, 4i(2) = Ay pigr fori=0,..., 0, — L. (4.10)
The update (4.7) for j = 0 gives
2(@wy=1 + Gupy —1Pn) = du, (4.11)

(recall dy =1 and a, = 2ontitlgl = 2y, —1)-

For j > 0in (4.7), use d;(z) = zd;_1(z) + d;(0) to get
Uutj(2) = 2 (27 0o (2) + @n(2)djo1 (2)) + @(2)d;(0).
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The expression between big brackets is ay,, 4;-1. With the definition of @,, we can bring this
into the form

2 (Gt j=1(2) + @un=1d5(0)) = au,1(2) (4.12)

Finally, the update (4.8) will be rearranged. First note that the polynomial r in (4.9) is in
fact the polynomial d_+ that one would get by continuing (4.7) one step further. So, for

simplicity of notation, Set da;+1_1(2) = 1(z), so that r(z) = zt(z) 4+ r(0). We then get (recall
an(2) = s(2) + 2%+ ¥r(2))
ahir(2) = 201 (2)pn + ah(2)270 i (2) + a)(2)s(2)

= 2 (0 (2)p + a()0(2) ) + a(2)r(0) + @k (2)s(2)

= 2 (a1 (2) G (2)1(0)) + b (2)s(2)
(@ = 2a,,_1). This can be rearranged into the form

2 (@ =1(2) + tum1(2)r(0) = ap gy (2) = ay(2)s(2). (4.13)
Collecting now the relations (4.10-4.13) into one matrix relation, we get

Fo AU, = AV,

F, is still the companion matrix for the (monic) polynomial a711+1 of degree v, 41 and A, is the
unit upper triangular matrix whose columns are the coefficient vectors of the polynomials ay
fork =0,...,v,41 — 1. The unit upper Hessenberg matrix T, is decomposed as T,, = V,, U
where now V,, is a simplified unit upper Hessenberg and U, is unit upper triangular. Puzzling
the pieces together will reveal that U, is block bi-diagonal

I UOO UOI i
Ul 1 U12

Un—l,n
Unn

with U,_y, a typical off diagonal block of size a,, X 41 having the form

Oy 1 Api
o 0 0 0
1

Un—l,n:
ot 0 0 0

and U,,, a typical diagonal block of size ;41 X a,41 of the form

Qi 1 0‘:4-1
i Ir 0 0

U = 1 0 1 =rY
ol 0 0 I



where R is the reversed coefficient vector of the polynomial r(z), i.e., with a = a:;_H: r(z) =

[1 &7][z> -+ z 1]7. As for the matrix V}, this is also block bi-diagonal

Voo
V- Vio Vi
Vn,n—l Vnn

with a typical block V,,, of size a1 X any1 of the form

(e O‘:L-+1 1
1 [ O 0 —S0 T

V'rm = a;+1 I 0

Apt1

a:_l_l 0 1 0

which is in fact the companion matrix for the polynomial z%m+1 + s(z).
The subdiagonal blocks are zero everywhere except for the right top element which is 1.
We can now derive the following determinant formula for a,_:

api(z) = det(zl — F,)

because U, and A, are unit upper triangular. The latter relation gives a determinant ex-
pression in terms of the simple matrices U,, and V,,.

4.6 Krylov subspace iteration

The general setting specializes to the Toeplitz case when @Q = P~!'. Tt seems that this is not
a very practical situation because usually P~ will not be available, except of course when
P~' = PH ie., when P is a unitary matrix. However, in this case the situation is back to
the normal positive definite case.

Theorem 4.6 Suppose P = Q™! is unitary and zq = yo. Then M is positive semidefinile.
All the blocks are of size 1 and the normalized Hessenberg matriz Ty = D%QTND;,UQ is
unitary.

Proof. Let us introduce the normalized matrices AN = 'ND 12 Since Q" = P, we have
that 2, = vy, and thus M = X" X is Hermitian positive semidefinite. This 1mphes that
all leading submatrices are regular until the rank of M is reached. Thus if M has rank N,
then the columns of Xy are linearly independent and N = rank Xy = rank My. From the
general Theorem 2.6 we also know that the column space of Xy is P-invariant and also its
orthogonal complement is P-invariant (the eigenvectors of a unitary matrix are orthogonal).

This is sufficient to deduce from XH)ﬁN = [y and X PXy = TN, that PXny = XnTw
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and XEP =Ty X, Combining the latter two gives )?NTJQI = P-'Xy = PP Xy = XnTH.
Multiplying from the left with X gives Ty' = TH hence Ty is unitary. O

If 2o has only components along N eigenvectors of P, then Xy will generate the space of
these N eigenvectors and the eigenvalues of Ty, which are also the eigenvalues of Ty, will give
the corresponding eigenvalues. Since the moment matrix is positive semidefinite of rank N,
we can associate it with a discrete measure with N mass points on the complex unit circle.
The orthogonal polynomials will be the corresponding Szegé polynomials. In this case it
is more appropriate to use a Szegd/Levinson type of coupled recurrence relations. Indeed,
the Hessenberg matrix Ty is unitary and it can be easily parametrized in terms of Schur
parameters (or reflection coefficients). However taking a finite approximation T,,n< N we
get eigenvalues which are zeros of the nth Szegé polynomial and these are inside the unit
circle. Thus T, should be modified by forcing the last reflection coefficient to have modulus
1, in which case also the approximants will give eigenvalues on the complex unit circle.
This has been worked out by Gragg and his coworkers [19, 20, 1]. It has also connections
with discrete least squares approximation and matrix orthogonal polynomials for a discrete
measure [34, 35, 36, 11]. A look ahead version of the Levinson and Schur algorithm can be
found in [25, 15].

We remark however that the previous row recursion is an alternative for the most general
Toeplitz case, which has the advantage that the eigenvalue problem det(zI —T,,) = 0 for T,
can be replaced by a generalized eigenvalue problem det(zU, — V,,) = 0 with a particularly
simple structure for U, and V.

4.7 Two point Padé approximation

The rational approximants that can be obtained for the Toeplitz case are described as follows.

Recall

97 (z) = potmzApez’ -
—g7(2) = pozT ez

From M[v,,v, + 1]AL =[0,...,0]7, it follows that we may define

po 0 0 0 por oz oo floy,
0711 _ M1 Ho . . A; _ 0 p A;'
Hyn—1 o Mo 0 0 H—1

This ¢! is the coefficient vector of a polynomial of degree at most v, — 1 which is obtained
as the polynomial part of g7 (z)al(z). This is the so called polynomial of the second kind

n
and we can find it as

2’) = —0g,2" ' "%+1 4 lower order terms (4.14)

g
gt(2)al(z) —ch(2) = ri(z)= ,onzl’"’"(’L1 + higher order terms. (4.15)

|
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We can easily check from the recurrence that a),(0) # 0, so that

(z) — c! (z)/ai(z) = xz7/»" =% 4 Jower order terms

v
g"’(z) — c}l(z)/a}l(z) —  gptmtaii + higher order terms.

The rational approximant g, = ¢! /al has a total of 2v, parameters and fits in the series
g* together a total of 2v, + a,1, — 1 coefficients. Tt is therefore called a two point Padé
approximant for the two series g*.

4.8 Schur algorithm and continued fractions

In the classical situation of a positive definite Hermitian Toeplitz matrix, the Levinson al-
gorithm computes the inverse Choleski factorization of the moment matrix and the Schur
algorithm computes the Choleski factorization itself. Both are related to the coupled recur-
rence relation for Szegé OPs on the unit circle. Since we worked here with the row (i.e.,
three term) recurrence relation for the ROPs only, we only find the L factor in the LDU
factorization of the Toeplitz matrix. So, by a Schur algorithm, we shall mean here an algo-
rithm that computes this L factor recursively. To derive such a Schur algorithm, we note
that in the recurrence for the ROPs, we need to find the parameters p,, and the coefficients
of the polynomials ¢,. The coefficients of the other polynomials used in the recurrence for
the internal polynomials are contained in the r(z)-part of ¢,. To compute p, and g, we need
the values of

1,251y, 1=0,1,...,af
{ él I~ >1’> 01 nt } for the r(z) part of g,(z).

, 2ty =0,1,...,00,
n— Z l 1 — -
z¥ e +7a’n—1>7 l_0717"'7an+1
ot 1 for the s(z) part of g,(z)
VnTay, — -
z +1 ,an>, [=0,1,...,0,4,
Thus we shall need for k£ =0,1,...
s — . + +
<1,zak>, [=0,1,...,max{a] ,af ,}
and N
V4o +1 1 _ - -
<2”€ k+1 ,ak>, [=0,1,...,max{ag,,,ap,,}.
These correspond to the numbers
[ - + ]a; and | + + AL
Potmai =10 Py a1k Pogrady 400 s Paf  +11 %%

respectively. Note that these are the [th coefficients in the series

sp(z) = za’:+1+1r; (2) =or + 271 4. and s,':(z) = z_”’“_a:ﬂr;:(z) =pp+*z+---
respectively where T'Z: are as defined in (4.14-4.15). These series are related to block LDU
factorizations of M and M< as follows.

Lemma 4.7 Define Rt = MA. This matriz is block lower triangular and rif(z) is the
generator for the first column in block column number k. Define A by [ "ao(z), ai(2),...] =

z' A, with “a,(z) as defined in section 4.2. Then the matriz R~ = AT M< is block upper
triangular and z"*~'r; (1/z) is the generator for the first row of block row number k.
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Proof. Clearly R* is block lower triangular by the orthogonality of the ROPs. From
the inner product form for the ri coefficients, the generating property of rf(z) follows
immediately.

Note that A is block lower triangular by construction. Again, by the orthogonality of the
ax(z) polynomials, it follows that R~ is block upper triangular. Moreover, from the inner
product form of the coefficients of the r, (z) series, it should be clear that these coeflicients
appear on the first row of block row number k of R~ and the lemma follows. D

Thus, if we want to compute the factors Rt and R~ without computing the ROPs
explicitly and without the evaluation of the inner products, we should compute the r,f (2)
recursively, and this is perfectly possible as shown by the previous deduction. The relation
(4.5) expresses for example that the polynomial parts of s (2)d;(z) and of —p,2z’s;_,(2)
agree. We have indeed that with the notation of (4.5)

sT(z) =to+tiz " il 4 and s (2) =14z 1T 4

Therefore we can obtain the successive coefficients of the polynomials d;(z) by long division
of —p,s._1(2)/s,(z). The constant —p,, is to ensure that the first coefficient is 1. Thus d;(z)
is the polynomial part of —z7p,s._,(z)/s;(z). Recall that for j = a:_H, d; is the r-part of
Gn, 50 that this part is settled. The s-part of ¢, can be obtained similarly by computing the
first a, ., + 1 terms in the long division of —pns;';_l(z)/sz(z).

These relations form the basis of a Schur type algorithm. We do not repeat the details
here. These are available in e.g., [7]. Without further proof we formulate

Theorem 4.8 The block triangular factors RT and R~ of the previous lemma can be com-
puted recursively by a division algorithm as sketched above. The a, ¢}, vy and rf all satisfy
the same recurrence relation, which is associated with the continued fraction expansions of
the form

‘11:+O‘:+1+1 ‘

n+1 Prz
Z | al2)

n+1

whose convergents are the two point Padé approximants.

For an interpretation in terms of Schur complements, we need the left and right OPs and
the corresponding residual series. This is more natural in the context of a generalization of
the coupled recurrence relation, which we did not consider here. This requires the imbedding
of Toeplitz matrices in the larger class of quasi Toeplitz matrices.
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