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Let w(f) be a positive weight function on the unit circle of the complex plane. For a sequence of points
{ar}iZ, included in a compact subset of the unit disk, we consider the orthogonal rational functions ¢,, that

are obtained by orthogonalization of the sequence {1, z/m1,2°/m2,...} where mx(z) = Hf=1(1 —a,z), with

respect to the inner product (f,g) = % f:rw f(eie)g(eie)w(e)de. We discuss in this paper the behaviour of
¢n(t) for |t| =1 and n — oo under certain conditions. The main condition on the weight is that it satisfies a
Lipschitz-Dini condition and that it is bounded away from zero. This generalizes a theorem given by Szeg6

in the polynomial case, that is when all o = 0.
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1. Introduction

The asymptotics of orthogonal polynomials on the unit circle have been discussed in many papers

and monographs. Consider the inner product

™ -
(9= 5= [ 5Eatan ),
where g represents a positive measure on the interval [—7,7]. By Gram-Schmidt orthogonalization,
we can orthogonalize the sequence {1, z,2% ...} and obtain orthogonal polynomials {¢x}22,.

An important problem in the theory of orthogonal polynomials is to describe the limiting be-
haviour of ¢,,(z) as n — co. These results can be obtained under various conditions on the measure

1. Typically, there is a distinction between the cases where z € D, z € T or z € E where
D={ze€C:|z|<1}, T={z€C:|z|=1}, E={z€C:|z| > 1}.

In D, the polynomials converge locally uniformly to zero. This holds under rather weak conditions
like ' > 0 a.e. in [—7,7].
The behaviour in K is more interesting. Therefore we need the definition of the the Szeg6 function

or spectral factor of the measure.
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applications”, grant #G.0278.97 and the Belgian Programme on Interuniversity Poles of Attraction, initiated by the
Belgian State, Prime Minister’s Office for Science, Technology and Culture. The scientific responsibility rests with the

authors.
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Assuming that logu’ € L' (Szegd’s condition), then the spectral factor is defined by

1 ”ew-}—z

S(z) = exp{E/_7T mlogu'(@)d@} .

This is an outer function in H?(D), which implies that S and 1/S are analytic functions in D and
that the radial limit of S(re') for r — 1 exists a.e. It is defined up to a unimodular constant factor.
By taking it equal to 1, we obtain the normalization S(0) > 0. If we denote the boundary function
again as S(e'?), or s(f), thus s(6) = lim,_,;— S(re'?) = S(e'), then it holds that u/(#) = |s(8)|* almost
everywhere on [—7, 7].

A typical behaviour is that ¢,(z)/z" converges locally uniformly in E to the function 1/5.(z),
where for any function f, we define its para-hermitian conjugate fi as fi(z) = W This can also
be expressed as z"¢y.(z) — 1/5(z) uniformly in compact subsets of the unit disk D.

These results are standard and so are the conditions on the measure under which these results
hold.

For the asymptotics of ¢, () when ¢t € T, the literature is more subtle on the conditions that
should be imposed on the measure. Under various conditions, various asymptotics were derived. See
for example [5-8].

Many results for orthogonal polynomials were generalized to orthogonal rational functions. These
generalizations have shown usefull for numerical quadrature and in several signal processing and system
theoretic applications. A survey of currently available results and some applications are given in the
recent monograph [3].

The polynomial situation is generalized as follows. Given a sequence of complex points {a}72, C
D, one constructs the Blaschke factors (x(z) and the finite Blaschke products B, (z) as follows:

Z— o

ak/|04k|if (672 75 0

1 otherwise

Cr(z) = 2z k=1,2,... with zk:{

1-— Ekz’
Bo=1, Bi(z)=C(2)--C(z), k=1,2,...

The space I1,, of the polynomials of degree at most n is replaced by the space £,, of rational functions:
L, =span{By,...,B,}.

When we introduce the notation

n

Wn(z):]___[(l—akz) and ﬂ:(z):ﬁ(z—ak), k=1,2,...

k=1 k=1

then we can also express L, as L, = {pn/7n :pn € ll,}. By orthogonalization of the sequence
{Bo, B1, ...}, one obtains the orthogonal rational functions {¢y, ¢1,...}. Note that if all the ap = 0,
then the rational situation reduces to the polynomial case. In analogy with the polynomial situation,

we shall call the coefficient a,, in
F(2) = anBu(2) + ne1 Buoi (2) +++ + ag € Lo,

the leading coefficient of f (with respect to the basis By). We also denote for a function f, € £,\Ln-1

the reciprocal function

fa(2) = Bn(2) fax(2) = @ + @1 Bn(2) /Bpo1 (2) + -+ - 4+ G0 By,
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The leading coefficient of ¢, will be denoted as k,: ¢, = k, B, + ---. Note that &, = ¢%(a,). We
will use the normalization that k, is real and positive. The notation introduced in this section is
consistently used throughout this paper.

The previous theorems about the asymptotics for the orthogonal polynomials were generalized to
the rational case (see e.g. [3]). Inside D the orthogonal rational functions converge locally uniformly
to zero, while the behaviour of ¢, in E is expressed by the behaviour of ¢} in ID. We find, under
rather rather mild conditions like log u’ € Ly, and divergence of the Blaschke product with zeros ay,
that (1.1) holds for appropriate p,, € T.

(1 —anZ)QbZ(Z) 1
P S

However, in the monograph [3], there is no theorem giving the asymptotics of ¢, on T. In this paper

locally uniformly in D. (1.1)

we shall give the rational form of a theorem that can be found in Szegd’s book [8, p. 297] for the
polynomial case. If we suppose that du(f) = w(#)d8 is absolutely continuous and the weight w satisfies
0<m < w(l) <M < oo uniformly in [—m, 7], and if it satisfies the Lipschitz-Dini condition then
with some additional constraints on the asymptotics of the prescribed points {a;} we shall prove that
(1.1) also holds uniformly on T and we shall give the rate of convergence.

For the asymptotics of the points @ = {aj : k € N}, we shall assume some limiting distribution
that is contained in a compact subset of D. Thus 1 — |ax| > d > 0 for some d > 0 that does
not depend on k. Moreover, we assume that the counting measure, that is the discrete measure
vy = % " 1 04, that assigns a mass 1/n to the points oy for k = 1,...,n, has a weak star limit v“,
that is lim, . [ f(2)dv2 (2) = [ f(2)dv™(2) for all functions f, continuous in D. We shall denote this
as v = 0o

n
Unless stated otherwise, we shall assume the following conditions
(AC) The measure p is absolutely continuous: du(8) = w(#)dé, with
0<m<w@d) <M< oo forfe[—nm,n].
(LD) The 2r-periodic function w(#) satisfies a Lipschitz-Dini condition:
AL>0IA>0V0>0V5>0: |w(@+38) —wd)| < L|logs|~1=2,
where L and A do not depend on 6 or é.

(CI) The point set o = {a : k € N} is compactly included in D, i.e. @ C C' with C' a compact subset

of D, and the associated counting measures v converge to some v in weak star sense: vy — v°.
n

Note that (AC) implies that the Szegd condition logw(8) € L}, is satisfied. From (Cl) it also follows
that the Blaschke condition )~ (1 — |ax|) = oo is satisfied, which means that the infinite Blaschke prod-
uct B(z) = [132; ¢k (2) diverges. The requirement v2 — v® allows us to write the root asymptotics
n
for the polynomials 7 in terms of logarithmic potentials of the v®. Recall that for a measure v, its
logarithmic potential is defined by V,(z) = — [log|z — &|dv(€). It can be shown [2] that v? —= v
n
implies the root asymptotics
Jim 7)Y = exp{-Via(2)}, = € C —supp(s?),
and

lim sup |7r;:(z)|1/n <exp{—Via(2)}, z€C

n—oo
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uniformly in each compact subset of the indicated regions.

The following is then a generalization of Theorem 12.1.3 of [8, p. 297].

Theorem 1.1. Suppose that the conditions (AC), (LD), and (CI) are satisfied.
Then there exist a sequence of unimodular constants p, such that the orthogonal rational functions
¢ satisfy
1 —@,2)0%(z 1
L -mad()
VE |05n|2 S(Z)
The rate of convergence is O(log n)_/\. Thus also, with the same rate of convergence,

% = SO =w(8), witht=e? and P(t,w)=——

the Poisson kernel.

uniformly for z € DUT.

The proof of this theorem will be given in the next sections and it essentially repeats Szegd’s proof
of the polynomial case (see [8]); only the conditions on the ay and related technicalities are different.
The idea is as follows.

First we generalize the notion of trigonometric or Laurent polynomial. Note that a Laurent
polynomial of degree n can be defined as an element from the space A, =11, - I1,,, with TT,,, = {p, :
p € I1,}. For its rational generalization, we consider elements from the space R, = £, - L,. where
Low=A{f: fc € L,}. Thus if f € R,, then f(z) = q(2)/[m.(2)7}(2)] where ¢ € Ily, is a polynomial
of degree at most 2n. If all oy are zero, then R,, = A,, is the space of Laurent polynomials of degree
at most n.

Then the inverse of the weight function: 1/w(#) is approximated arbitrary close by a positive
trigonometric rational function, say g,(#). Thus w(8) ~ w,(0) = 1/g,(0) = 1/|h,(#)]*. 1t is meant
that the approximant g, is of the form g, (8) = G, (") with G,, € R,_; and h,(8) = H,(e?) where
H, € L,_ is the outer spectral factor of g,. The nth orthogonal rational function %, for the weight
w, can be explicitly written in terms of H,, and it can be shown that H,, converges to the inverse 1/
of the spectral factor of w, not only in I but also on T. This gives the asymptotics for 1,. It then

remains to show that ¥, and ¢, have the same asymptotics.

2. Approximation of the weight

We first state a simple lemma, whose proof is obvious, but we formulate it separately for easy
reference later. It says that if (AC) and (LD) hold then also the inverse 1/w satisfies a Lipschitz-Dini

condition of the same order.

Lemma 2.1. Assume that (AC) and (LD) hold, then there is some constant K such that for all § > 0

1 1
— K|logé
w(f + 0) w(())‘ < Kflog

|—1—)\

holds.

Proof. This is obvious since
1 1 ‘ . w(f 4 6) — w(h)
] w(@)w(f+ )

‘w(0+5> w(d)

‘ < Lm™?|log §|717A
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Thus the lemma holds with K = Lm™2. O

We now want to find an approximation for the orthogonal rational functions (ORF) with respect
to the given weight function w. We know that the space |J;—, R, is dense in C(T) with respect to
the supremum norm if and only if the Blaschke product diverges [3, Theorem 7.1.2]. Thus, it should
be possible to find some approximant in R,, for 1/w that is as close to 1/w as we want.

The next theorem is a Jackson IIT type of theorem [4, p. 144]. Tt says how good such an
approximation is as a function of n. It depends on the smoothness of 1/w. In the polynomial case
it states the following. Let f € Cy, be a continuous 27-periodic function with modulus of continuity
w(f;8), that is w(f;8) = sup{|f(z1) — f(z2)| : |21 — 22| < 6}. Then the best approximation in the set
of trigonometric polynomials of degree < n gives an error that is at most w(f; QTL—”) in [—7,7]. A similar
theorem was obtained in [2, Lemma 4.6] for the rational case. It requires some extra assumption on

1/n

the distribution of the ay so that asymptotics |7 (z)|'/" can be estimated. This is where the condition

o X o :
v, — V' coInes 1in.
n

We include it here without proof.

Theorem 2.2. Suppose the point set « satisfies the condition (CI). Then every real 2w -periodic con-
tinuous function f € Car can be approzimated by a trigonometric rational function r,(0) = R, (')

with R, € R,_1 such that for n large enough there is some constant Ky such that

sup |£(6) = ra(6)] < Kro(f3 )

[_77'777]
where w(f;8) denotes the modulus of continuity for f.
Obviously the function r,(6) in this theorem is of the form r, = Tn_l(H)/|7rn_1(em)|2 with T,,_; a

trigonometric polynomial of degree at most n — 1.
According to this theorem we can find a function G,, € R,_; such that g, () := G, (') satisfies

‘ﬁ—gn((-))‘ < Kw(= 7). 2.1)

w n

This function g, (6) is uniformly bounded and positive if w is uniformly bounded and positive. This

follows directly from (2.1). So we can find positive constants g, G and ng such that for n > ng
0<g<gnf) <G <o0. (2.2)

Next we show how good the approximation of w(6) by 1/¢,(9) is.

Lemma 2.3. Suppose the conditions (AC), (LD) and (IC) hold. Then there is a constant K' depend-
ing only on m, M, X and L so that for n large

[w(f) = g7 (0)] < K'(logm) ™',

Proof. First note that

‘ﬁ—gn(@‘:

w(f) —g;‘(‘?)‘ [w(6) — g5 (0)]

w(B)gn' (6) |~ maxg |w(6)] maxg gz ()]
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Because the denominator on the right-hand side is bounded, this inequality and (2.1) imply that there

exists a positive constant K, such that

w(f) —

7| <K ):

From Lemma 2.1 we get w(1, ) < K log(Z)~'=*. Hence if n is large enough, the result follows. [

Let us now introduce the spectral factors

1 L + z
S(z) = exp {4ﬂ_ / i log 'w(H)dH}

and

1 ™ ZH-I-Z
H,(z) =exp { i / — loggn(ﬁ)dﬁ} .

Their boundary functions are denoted as s(f) = S(e’) and h,(0) = H,(e?’). So w(#) = |s(6)|? and
gn(0) = [P ()],

We now prove that 1/H,(z) converges to S(z) uniformly in |z| < 1. More precisely, we prove

Lemma 2.4. Assume that (AC), (LD), and (CI) hold. With the notation just introduced we have
|S(2) = 1/Hy(2)] < Q(log n) ™

uniformly in |z| < 1. The constant () depends on L, A, as well as on m and M, but not on n or z.

Proof. Because of analyticity, it is sufficient to give the proof for z € T. So we switch to the notation
hy(0) and s(f). Thanks to the previous lemma’s, the rest of the proof is almost a copy of the proof
in the polynomial case [8, p. 279-280]. The convergence of the moduli and the arguments is treated
separately.

First it is noted that

9. (0)] _ 1
Is(®)] - b7 |\—“ T )”—oaogn) Ym0 (2.3)

is trivial, because of Lemma 2.3, condition (LD) and (2.2).
Szegd then argues that the convergence of the arguments is exactly like the convergence of the

Cauchy principal value of the integral

/_: log[w(w)gn(w)] cot 6 g * dw.

which he splits into two terms

ww)gn(w) O -w b —w
/En log ©(@)9n(0) cot 5 dw—l—/E; log[w(w)gn(w)] cot

dw.

The set F, C [-m,w] is the neighborhood of # where one has |# — w| < n~! modulo 27 and FE! =
[-7, 7]\ E,. Because of Lemma 2.3 and (2.2), we can bound the absolute value of the second integral

as in [8] by

ot

O(logn)_l_A/ c _w‘dw:O(logn)_k.
2
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For bounding the Cauchy principal value of the first integral, Szegd uses Bernstein’s theorem for
trigonometric polynomials. This can be generalized, but we do not really need it here. Indeed, w
satisfies the (LD) condition |w(w) — w(#)| < L|log|w — 8]|~'=*, and therefore, for |w — 8] small, also
|log(w(w)/w(#))| has a bound of the order O(|log|w — 8]|71~*). Because of Lemma 2.1, we have the
same bound for |log(g,(w)/gn(8))|. Thus also the first integral is bounded by

0(1)/ log |6 — ][]0 = w|~"dw = O(log n) .
E,

The remaining details of the proof are exactly as in [8, p. 279-280] O

3. Two systems of orthogonal rational functions

We now have an approximation w, = 1/g, for w. We consider the orthogonal rational functions
(ORF) ¢y, for w and the ORF 1, for w,. We then derive the asymptotics for ¢,, from the asymptotics
for ¥, = Vp,.

So, we suppose that we have an approximant w, = 1/g, as described in the previous section.
Assume that the spectral factors of w and g, are denoted as before by S(z) and H,(z), and that we
set 5(0) := S(e'’) and h,(8) :== H,(e"’). Thus

1 1 1

o) = N ()~ e T B 3D

For ease of the notation below, we shall assume that g, € R,—_1 (note the index!), so that the

outer spectral factor H,, has the form H,(z) = ¢,—1(2)/mp-1(2) € L,—1. Assume that we denote by
Pk € Ly the kth orthogonal rational function for the weight w, (6).
We first give an explicit expression for the functions 1,(z). (Recall the notation By and zj from

the introduction.)

Theorem 3.1. Suppose H,, € L,_1 is given and w,(0) = 1/|h,(0)|? with h,(0) = Hn(em) as defined
above. Then the kth orthonormal rational function ,, orthogonal with respect to the weight function

wy, 18 given by

Yok (2) = prkzk

T Tanl?
ﬂsz_l(z)Hn*(z), k>mn.
k

1—apz

The constant pni, € T is for normalization, which we choose to be Hy (o) /|Hp(ou)|.

Proof. First, it is clear that ¥,; € L. We have to show that ¢, L, Lr—1 and that ||¥uk|w, = 1.
Suppose | < k. Any function f; € £; can be written as fi(z) = pi(z)/mi(z), with p; € 1I;.

Furthermore, we set pk(z) = 2"pu«(2) if p, € 11, \ lI,,—1 and we assume that H, = ¢,—1/7,—1. Also
recall the definition of z = @i /|ak| if ax # 0 and zp = 1 otherwise. We set 7, = Hle Z.

e Orthogonality: According to Cauchy’s theorem, we get (t = e')
<¢’I’Lk‘7 fl>wn

= PnkZk

) de
) Hi () (1)
1 — Jag/? Trt i= l+1( a;) p;(t) 46
- Hz A (1= ayt) Gn- 1(t)

V1= |ag)? /“ o (1) tBk 1(t) py(t
27 —r "

1 —agt T (t

= PnkNk
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— ;) pi(t) dt
=p, 1— 2 f{ IT;= l+1 l g
= Pkl 1 = o[ 5 — n (=) o (1) 1 0

e Normalization:

<¢nk ) wnk>w"

1—|agl? 7 tBy_1 (1) H,(t) de
= /_7r oo () T2 T e B (0 oD HoeD

1 t dt 1 —|ag|?
= (-l b T =TT
2mi Jij=1 (1 —apt)(t —ap) & 1 — |oy]
O

Now we have the ORF {¢r} with respect to the weight w and we have the ORF {1} with
respect to the weight w,,. We define the functions 1, := 1,,. Our next step is to compare ¥, and ¢,,.
We introduce the notation k, = ¢%(a,) and k], = ¥%(a,) for the leading coefficients in their
expansions with respect to the basis {B;}. We can find the explicit form of s/,
- Hp(an) | Hy(an)]
K =r (o) =P, = > 0. 3.2
Y AV U 2
Where p,, = ppnn. By the choice of p,;, we find that k], > 0. Recall that we also used the normalization
Kn > 0. We now express ¢, in the basis {¢,x}.

Lemma 3.2, The ORF ¢ with respect to w and the ORF 1, with respect to the weight w, are
both supposed to be normalized by making their leading coefficients ki, respectively k)., positive. Then
¢n can be expressed in terms of the ¥, by

n—1

®n (Z) = anwn(z) + Z AnkPnk (Z) (33)

k=0

where

= ka1 — laal?/|Ho ()] (3.4)

and
1

nk = 5/ (8P () (w0 (0) — w(6))dO, k=0,... n—1.

Proof. 'This is easy to work out since by orthogonality we have for £k =0,...,n— 1

iy = % / " o (D) Bur (D (0)d0

tom [ enburDu(8)de.

The last term vanishes because ¢, L, L,—1. So we get the expressions for a,x, £ =0,...,n—1. The

form of a, follows from a, = K, /k], and (3.2). O
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4. The asymptotics

Our strategy is now to develop the asymptotics for 9, and then show that the asymptotics for
¢y and ¥, are the same, thus we shall have to show that ZZ;% Gk Vnk — 0 and a, — 1. Note that
the expression for 1, contains H,, and the asymptotics for the latter are already known (see Lemma
2.4).

We need to introduce first the reproducing kernels (or equivalently the Chistoffel functions) for

L,. For the weight w, the reproducing kernels are k,(z,u) = 3 7o ¢x(2)dr(u). The kernels k,(z, u)

feature in the following optimization result that holds in any reproducing kernel Hilbert space.

Lemma 4.1. For a positive measure u on T, consider the rational function spaces L,, as subspaces of
L*(T, ), let ky(z,u) be the reproducing kernel for L,,, then for firxed u € DUT
1
min Fll? = . 4.1
fn€Lln, fn(u)=1 || ||M ky, (ua u) ( )

The minimum is reached for f,(z) = kn(z,u)/kn(u, u).

The next lemma is from [3, Theorem 9.6.4]. Under very mild conditions on a (which are satisfied

when (CI) holds) and when logw € L!, it gives the asymptotics for the reproducing kernels.

Lemma 4.2. Let k,(z,u) denote the reproducing kernel for L, for the measure u with logyu' € L1
and S the spectral factor for . Then if (CI) holds, we have for z,u € D

1
(1—2)S(=)S(0).

This convergence is uniform for z and u in compact subsets of D.

Jim_fen (2, ) =

Moreover it holds that [3, Theorem 2.2.3] k, (2, o) = k,¢% (2) and ky (@, @) = k2. (Recall that

Kpn > 0.) Thus, the previous lemma gives

lim £2(1 = |a,|?)[S (@) = 1. (4.2)

n—oo

We are now ready to bound s 2.

Lemma 4.3. Under the conditions (AC), (LD), and (CI), assume that S is the outer spectral factor
of w. Let ky,(z,u) be the reproducing kernel for L, and let ¢y(z) = kpBg(z) + -+ € L1, be the ORF.
Furthermore, let H, be the outer spectral factor of g,, the approzimant of w=' as defined by the
Jackson 111 theorem. Then

1 — Ja,|?

(1 = o[]S (en)|” < o)

(1 + O(log n)_l_/\) . (4.3)

Proof. Because L,, C L,+1, the minimum of Lemma 4.1 does not increase if n increases
1 1

kp(u,u) = kpyq(u,u)

The last bound is by Lemma 4.2. If we put v = «,,, we get the lower bound.

> > (1= [u?)|S (u)]

For the upper bound, we consider the ORF 1, for the weight function w,,. Let us define
h* * _ 2

T r(an) KL (11— anz)Hu(ay) (4.4)
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This follows because of Theorem 3.1 and the fact that H,, € £,,_1. Because f,(z) isin £, and satisfies
Ja(an) =1, we find from (2.3), (4.1) and (4.4)

L _ 1 2 _ b

ggg _Trw(0)|fn(t)| df, t—=e
YU Ry L OLAU 46
[ Hy(an)]? | t—ay,

L )

~ THa(on)? 27 Jon = a?

_ (A —Jan®)? 1 tdt L
 [Ha(an)]? 2mi fjﬂ:] (t — o) (1 — ant)t (1 +O(logn) A)

(1 + O(log n)_l_)‘) .

So we find the result. O
It now follows that we have as in (12.4.3) of [8]

Lemma 4.4. Let (CA), (LD), and (CI) hold, then the coefficient a,, from Lemma 3.2 satisfies
an =1+ O(logn)™.

(Recall the normalization of the ¢, and the 1,.)

Proof. Because S and H,, are outer in Lemma 2.4 and because of (4.3),

1
Kn = 5 + O(logn) ™.
|5 (n) | V1 = [ |?
From (3.4) we find
lan| =1+ O(logn)=>.
Because of the normalization of ¢, and %, this holds without the modulus bars. O

We now try to find a bound for the second term in (3.3). The idea is to find a uniform bound
for |¢,(¢)|. The remaining integral to be bounded is then of the form 5= [ |kyu—1(wn, z,t)|d0 where
t =€ and ky_y(w,, 2,t) = ?:_01 wm(z)m is the reproducing kernel for £,_; with respect to the
weight w,,.

We first search for an upper bound for 4, (t) if t = €' € T.

[9n(t)] =195 = /1 = |an|? f_ig)t
=1 -l thf(g;‘ = ? =0 (4.5)

The last inequality follows from the fact that we choose {a;} to lie in a compact subset of D: 1—|ag| >
d, and that g, = |h,|? < G (see (2.2)).

We will use the Bernstein inequality for rational functions [1, Theorem 7.1.7] to bound the kernel
kp—1(wn, z,t).
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Lemma 4.5. For every rational function f € L,, we have

(093
|_Z olenl i e,

— agz|?

where ||.||t, denotes the sup-norm on the unit circle.

We also make use of the Christoffel-Darboux-relation (see [3, Theorem 3.1.3]).

1 ()51 (2) = Yn- l(t)@bn—l(z)'
1= Cuor (H)Gnm1(2)

These allow us to prove the following lemma.

kp—y(wp, z,t) = (4.6)

Lemma 4.6. Assume (AC), (L.D) and (CI) hold. Then we can find the following upper bounds for
the kernel ky,—y (wy, z,t).

|kn_1(wn,z,t)|§8(n;751)G:O(n), 2 tEDUT
and
4rG O(1)
Bl —~ 10—~

The constants d and G are such that 1 — |ag| > d > 0 and ¢,(0) < G.

|fn—1(wn, 2,8)] < t=¢? z=¢"€T.

Proof. First we note from (4.6) that for ¢t € T
(t = @nmt)(1 = Gami) S(2)

kn—l(wnvzvt):_ 1—|Ot 1|2 5 1
n—

where, as a function of z,

F(z) =¥n_ () n_1(2) = Y1 (t)n-1(2) € Ly-1-

Moreover f(z) vanishes for z =¢, t € T.
Since the first factor in the previous expression for k,_1(wy,, z,t) is uniformly bounded (by 4/d)
for ze DUT, t € T, it is only a matter of bounding

/) _ f) -

z—1 z—t

/ F€2+ (1 - E)h)de. (4.7)

By Lemma 4.5, we get for z € T,

2)| < Z |2||f||T

But, because f’is analytic in D, the previous inequality extends to the interior of the disc. By (4.5),
[|fllr = O(1) which shows together with (4.7) that the kernel k,_;(w,z2,t), t € T is of order O(n)
for ze DUT.
Taking the complex conjugate of &k, (w,, z,t) interchanges the role of ¢ and z, so that the result also
holds for t € D.

We can get the other bound for ¢, z € T by using the Christoffel-Darboux-relation (4.6) as follows

Dr_1 (V-1 (2) = Pt (D) Pn-1(2)
1= o1 (H)Cna1(2)

|kp—1(wy, z,t)| =



A. Bultheel, P. Van gucht / Asymptotics of ORF 12

2||¢n—1||'2ﬂ‘ [t — ap_1||z — o]
|t—Z| 1- |04n—1|2

So we find from (4.5)

8G 4G e
<5 - — i S 7 :
it =z dsin(FF)| T A0 -]

|kn—1(wn7 2, t)|
[l

We have now prepared all the material to proceed along the same lines as in the proof given
by Szegé for the polynomial case. In fact we could just refer to [8, p. 303-304], but for the sake of
completeness, and to show where all the previous results fall into place, we do include some of the
details.

So our next step is to derive an upper bound for the second part of (3.3). We shall prove below

that ¢, (t) is uniformly bounded. The remaining integral can be bounded as follows.

Lemma 4.7. Assume that (AC), (LD) and (CI) hold. Then we have the following bound uniformly
in z:
1 /7 :
—/ |kp_1(wn, 2,t)|d8 < O(logn), z€DUT, t=_¢".
27 J—n -
Proof. The proof is along the same lines as the proof of (12.4.7) in [8]. Since k,,_1 (wn, z,t) is analytic
in z € D, it reaches its maximum modulus on the boundary. Thus if we have sup cr |ky—1(wy, s,1)| =

|kp—1(wy, e, t)], we can bound for z € DUT
/ |kp—1(wy, z,t)|d6 S/ |kn_1(wn,e”,t)|d0.
-7 -7

Therefore, it is sufficient to prove the theorem for z € T. For z € T, we split the integral in two parts

1 1 1
ﬁ/ |y (W, 2, t)|dO = ngn |y (W, 2, ) |dO + 5/]% |y (w2, 1)|d6.

-

Where F, refers to the part where |# —~| < n~! holds modulo 27 and E!, = [~7, 7]\ F,. For the first
integral we use the first upper bound from Lemma 4.6 which gives an upper bound of the form O(1).

For the second we use the second upper bound from Lemma 4.6. This gives

de

We now try to find a bound for |¢,(z)| if z€ DUT.

Lemma 4.8. Suppose (AC), (LD) and (CI) hold. Then there is an absolute constant U such that
|¢n(2)| < U uniformly inn and z € DUT.

Proof. This proof is again completely similar to the proof given by Szegé [8, p. 304]. Since ¢,, has
all its poles in E, it is sufficient to prove this for z =¢ € T. Suppose

max | ¢, ()] = U = U(n).

|t|=1
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From Lemma 2.3 and Lemma 3.2, we find (1 = e'%)

1 r |n—1
U < fanlln@lz + UK logm) ™= max o [ 5 T 6. (49)
= -7 |i=o
Using (4.5) and Lemma 4.7, we can bound (4.8) as
U<O(1)+ U O(logn)~'=* O(log n). (4.9)
This implies U = O(1). O

5. Proof of the main theorem

We now have all the ingredients to prove our main result. As we have said before, the previous
lemma’s generalize all the polynomial results used by Szeg6 to the rational case, and the proof is now

essentially reduced to a transcription of Szegd’s proof.

Proof.  (of Theorem 1.1) We write the superstar conjugate of (3.3) as

61(2) = ans(2) + Ba(2)Bne(),  Bn(s) = 3 nithus(2)
k=0

Recall that a, > 0 by the normalization of the ORF. Substitute the expression for 1, = ¥, from
Theorem 3.1 and multiply with p, (1 —@,2)/y/1 — |a,|? to get
1-a,z |, 1—a,z
Pn\/ﬁ%(@ = anty(z) + Pnﬁﬁ'n(z)
Let us call the second term in this expression r,(z). Because of the (CI) condition and because of

Lemmas 4.7 and 4.8 we find that r,(z) = O(logn)™".
Furthermore, we know that a, = 1+ O(logn)~* by Lemma 4.4. By construction S and H,, are

Epy(2).

outer spectral factors with the same normalization, namely S(0), H,(0) > 0. By this and Lemma 2.4
we have that H,(z) = 1/S(z)+ O(logn)~" uniformly in D. This can be extended to T because S and
H,, have continuous boundary values.
Thus
1l-w,z |, Y Y
P i(2) = (14 (g 1)) (1/5(2)+ Olfogm) ™) + ra(2)
=1/5(2) +1n(2), ra(z) =O(logn)™.

The unimodular constants p,, were defined as H,(ay,)/|Hy ()|, which can not be defined in terms of
¢n. However, since we know that a sequence of unimodular constants exists, we can as well take any

other sequence of unimodular constants, as long as the left-hand side converges to a positive constant
for z = 0 because that is how S(z) is normalized: S(0) > 0. Thus we can choose p,, = |¢%(0)|/#%(0).

This proves the theorem, since the second formula for the modulus square is trivial. O
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