Interpolation by rational functions with nodes on the unit circle
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Abstract. From the Erdés-Turan theorem [10], it is known that if f is a continuous function on T = {z : |z| = 1}
and L, (f,z) denotes the unique Laurent polynomial interpolating f at the (2n + 1)th roots of unity, then

Jim [ 17 = Lu(f2)az] =o.

Several years later, Walsh and Sharma [14] gave a similar result but now considering a function analytic in D = {z :
|z| < 1} and continuous on DU T and making use of algebraic interpolating polynomials in the roots of unity.

In this paper, the above results will be generalized in two directions. On the one hand, more general rational func-
tions than polynomials or Laurent polynomials will be used as interpolants, and on the other hand, the interpolation
points will be zeros of certain para-orthogonal functions with respect to a given measure on T.

Keywords: orthogonal rational functions, interpolation, R-Szegd quadrature

MSC °91: 30E05 41A25 41A05 65D30

1. Introduction

The analysis of the mean convergence of a polynomial interpolation process on a finite interval of
the real line has been studied throughout the century. On the other hand, consider an integral of
the form I,(f) = ff f(z)du(z), (—oo0 < @ < b < 400) where in general p is a complex measure
on [a,b], and suppose it is approximated by a numerical quadrature formula of the form I,,(f) =

i1 Ajf(z;) such that I,(f) = I.(f) for all f € I1,,_ (the space of polynomials of degree at most
n — 1), where the mutually distinct nodes z; € [a, b] are given in advance. Then the convergence of
the interpolation process and the convergence of the quadrature process are closely related, since
In(f) = 1. (Pu(f, ), where P, (f,-) € 11—, is the polynomial interpolating f in the nodes {z;}7_,
(see e.g. [11]). Thus

b
10 = LI < [ 1f@) = Pollldnte)]

It follows that the LP-convergence (p > 1) with respect to |dul|, of sequences of interpolants,
implies convergence of the quadrature formulas to 7,(f). Thus an adequate selection of the nodes
{z;} ={z;n}j-, turns out to be fundamental. So far, investigations were concerned with systems
of nodes that were roots of orthogonal systems (for further details see [12] and the references found

therein).
Here, instead of interpolating a function on an interval [a,b], we shall be mainly concerned
with functions on the unit circle T = {z € C : |z| = 1}. The following notation shall be used.
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The open unit disk is denoted by D = {z € C : |z| < 1} and the external of the closed unit
disk is E = {z € C : |z| > 1}. For any function f, the para-hermitian conjugate is defined as
f«(2) = f(1/Z). By Apq = {E‘;:p a;z’ : a; € C}, we denote the space of Laurent polynomials
(L-polynomials), if p and ¢ are integers such that p < ¢. A is the set of all L-polynomials and II
the set of all polynomials. Finally, if P € I1,, \ IT,,_y, then P*(z) = z" P.(z).

In contrast to the algebraic polynomial interpolation, where a large number of different node
systems has been used, for the interpolation of functions on T, most of the results make use of the
roots of unity as interpolation nodes. (For other sets of nodes, see the recent paper [8].)

Assume that f is continuous on T, i.e., f € C(T). Take into account that A is dense in C(T).
Then it seems natural to find sequences of interpolating Laurent polynomials with nodes on T and
converging to f in a certain norm. Thus, from the classical Erdés-Turdn Theorem [10], it can be

deduced that

THEOREM 1.1. Let f € C(T) and {;2n41} be the (2n+ 1)th roots of unity. Let L, (f, ) denote
the L-polynomial in A_,, ,, interpolating f at the nodes {$j72n+1}?i-{-1. Then

dm [ 176 = L7, 2)lde] =0,

On the other hand, several years later, Walsh and Sharma [14] gave a similar result but now
considering a function f analytic in D and continuous on DU T.

THEOREM 1.2. Let f be analytic in D and continuous on DUT, and let p, € 11, be the polynomial
of degree n coinciding with f in the (n+ 1)th roots of unity. Then the sequence {p,} converges to
f on T in the mean convergence of second order, i.e.,

i [ 1£:) = pa(a) *ldel =0,

n—oo
Consequently, it holds that lim,, . pn(2) = f(z) uniformly on compact subsets of D.

In this paper, Theorem 1.1 and 1.2 will be extended in two directions. Firstly, more general rational
functions with prescribed poles will be used instead of polynomials or L-polynomials, and secondly,
the roots of unity as interpolation nodes will be replaced by the zeros of certain para-orthogonal
functions (see Section 2).

The paper is organized as follows. In Section 2, some auxiliary results concerning orthogonal
rational functions and quadrature formulas will be given. They are needed in the subsequent
sections. Section 3 is devoted to the study of the convergence of the interpolation process in the Lo-
norm with respect to a given weight function. In Section 4, the interpolation of functions analytic
in a domain containing T will be considered and the uniform convergence shall be studied.

2. Preliminary results

Let us first fix our spaces of interpolating functions. For a given sequence A = {oej};?il C D,
we consider for n = 0,1,2,... the nested spaces £,, of rational functions of degree n (numerator

and denominator degree at most n) which are spanned by the basis of partial Blaschke products
{By}}_y where By =1, B, = B,_1(,, for n =1,2,... and the Blaschke factors are defined as

o, oy — 2

Cn(2)

- lan| 1 — @2
By convention, we set @, /|a,| = —1 for a,, = 0. If we set

n a.
an(—l)”Hﬁ7 then B, (2) = n,——L
j=1
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where

wo =1, wy(z Hz—ozj and m =1, m,(z Hl—oz]
7=1 7=1
Clearly, L,, is the space of rational functions with poles among the prescribed points 1/@;, i =
1,2,...,n, which are all in . Thus

L, =span{B : k=0,1,. ,n}_{ peﬂ}

The space £ is the closed linear span of all {B;}72,. With the para-hermitian conjugate f.(z), we
define for f,, € £, \ L,—1 the superstar conjugate

Ja(2) = Bu(2) fux(2) € £

In general, our interpolating function spaces will be of the form R,, = £, + £,, p and ¢ are
nonnegative integers and Ly, = {f : fx € L} =span{l, By, ..., By} =span{l,1/By,...,1/B,}.
Therefore,

1 1 P(z)
= — iy —, 1,By,...,. By p = —————:PE€Il .
vaq span {Bp’ ’ B1 y Ly P21y ’ q} {wp(z)ﬂ_q(z) € p+q}

The closed linear span of {...,1/B,,...,1,...,B,,...} is denoted as R, i.e., R = L + L,. Observe
that Rg, = L,. Furthermore, if all the a; are equal to zero, then By(z) = 2 and one has
Rpq = Ay, Writing A = {ozz ©, and A* = {1/@; : a; € A}, and B_; = 1/By = By, it is
easily seen that {By}}__ replesents a Chebyshev system [9] on any set X C C\ (AU A*). Thus,
given n 4 1 distinct nodes {z;}] "t C C\ (AUA*), and n+ 1 arbitrary complex numbers {y;}; i
there exists a unique R, € Rpm (p+ ¢ = n) such that R,(z;) = y;, j =1,...,n+ 1. When
y; = f(x;), we will sometimes write R, (f, ).

Now that the scenery has been prepared, the first step will be to consider sets of interpolation
nodes which we will assume to lie on T. In analogy with the polynomial interpolation on intervals
of the real line, where the interpolation nodes are all in the interval (they are taken to be zeros
of orthogonal polynomials w.r.t. some positive measure), we shall take interpolation points on the
circle T. However, if y is a positive measure on [0, 27) and if {¢,}72 is a sequence of orthogonal
rational functions obtained by orthogonalization of the sequence {B,,} with respect to the inner

product
= [ r@a@aut), o=,

then it is known [6] that the zeros of ¢,(z) lie inside D for each n. Thus these zeros cannot be
taken as interpolation nodes. However, we can overcome this drawback by introducing the functions
(called para-orthogonal functions)

Qn(z,7)=¢n(2) + 715 (2) € L, TET. (2.1)
The following theorem holds [2].

o0
n=0"

THEOREM 2.1. The para-orthogonal functions @, satisfy
1. Qn(z,7) has n simple zeros which lie on T.

2. Let xy,...,x, be the zeros of Q,(z,7). Then there exist positive numbers Ay, ..., A, such that

the quadrature formula
=Y Aif())
i=1

is exact in Rp_1 n_1, that is, I,(f) =1,(f) = OZW F(eYdu(8) for all f € Ro-1p=1-
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Moreover, it was also proved in [2] that the only quadrature formulas 7, (f) with distinct nodes
{z;} on T, exact in R,,_1 -1 are just the ones given in Theorem 2.1, so that

In(f) = Tu(Rna (£ )

where R,_1(f,*) is the interpolant from R,, (p and ¢ arbitrary nonnegative integers such that
p+q=n—1) of the function f at the nodes {z;}. The formula I,(f) = >>7_; A;f(z;) as defined
above is called an n-point Rational Szegé quadrature formula (R-Szegé formula for short). In [3]
the following was proved:

THEOREM 2.2. Let {z;}7_; be the zeros of Qu(z,7) = ¢n(2) +7¢%(2), 7 € T. Let HY, _,(f,2) be

the quasi-Hermite interpolant in R,_y ,—1 satisfying

W) = 1), 5=1,m
[HQn—l]l(faxj):f,(mj)? ]:1,...,7L; ]%ka 1§k§n

Then the corresponding n-point R-Szegd formula is given by

j=1
The following result concerning density will also be required. See [1, 6].
THEOREM 2.3. With the notation introduced, we have
1. The space R is dense in LP(T), 1 < p < oo and in C(T) iff Y 1oy (1 — |ou|) = o0.

2. The space L is dense in the class of functions continuous on DU T and analytic in D iff
2hmr (1= Jag]) = oo,

3. Mean square convergence

We first assume that the function f to be interpolated is analytic in D and continuous on DU T.
By Theorem 2.3, we know that f can be uniformly approximated by functions in £, provided that
the set A = {ay} satisfies

D (1= |ag]) = oo (3.2)

k=1
Throughout this section and the following one, we shall always assume that this condition is
satisfied. Qur objective is to construct a sequence of interpolants in £, converging to f on compact
subsets of D and whose interpolation nodes are on T. In the polynomial case, i.e., if all ax = 0 so
that £ = II, then the solution is given in Theorem 1.2. In this theorem the interpolation nodes are
the roots of unity. The latter can also be considered as zeros of para-orthogonal functions. Indeed,
the orthogonal polynomials for the Lebesgue measure du() = d8/(27), are ¢ (z) = 2*. Therefore,
the corresponding para-orthogonal polynomials are Q,(z,7) = ¢n(2) + 795 (2) = 2" + 7, 7 € T.
Thus, when taking 7 = —1, we see that the roots of unity are zeros of para-orthogonal polynomials
for the Lebesgue measure.

Let u be a finite positive Borel measure on [0, 27) that is absolutely continuous so that du(6) =

w(6)db, w(f) > 0 a.e. on [0,27) i.e., w(f) is a weight function. So, in the rest of the paper, we shall
have orthogonality with respect to w(#) rather than orthogonality with respect to p.

THEOREM 3.1. Let f be a function analytic in D and continuous on DU T. Let w(f) be a weight

function on [0,27), generating the para-orthogonal functions {Q.(z,7,)}0>,, with 7, € T as in
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(2.1). Let {fvj,n+1}?:11 be the zeros of Quny1(z, The1) and L,(z) the interpolant for f(z) from L, in

the nodes {mj,nﬂ};?;'ll. Then

n—oo

Proof. Let T,, € L,, denote the best uniform approximant from £,, to f on T, i.e.,

lim /% /(@) = Lo () (8)d6 = 0.

max|f(z) = Tu(2)| = [If = Tn

v <|f - Rllw, VRE L.

Note that this best approximant always exists because L£,, is finite dimensional. We introduce the
notation

Yu(2) = f(2) = Tu(z) and  7a(f) = max|yn(z)].

Denote by P,(z) the element in L,, interpolating v,(z) at the nodes {:vj,n+1}?i'11. We have for
Jj=1,...,n+1,

Po(zjns1) = YalTjntr) = f(@jnt1) = Tul®jnt1)
= L?’L("'Cj,n-l-l) - Tn(mjvn'l'l)

By a unicity argument, we get P,(z) = L,(z) — T,,(z), and therefore

[ 7150 @@ = [ o) - B Peae

<2 [T 2 [ peraeds

Clearly, for the first integral, it holds that fow |vn () 2w(0)d0 < [v,(f)]*. (Here we assume without

loss of generality that f02rw(0)d0 = 1.) As for the second integral, we observe that for z € T,
|Pn(2)|? € Ry = Lyx + L. Therefore, by Theorem 2.1 (2), one has

2m n+1
/0 [Pa(@)w(0)d6 = 3 Ajnpr| Pa(@ins0) [
i=1
n+1
= Y Ajn [1n(@jnen)
J=1
n+1

(Y Ajmnr = (112

IA

Thus it follows that ,
| 11@) = L))o < a1

Since by Theorem 2.3, lim, s vn(f) = 0, we can conclude the proof. O

COROLLARY 3.2. Letw(8) be a weight function on [0,2r) such that [;"[w(6)]7'df < +oo. Then,
under the same conditions as in Theorem 3.1, one haslim, ., L,(2) = f(2), uniformly on compact
subsets of D.

Proof. By the Cauchy integral formula, it holds that

f(z)_Ln(Z):%/det, z e D.
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Let K be a compact in D, so that dist(K,T) = § > 0. Thus, for all t € K and for all z € T,
|t — z| > 4. Hence,

116) - Lata)] < o [ =2l

|t — 2|

< 5 [ 170 = Lt

- m/u |P| !

Making use of the Cauchy-Schwarz inequality for integrals, it follows that

1) - 1) < 55| [ 170 - <>|dt|]l/2[/o%%]l/2,

and the proof is complete. |

Assume now that f is continuous on T, i.e. f € C(T). By (1) of Theorem 2.3, it seems natural
to look for interpolants in R with nodes on T converging to f in a certain norm. To this end,

observe that if R € Ry, then R(z) = P(z)/[wn(z)mn(z)] with P € Ily,. Therefore (z = 6“9)
|R(z)|? = Q(z)/[w?(z)72(z)], with @ € Tl4,. Thus, a quadrature formula integrating exactly | R(z)|?

n ~
is required. From the sequence A = {a;}72, C D, define A = {ay, 9,09, a9,...} = {a1,4,,...}.
For a given weight function w(#), let {¢,(z)}.2, denote the corresponding sequence of orthogonal

functions, i.e. ¢,(2) = pn(2)/7n(2) € L, With 7,(2) = [T;—, (1 - &;2). For 7 € T, set Qnlz,7) =
bn(2)+76%(2), and let {x],2n+1}2 "+ be the zeros of Qan41(2, Tant1), Tong1 € T. By (2) in Theorem

2.1, there exist positive weights {A; 2,41} so that (z = e)

2n+1

2m . ~
f(ac)w(@)dO = Z Aj,?n-l—lf(mj,Qn-l-]), Vf € Rgn’gn. (33)

J=1

(Here ﬁpg = Ep* + ﬁq and Ep* ={f:f. € ﬁp}.) For each n = 1,2,..., let R, be the element
in R, interpolating f € C(T) at the nodes {z;2,41} as given above. Take T}, € R, ,, such that
maxser | f(2) — Ta(e)] = I1f = Tulls < If — Rllx for any & € R, Define 7(2) = £(2) — Tn(x)
and v, (f) = maxgzet |yn(2)|. By (1) in Theorem 2.3, lim, o0 Y5 (f) = 0. Thus, making use of (3.3)
and proceeding as in the proof of Theorem 3.1, one can easily deduce that

/0 " 1f(2) = Ra(x) ()40 < Ay ( ). (3.4)

Hence the following theorem can be proved.

THEOREM 3.3. Let f be a continuous function on T and let R, € Ry, be the interpolant
for [ at the nodes {$j,2n+1}§2-1 as given above, i.e., the zeros of Qant1(2, Tont1) = Goant1(2) +
Ton1P5,41(2), Tong1 € T, where {1 }52, is the sequence of orthogonal rational functions associated
with the sequence A = {(y]} ° . and with respect to a given weight function w(#). Then

n—oo

2T .
lim / f(2) = Ro(2)0(8)d8 =0, o= e?.
0

REMARK 3.1. Theorem 3.3 was earlier proved by the authors in [5] (see also [7]). However, the
proof presented here is more constructive in the sense that an error bound like (3.4) for the L?-norm
has been given.
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EXAMPLE 3.1.  Assume that we take the normalized Lebesgue measure du(f) = w(6)df = do
Then it is known that the orthonormal functions are given by

zB, (z _
bn(2) = Fn (2) Kin = /1 —|au|? > 0.

This basis is known as the Malmquist basis [13]. Observe that w(f) trivially satisfies the conditions
of Corollary 3.2. Therefore the zeros of the corresponding para-orthogonal functions can be used
as interpolation nodes both in Theorem 3.1 and Corollary 3.2. In fact, we have

Qn(z,7n) = Pn(2) + Tndp(2), [mn| =1

and since ¢%(z) = K, /(1 — @, 2), it follows that

zZ— 1 -,z

Qn(2,7n) = Fin {ZB”(Z)+ Tn ]

Noting that B, (z) = nuwn(2)/7.(2), with n, € T, and because 7, € T is arbitrary, we can choose
it as 7, = 7y, so that Q,(z, 7,) becomes

2wt (2) + T (2)] |

T (2)

Qn(2,Tn) = EnTy |:
As for Theorem 3.3, interpolation nodes can be chosen as the zeros of

2 (2) + 7?2”(2)] N [zwi(Z) + ﬂi(Z)] 7

Ton+1(2) 1l =Tz Ta(2)

with A, # 0, i.e., as the nodes {wﬂn_,_l}?ﬂ'l that are the roots of the equation

Q2n+1(za Tn) = A |:
zwi(z) + 77721(2) = 0.

4. Uniform convergence

Throughout this section, we shall assume that f(z) is analytic in a neighborhood of T. We also
assume that the set A lies in a compact subset of D, i.e., |ax| < p < 1 for all k. Note that condition
(3.2) trivially holds in this case. Then, there exist numbers 7, R > Osuch that 0 < p<r <1< R<
1/p defining an annulus B = {2z € C: r < |z| < R} where f is analytic and which excludes all the
points ay and 1/@;. We denote its boundary as 0B = C'. Let {r]}fi'fl be 2n 4 1 arbitrary distinct
points on T and let R, € R, , be the interpolant in these nodes. Define the node polynomial

Prpyi1(2) = H?E’l(z — ;) € Hapqr and Qony1(2) = Pangr (2)/[72(2) (1 — @pg12)]. We then have
LEMMA 4.1. For anyz€B, z # aj and z # 1/a;, j=1,...,n, it holds that
1 1-a, n B,(t t
f(z)_Rn(Z):T/ i-HZQQ +1(2) Ba(t) J()
i Jo 1 — @1t Qang1(t) Bu(2)t — 2

Proof. Making use of the formula for the error of the rational interpolant with prescribed poles
(see p. 182 of [13]), one can write for z € B, 2 # a; and 2z # 1/@;
1

f(z) = Ru(2) = _/ Py (2)wn(t)ma(t) f(2)

2me C P2n+1 (t)wn (Z)ﬂ-n(z) t—z

dt.

dt.

From here, the lemma follows. |
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For the given sequence A = {a;}%2,, let vh = %E?zl do, be the normalized counting measure

which assigns a mass at «; proportional to its multiplicity. Assume that {Vﬁ 2, converges to

some v in the weak star topology (for the space of functions continuous in {z € C : |z| < p}).

Define
T —z

A:) = [ loglé. (@) dvh(e), € (x) = :€B. (4.5)

-7
Let w(f) be a weight function on [0,27) and {7,} a given sequence of complex numbers in

T. According to (2.1), let Qani1(2, Tons1) = Qang1(2) = Pong1(2)/Fons1(2), where as before

Tont1(2) = Hjii'l(l —a;z) = m2(2)(1 — @py12). Let {acj,gn_,_l}?g{'l be the zeros of Q2,41(2) and

R, € R, be the interpolant for f(2) in these nodes. We then have

THEOREM 4.2. Let f(z) be an analytic function in the annulus B = {z € C:r < |z| < R} with
0 <r <1< R and suppose |ar| < p < r for all k. Then

limsup |f(2) — Rn(2)]/?" ! <6 < 1.

n—00

uniformly on T, where § = max{d,,dr} with

8 = ?El%)r({exp()\(t)/Q)} <1 and drp= maXR{eXp(A(t)/Q)} < 1,

tECl/
where A(t) is given by (4.5) and C, = {z € C: |z| = p}.
Proof. By Lemma 4.1, one has for any z € B,

F(2) = Ru(2) = L/C ha()dt + —— [ ho()dt = 1 + 1,

- 2mi T Jop

with

o (1) = 1 — @py12 Qany (2) Balt) f(1)
" 1 — @yt Q2n+] (t) Bu(z)t -2z
Obviously, |f(z) — Ru(2)| < |Ii| + |I2]. Define

M (f) = max|F(®)],  Mr(f) = max|f(t), M =max|Qans1(2)]:

Furthermore, |B,,(z)| =1 for z € T, so that for any z € T we have

r(1+p)M.(f) M, max |g,(t)| = K(f)M, ?El%)f 92D, (46)

< - 7 7
Il < Gy ey M

where K (f) is a positive constant depending on f and g, (t) = B, (t)/ Qans1(t), which is a continu-
ous function on C,. (Recall that we assume that |ax| < p<landthat0<p<r <1< R<1/p.)
Thus, from (4.6) we get

B < TR el 1)

1/2n+1
teC ]

Now by Theorem 4.9 in [4] we have lim,,_, MY/*+1 = 1. On the other hand if maxiec, |gn(t)] =
|gn ()], for some ¢, € C\., then

[max g ()]]'/2"+! = |gn (£a)|'/2*F! < max|ga (1)]'/2+1.

teC, te
Therefore
limsup | ;2" < limsup |max |g,(¢)[]'/?"+!
n—00 n—00 teCy
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Interpolation by rational functions with nodes on the unit circle 9

< max |limsu 1/2n+1
< max | lim sup |g,(¢)]
|B ( )|1/2n+1
= maxlimsup
t€C: mosoo |Qang (£)[1/20H

: 1/2n41
< max fim SUP”_>°°~|BTL @) . (4.7)
teCyr lim 1nfn_>oo |Q2n+1 (t) |1/2n-|—1

Now by Theorem 4.8 in [4] we have lim,,_ |Q2n+1(t) |1/2”"'1 = 1forall z € Dand lim, o | By (t) |1/” =
exp(A(t)), for all t € D\ ({0} Usupp (v*)). Hence, from (4.7), it follows that

limsup [I,|'/?"*!" < max lim |B,(t)|'/?"

n—00 teC, n—oo
= i B, 1/m 51
max lim [| By ()] /7]
= A(t)/2 1. 4.8
max{exp(A()/2)] < (1.9
As for the integral I, we can similarly obtain that
li B, (t 1/2n+1
lim sup |[2|1/2n+1 < max 1m Supn—)co~| ( )l ]
n—00 t€Cr lim 1nfn_>oo |Q2n+1 (t)|1/2n+1

Now ¢t € Cr C E and because of Theorem 4.8 in [4],
lim |Qangr (]2 = exp(A(1))-
This yields

1
. 1/2n+1 exp(5A(H))
lim sup |1 S 00 max[exp(— A )]

Sett=1/T = i. It € Cp, then @ € Cyyp = {z € C:|z|=1/R} CD. Thus, limsup,,_,  |1|'/?"*+! <
MaXpec, p €X [ A(2)]. Since A(Z) = —A(z), we conclude that

1
limsup |I5|'"/?"*! < max exp[=
n—+00 teCi/r 2

At)] < 1.
Finally, for any z € T, we have
lim sup | £(2) = Ra(2)[ /2" < lim sup(|fy| + | 5[] /2+"
n—00

n—oo

n—oo

< max {hm sup |1y |1/2”+1 hm %up 2 |1/2n+1}
Putting our results together proves the theorem. O

COROLLARY 4.3. Under the above conditions, the sequence {R,(z)} of interpolants converges to
f(2) uniformly and geometrically on T.

EXAMPLE 4.1. Let us consider the simple illustrative situation where limy_,o, o = @ € D. Then

= 8,. Since A(2) = [log|&.(z)|dv™ (z) with & (z) = £5Z, we obtain \(z) = log ‘—‘ Hence,
exp(i)\(z)) = %P/? and we get
/2 /2
5,:maxt a <1, 6ép— max t—a < 1.
teCr |1 — ta t€Cyr |1 —ta

If we assume that rR < 1, i.e., r < 1/R, then é, < dr and § = dgr. On the other hand, if a = 0,
then 8, = \/r and 8 = 1/v/R. These situations of the rate of convergence were obtained in [§] in
the polynomial situation, i.e., when all aj = 0.
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10 A. Bultheel, P. Gonzalez-Vera, E. Hendriksen, O. Njastad

So far, we started from the sequence A = {a; : k£ € N} and we have constructed for each n € N

an interpolant R, € R, , for f(z) at the nodes {acj,gm_l}(j-i'{'l which were the zeros of the para-

orthogonal function Q2n+1(z) € Long1 = {P/Tans1: P € Ugpy1} and 7opq1(z) = H;ZTl(l - @;z),

associated with the sequence
A= {dk}z(;l = {041, a1, Ay, Qg .. }

We can generalize Theorem 4.2 to the asymmetric case and consider more general spaces of
rational interpolants R, = Ry qn) Where {p(n)} and {g(n)} are nondecreasing sequences of

nonnegative integers such that p(n)+ ¢(n) = n and lim, . M = s € (0,1). For this purpose, set

() = max{p(n), a(x)}, s(x) = min{p(n),g(n)}, =0,
A’n :{040,041,041,042,042,...,045( ) s(n ) (n)+17"'7 (n)}
:{6‘03&17&2’6‘37654)"' an }

Since increasing n to n+ 1 increases either p(n) or ¢(n) by one, this increases either r(n) or s(n) by
one. The numbering of the aj is such that a,, is a repeated point ag(n)41 or @ new point a,.(,y41. This
defines the sequence A = {@y, &g, ...} uniquely. The quantities related to A are as before denoted
with a tilde. (For further details see [7].) Thus, let {;rj’n+1}?:11 be the zeros of the para-orthogonal
function Qpi1(2, Tng1) = Pny1(2) + Tn+1(]~§:+1(2), Tn41 € T, and let R,(2) be the interpolant in
Rn = Rp(n),q(n) for f(z) at such nodes. Proceeding as in the proof of Theorem 4.2, we can obtain
the following

THEOREM 4.4. Let f(z) be an analytic function in the annulus B = {z € C:r < |z| < R} with
0<r<1<R. Let R,(2) be the interpolant in Ry = Rp(n)q(n) for f(z) at the nodes {m]—,nﬂ}?:ll
as given above, and where p(n) and q(n) are nondecreasmg sequences of nonnegative integers such
that p(n) + q(n) = n and lim,,_, p(n—n) =s€ (0,1). Then

limsup | £(2) = Ba(2)]'/" < 8(s) < 1

n—oo

uniformly on T where §(s) = max{d.(s),0r(s)} with

O (s) = max{exp(sA(t))}, and dp(s)= ;ngffR{exp((l—e)A(f))}

where \(t) is given by (4.5).

As can be observed both from Theorem 4.2 and 4.4, our interpolants belong to the subspaces of
rational functions Ry, = R () q(n) associated with the sequence A = {a}. Howeverlthe interpola-
tion nodes come from the para-orthogonal functions associated to a new sequence A = {&x}. One
may wonder whether it is possible to use the zeros of the para-orthogonal functions associated with
A asinterpolation nodes. Therefore we consider the following quasi-Hermite interpolation problem.
For a given sequence of complex numbers 7,, € T, n = 1,2,..., let us consider the corresponding
sequence of para-orthogonal functions Q. (z,7,) = ¢n(2) + o5 (2). Let {z;n41 ”+1 be the zeros
of Qny1(2,7n) = Quy1(2). Take 2 a fixed complex number on T. Then, by Varymg Tn € T, we can
place for example 2,41 at that position for any n. Under these conditions, let f(z) be an analytic
function in a region B containing T and let Hy,41(2) be the unique interpolant in R, ,, satisfying

H2n+1($j,n+1) = f(iij_H), j = 1, .. .,n-l— 1
Hén_l(m‘j’n+1) = f’($‘7"n+1), ] = 1, . .,n+ 1, $‘7"n+1 7£ Z.

Set Qni1(2) = Pogp1(2)/Tng1(2) with Pogq(2j041) = 0, j = 1,...,n + 1 and write P,(z) =
Poy1(2)/(z — z). Define A = {ap}72, such that & = app1, £ = 1,2,... and consider the

(4.9)

corresponding quantities associated with A with a hat, i.e., £,, Run,y Tny Wn,y B Bp,.... We first
need the following.
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LEMMA 4.5. With the above notation, Q,(z) = P, (z )/ Tu(2) € L, is a para-orthogonal function
with respect to the weight function &(0) = |25 *w(0), 2 = e’

Proof. We have to prove that (J,, is para-orthogonal, which means that it is not orthogonal to 1 or
B,, while it should be orthogonal to the space En(an)ﬂﬁn_1 where En(an) ={f€ L, : f(a,) = 0}.
(For this and other properties of para-orthogonal rational functions see [6].) Let us start by proving
the latter orthogonality property. Take f € ﬁn(an) N L1, then

(z = 6 P(2) _ (2= ang1) P(:)

flz)= ,  with P ell,_y.

@ ()
Hence
[T aermema = [T D2 e
- | & e [l
= [T Qe
e yoy = C=0IE) (=)= 0P (= an)al)

(1—az)  (I—-@2)fe-1(z) T (2) ’

with ¢ € Il,—1. This means that g € L,41(ap41) N Ly, and by para- orthogonahty of Qn_,_l, this
means that fo Qnt1(2)g(2)w(0)dd = 0. This proves orthogonality of Q, to L, () N L,_i. But
@, should not be orthogonal to 1 or B,,. Therefore we consider

" On(2)0(0)d = /OW Fa(2)

in(2)

2

w(6)do

zZ—T

0 1—@12

- Qn+1(z)( S )w(f))df)

1-—o4z

Z—X

T AE] C= R Oy

—aqz

Thus

/027r Qu(2)5(0)df = Trpy /027r Gnt1(2) Bar1 (2) (]Z__;Z) w(h)db

‘1

= ﬁn+1Fn+1/0 Gnt1(2) Tnt1(2) ( z—_x )w(@)d@

wpt1(2) \1 —@ 2

2m
= ﬁn+1Fn+1/ Gnt1(2) fo(2)w(0)d,

where f,,(z) € Lns1 \ﬁ Therefore, we see that [77Q,(2)a(0)d8 # 0, (z = €). Similarly, it can
be proved that fo 2 (2) B, (2)@(0)d6 # 0 and the proof can be concluded. ]

Proceeding now as in Lemma 4.1, we can obtain an error expression for the quasi-Hermite rational
interpolant satisfying (4.9) Indeed, if f(z) is an analytic function in a region B containing T, it
holds that for any z € B, z # aj, 2 # 1/@;, j=1,...,n

f(2) = Hapya (2) = (4.10)

1 [1 —anﬂz]? Qns1(2) Qn(2) Bya(t) [1 - mt] .,
21 L=@nyit | Quir(t) Qn(t) Bu(z) [1—a@z|t—2 "
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12 A. Bultheel, P. Gonzalez-Vera, E. Hendriksen, O. Njastad

with Q.41 and Qn para-orthogonal functions as defined above. From (4.10) and following rather
closely the proof of Theorem 4.2, we can easily prove the following.

THEOREM 4.6. Let f(z) be an analytic function in the annulus B = {z € C: r < |z| < R} with
0 <r <1< R. Let Hypy1(2) be the interpolant from (4.9) at the nodes {x; 41} which are the
2105 of Qni1(2) = Gng1(2) + Tag1 8541 (2), |Toga| = 1, @ para-orthogonal function in L, with
respect to a weight function w(6). Then

limsup | f(2) = Hangr (2)]/2"H <6 < 1,

n—oo

uniformly on T, where § is given in Theorem 4.2.

Now, from Theorem 4.6 and Theorem 2.2, we can immediately give an estimate of the rate of con-
vergence of certain sequences of R-Szegé formulas. Indeed, set I,(f) = (;“ f(e)w(8)df with w(8) a
given weight function on [0, 27) and let I,,(f) = 2?21 Ajnf(2;,) denote the corresponding n-point
R-Szegé formula. By Theorem 2.2, one can write 1,,(f) = I,(Ha,—1) where Hy,_; interpolates f
according to (4.9) with n replaced by n—1, where f(z) is a function analytic in a region B containing
T. As usual, we shall assume that B={z € C:r < |z| < R} with0<p<r <1< R <1/p, where

p is a positive number so that |a;| < p, 7 =1,2,... Set

En(f)sz(f)—fn(f)=/0 Tr(f(w)—Hgn_l(ac))w(t‘))dG, z=e".

Recalling that we imposed that fo% w(#)dd = 1, we have |E,(f)| < maxzer|f(z) — Hapn—1(z)|. Thus

Eu(DI" < [max |f(2) ~ Hapes (2)]V°
< max|f(z) — Hypi ()7,
Hence
lim sup |En(f)|1/” < limsup max|f(z) — Hgn_l(m)|1/”
n—00 n—oo €T
< maxlimsup |f(z) — Hyp_y (z)]'/".

€T nooo

By Theorem 4.6, it results that

2n—1
7

< 82

tim sup |, (f)|'/" < maxlim sup{| f(2) = Han—s (2)]'/*"7']
€

n—o0 n—oo

with § as in Theorem 4.2. Thus we have proved the following.

THEOREM 4.7. Let F,(f) denote the error for the n-point R-Szegd formula, i.e., F,(f) =
2m

eNw(dO -7 - A nf(zin) = Iu(f) — I.(f), where f is a function analytic in an annulus
0 f( =14, s ) Y
B={z€C:r<|z| <R} such that 0 <r <1< R. Then

lim sup | Fn(f)]'/" < max{3,,dr} < 1

n—oo

where

6, = max{exp(\(t))}, and On = té%?fR{QXP(A(t))}’

where A(t) is given by (4.5).
REMARK 4.1. The estimate of the rate of convergence given in Theorem 4.7 was obtained earlier

by the authors in Theorem 4.4 of [4] in connection with multipoint Padé approximants to the
Riesz-Herglotz transform of the measure du(6) = w(#)d#.
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REMARK 4.2. During the last years, the authors have studied extensively orthogonal rational
functions and quadrature formulas on the unit circle along with other related topics such as moment
problems, multipoint versions of Padé-like rational approximation etc. (see e.g., [6]). The rational
interpolation problems that were considered in our previous papers were mainly investigated in the
connection with the construction of quadrature formulas. Therefore we used rational interpolants
(usually not in £,,) for the Riesz-Herglotz transform of a positive measure on the unit circle. The
interpolation points were the «ay’s or their reciprocals. Use is made of orthogonal rational functions
(in £,) to construct the rational interpolants. The nodes of the quadrature formulas were the zeros
of the para-orthogonal rational functions.

The problem considered here is quite different. Here we construct a rational interpolant from £,
for an arbitrary function. We consider the choice of a set of interpolation points such that we get
good convergence properties. In this paper they were chosen to be the zeros of the para-orthogonal
rational functions.

Of course, interpolation by using rational functions with prescribed poles is a classical problem
(see [13]) which is presently receiving more and more attention. In this respect, making use of the
zeros of para-orthogonal rational functions as interpolation nodes can be viewed as a first step in
the analysis of the convergence process when dealing with functions defined on T. We think that
more general tesults than those given in Section 3 for L? convergence and also for L? (p > 2)
convergence will be obtained in forthcoming papers.
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