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Abstract

Wavelets have been used in a broad range of applications such as image processing, computer
graphics and numerical analysis. The lifting scheme provides an easy way to construct wavelet
bases on meshes of arbitrary topological type. In this paper we shall investigate the Riesz stability
of compactly supported (multi-) wavelet bases that are constructed with the lifting scheme on
regularly refined meshes of arbitrary topological type. More particularly we are interested in the
Riesz stability of a standard two-step lifted wavelet transform consisting of one prediction step
and one update step. The design of the update step is based on stability considerations and
can be described as local semiorthogonalization, which is the approach of Lounsbery et al. in
their groundbreaking paper [26]. Riesz stability is important for several wavelet based numerical
algorithms such as compression or Galerkin discretization of variational elliptic problems. In order
to compute the exact range of Sobolev exponents for which the wavelets form a Riesz basis one needs
to determine the smoothness of the dual system. It might occur that the duals, that are only defined
through a refinement relation, do not exist in L2. By using Fourier techniques we can estimate the
range of Sobolev exponents for which the wavelet basis forms a Riesz basis without explicitly using
the dual functions. Several examples in one and two dimensions are presented. These examples
show that the lifted wavelets are a Riesz basis for a larger range of Sobolev exponents than the
corresponding non-updated hierarchical bases but, in general, they do not form a Riesz basis of L2.
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1 Introduction

The objective of this paper is to determine the range of Sobolev exponents s for which the wavelets,
that are derived from a standard two-step lifted wavelet transform consisting of one prediction step
and one update step, form a Riesz basis of the fractional Sobolev space H s(Rd) ([1]). The design of
the update step takes into account stability considerations, i.e. we use local semiorthogonal lifting
which is the approach taken in [25, 26, 34, 40, 41]. The prediction step is based on subdivision rules.
The lifting construction can be applied to irregular meshes of arbitrary topological type but in our
stability analysis we will only investigate whether the shifts and dilates of wavelets around regular
vertices form a Riesz basis. Recall that a system generated by ψ := (ψ1, ψ2, . . . , ψr)

T is a Riesz basis
of Hs(Rd) if

r∑

l=1

∞∑

j=0

∑

k∈Zd

∣∣∣cjl,k
∣∣∣
2
∼

∥∥∥∥∥∥

r∑

l=1

∞∑

j=0

∑

k∈Zd

cjl,kψl(M
j · −k)

∥∥∥∥∥∥

2

Hs(Rd)

with M a dilation matrix that describes the geometric refinement. We always mean by a ∼ b that
a . b and a & b hold, where a . b means that a can be bounded by a constant multiple of b uniformly
in any parameters on which a, b may depend, and a & b means b . a.
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In [26] Lounsbery et al. presented a new class of wavelets, based on subdivision surfaces, that radically
extended the class of representable functions. Their method allows to develop subdivision wavelets on
compact surfaces of arbitrary topological type. At the same time the realization that translation and
dilation are not strictly necessary for the construction of wavelets was also noted independently by
Sweldens [36, 37] and by Carnicer et al. [3]. Starting from a polyhedral mesh, subdivision schemes re-
cursively subdivide the individual polygons such that the surface converges to a smooth limit surface.
Wavelet transforms can be constructed by combining the subdivision process with a vertex manipu-
lation that introduces geometric detail at every subdivision level. This approach is directly related to
the prediction step and the update step of the lifting scheme. In Section 2 we review some concepts
related to the subdivision wavelets from [26] in terms of the lifting scheme.

Without an update step wavelet functions from the lifting scheme are simply the scaling functions on
the next finer level corresponding to the newly introduced vertices. The update step is used to achieve
certain properties that the unlifted wavelet functions do not have. A simple update from [37] is to
obtain lifted wavelets with N vanishing moments where N is the number of degrees of freedom in the
update step. This update step appears to be unstable, as reported in [34] for the one-dimensional case.
Another possibility would be to make the wavelets orthogonal with respect to the scaling functions
of the previous coarser subdivision level. This is a provably stable update, but the resulting wavelet
functions are not locally supported. Hence the wavelet transform requires quadratic time which makes
the wavelet transform useless from a practical point of view. In Section 3 we discuss another update
method that is known as local semiorthogonalization. This approach has been investigated previously
in several papers [25, 26, 34, 40, 41]. We prove that this update method yields stable one-level wavelet
transforms.

Although we prove that the update step yields stable one-level wavelet transforms, we do not know
whether the complete wavelet transform over all levels is stable. In particular we would like to know
the complete range of Sobolev exponents for which the multilevel system is a Riesz basis. This is
mathematically interesting on its own, but it can also be motivated from the research on multilevel
finite element preconditioners [9, 18, 24, 29, 43], as the energy norm of an elliptic partial differential
equation is typically a Sobolev norm. In order to be able to use Fourier techniques we will only consider
the shift-dilation invariant setting of a multilevel system, although realistic applications require other
settings. In Section 4 we establish a theoretical basis for investigating whether the shifts and dilates of
the lifted subdivision wavelets form a Riesz basis of H s(Rd). This involves determining the smoothness
of the dual system, which is generated by the solution of the dual refinement relation. It might happen
that the dual refinement relation does not yield a solution in L2, so that smoothness of the dual system
is not well defined anymore. Our main result here is Theorem 4.4 which provides a way to determine
the range of stability without explicit knowledge of the dual functions.

In Section 5 we apply the theoretical framework of the previous sections to some example subdivision
schemes, i.e. we create subdivision wavelets and we investigate their stability. We find that the
subdivision wavelets enlarge the range of stability compared to the unlifted wavelets, but in general
they do not form a Riesz basis of L2 (i.e. s = 0 is not contained in the range of Sobolev exponents
for which we have stability). In Section 5.1 we give a detailed treatment of the polyhedral wavelets
that were used in [26] for smooth surface compression and multiresolution editing. We also illustrate
the performance of these wavelets as preconditioners for second order elliptic problems. Section 5.2
is devoted to piecewise cubic Hermite wavelets on the real line, and in Section 5.3 we investigate
subdivision wavelets that arise from a more complicated subdivision scheme: the tangent scheme [39].
In Section 5.4 we briefly discuss a strategy to construct stable wavelets with the lifting scheme on
uniform grids. Using this strategy we find connections with other constructions in the literature.
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2 Multiresolution analysis based on subdivision

2.1 Subdivision

Subdivision is a powerful tool for the construction of smooth curves and surfaces. The main idea is to
start with an initial control polyhedron M 0 and to iteratively refine this polyhedron by inserting new
vertices such that the sequence of refined polyhedra M 1,M2, . . . converges to some limit surface M∞.
In each subdivision step, the vertices of M j+1 are computed as affine combinations of the vertices of
M j ,

vj+1 = vjPj . (2.1)

In this equation the vj are matrices whose i-th column contains the x, y, and z coordinates of vertex
i of M j, and the linear combinations on each level are described by the subdivision matrix Pj .

An important aspect of subdivision is its relation to multiresolution analysis. Subdivision can be used
to define a collection of refinable scaling functions. Note that subdivision surfaces can be parameterized
over the domain M 0. The refinement step that carries the mesh M j into the mesh M j+1 consists of
two substeps: a splitting step and an averaging step. In the splitting step each face of M j is split into
a number of congruent subfaces by introducing new vertices at several positions in the old face and
by connecting these new vertices with the old vertices. This gives an auxiliary mesh M̂ j+1. Then the
averaging step uses local weighted averaging to compute the vertex position of M j+1 from the vertex
positions of M̂ j+1. Hence (2.1) can be written in the form

sj+1 = sjPj , (2.2)

where the sj are row vectors that contain coefficients that are associated with the corresponding
vertices in M̂ j, see Figure 1. We define the scaling function φj

k as the limit function if we start the
subdivision scheme (2.2) on level j with an impulse δk, i.e. the set of coefficients at level j are all
zeroes except at the k-th vertex where we have a corresponding coefficient that equals one. Moreover
these scaling functions satisfy a refinement equation of the form

Φj = PjΦj+1, (2.3)

where Φj denotes the column vector of the scaling functions φj
k on level j.

→ → → · · ·

M0 M̂1 M1

Figure 1: The subdivision limiting process.

Given this relation, a strictly increasing sequence of subspaces V j can be associated with the initial
coarse grid M 0:

V j := span{φj
k}

and
V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · .

This is called a multiresolution analysis.
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2.2 Complement space

The space V j+1 describes more detail of a surface than the coarser space V j. The difference can be
captured in a complementary space W j such that

V j ⊕W j = V j+1.

The complement space W j is not necessarily orthogonal to V j. We will refer to the basis functions
ψj

k of W j as wavelets and we collect them in a column vector Ψj. In analogy with (2.3), the relation
between Ψj and Φj+1 is given by a filter Qj

Ψj = QjΦj+1.

The wavelets are said to have N vanishing moments if W j is orthogonal to the space of polynomials
on M0 of degree at most N − 1.

2.3 Filter bank algorithm

Every function in V j+1 can be written as a low resolution part in V j and a detail part in W j

sj+1Φj+1 = sjΦj + wjΨj.

This is done with two analysis filters, a low pass filter Aj and a high pass filter Bj

sj = sj+1Aj

wj = sj+1Bj.

Since [
Φj

Ψj

]
=

[
Pj

Qj

]
Φj+1

one can easily see that the analysis filters must be defined by the inverse relation

[
Aj Bj

]−1
=

[
Pj

Qj

]

and sj+1 can be recovered from sj and wj using the synthesis filters Pj and Qj

sj+1 = sjPj + wjQj.

The filter operations are represented schematically in Figure 2.

+ ss j+1 j+1

s

w

j

j

j

j

P j

Qj

A

B

Figure 2: Filter bank algorithm.
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2.4 Wavelet functions

The subdivision matrix Pj can be written in block matrix form as

Pj =
[
Oj Nj

]

where we distinguish a part Oj that computes the coefficients that are associated with the old vertices
of M̂ j on the finer domain M̂ j+1, and a part Nj that computes the coefficients that are associated
with the newly introduced vertices in M̂ j+1. Similarly we split Φj+1 in functions Oj+1 associated with
the old vertices in M̂ j+1 and functions N j+1 associated with the new vertices added when going from
M̂ j to M̂ j+1

Φj+1 =

[
Oj+1

N j+1

]
.

The sets Φj and N j+1 together span V j+1 because the matrix Oj is invertible. Obviously the functions
in N j+1 can be used as wavelet functions

Ψj = N j+1 and Qj =
[
0 I

]
.

Here 0 stands for the zero matrix and I stands for the identity matrix. By choosing the wavelet
functions as the scaling functions on the finer level, we also made a choice for the complement space
W j. It can be desirable to have another complement space with certain properties. The wavelet
functions can be found by projecting the N j+1 into the desired complement space W j along V j

Ψj = N j+1 −αjΦj.

This projection is not necessarily orthogonal. For each wavelet function there is a corresponding row
in αj. The possibly nonzero entries in this row together will be called the stencil for that wavelet
function. Remark that if there are no zero entries in αj, the wavelets will have the whole domain M 0

as their support.

2.5 Lifting

The reconstruction or synthesis filter in block matrix form is now

[
Pj

Qj

]
=

[
Oj Nj

−αjOj I−αjNj

]
. (2.4)

Because Oj is invertible, the filterbank operation is also easily invertible and we find the analysis
filters Aj and Bj

[
Aj Bj

]
=

[
(Oj)−1 − (Oj)−1Njαj −(Oj)−1Nj

αj I

]
. (2.5)

These filters can be factored as follows
[
Pj

Qj

]
=

[
I 0

−αj I

]
.

[
I Nj

0 I

]
.

[
Oj 0
0 I

]
(2.6)

and
[
Aj Bj

]
=

[
(Oj)−1 0

0 I

]
.

[
I −Nj

0 I

]
.

[
I 0
αj I

]
. (2.7)

This relates to the concept of lifting [37]. Every factor in the factorization of the filters corresponds
to a lifting step. The filter bank factored in lifting steps is shown in Figure 3.

First the coefficients sj+1 are split into two sequences. The first sequence, sj+1
o , contains the coefficients

that correspond to vertices in M̂ j , and the second sequence, sj+1
n , contains coefficients that correspond
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Nj jα
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SPLIT
s

s

w

j+1

j

j

+

jα Nj

Oj
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s j+1

+

MERGE

−

Figure 3: Filter bank factored in lifting steps.

to vertices that are in M̂ j+1 but not in M̂ j . The subscripts o and n refer to old and new vertices
during the subdivision process.

Then we want to treat sj+1
o as the coefficients of a surface defined on M̂ j . Therefore we first need

to scale the coefficients of the old vertices with Oj−1

. After this we can apply the part Nj of the
subdivision algorithm Pj that leads to the coefficients for the new vertices. The result is used as a
prediction for sj+1

n and substracted from this sequence. This yields the wavelet coefficients wj on the
lower branch in the picture. We call this step the prediction step. Finally sj+1

o is updated with a
linear combination defined by αj of wavelet coefficients wj . This yields the scaling coefficients sj on
the upper branch in the picture. We call this step the update step.

Reversing the lifting scheme is straightforward: we run through the scheme backwards, replace plus
with minus signs, undo scaling operations and merge what had been split. So unlike the classical
wavelet transform where Aj , Bj , Pj and Qj are used explicitly, the same filters Oj, Nj and αj

appear now in the forward and inverse transform.

2.6 Biorthogonal wavelets

The lifting scheme automatically generates a set of biorthogonal scaling functions and wavelets that
satisfy a refinement relation of the form

[
Φ̃j

Ψ̃j

]
=

[(
Aj
)T

(
Bj
)T

]
Φ̃j+1. (2.8)

This set of biorthogonal scaling functions and wavelets is only formally biorthogonal. It is not guaran-
teed that the new dual functions belong to L2, see [36]. They might only exist in distributional sense
in L2. If the solutions to the refinement equations (2.8) exist in L2 we have

〈
φ̃j

i , φ
j
i′

〉
L2

= δi,i′ ,
〈
ψ̃j

k, ψ
j
k′

〉
L2

= δk,k′,
〈
φ̃j

i , ψ
j
k

〉
L2

= 0,
〈
ψ̃j

k, φ
j
i

〉
L2

= 0.

3 Design of the update step

Without an update step the multilevel system

Ψ := Φ0 ∪
∞⋃

j=0

Ψj

consists of scaling functions on several resolution levels. More particular we have

Ψ = Φ0 ∪
∞⋃

j=0

N j

6



which is just the standard hierarchical basis, see, e.g., [43] for the case where V j is the space of
piecewise linear bivariate polynomials. It is well known that standard hierarchical bases do not form
Riesz bases for L2. For instance they do not have a vanishing moment which is required, [6]. We use
the update to achieve properties that the unlifted wavelets do not have.

A common approach is to obtain lifted wavelets with N vanishing moments, where N depends on the
size of the update stencil. The lifting coefficients αj are found as the solution of a N ×N system that
arises from the condition that the lifted wavelets are orthogonal to a basis for the space of polynomials
on M0 of degree at most N − 1. However, the update coefficients in αj appear to be unbounded, and
therefore the wavelet transform is not stable. Simoens [34] gives examples of this phenomenon for the
one-dimensional case.

There is another simple update method that is provably stable. One can choose the update operator
αj as the L2-orthogonal projection from V j+1 onto V j. This yields a multiresolution analysis in
which the complement spaces W j are L2-orthogonal complements to V j in V j+1. We will refer to the
update as semiorthogonal lifting. Basis functions for these particular complement spaces are sometimes
called prewavelets. The resulting multilevel system Ψ is a Riesz basis for L2 and the wavelets have N
vanishing moments provided that V 0 contains the space of polynomials on M 0 of degree at most N−1.
Unfortunately, in general the matrix αj is full, so that the lifted wavelets are not locally supported
but stretch out over the whole domain M 0. This is a major disadvantage for many applications.

The update matrix αj for semiorthogonal lifting has an interesting property. Even when αj is full it
has an exponential off-diagonal decay of a rate that is independent of j, see [34] for a proof. Hence
the idea of approximating αj by a truncated matrix [25, 26, 34, 40, 41]. Because of the off-diagonal
decay, truncating αj yields a banded matrix. Local semiorthogonalization exploits this property. One
fixes the stencil and the scaling functions that come in the update step in advance and then one
orthogonalizes each wavelet function to the subset of V j that is defined by the stencil. The lifted
wavelets will be approximately orthogonal to V j . A disadvantage of this idea is that we loose all
vanishing moments that we had for free in the semiorthogonal case.

Proposition 3.1. Suppose that the set of scaling functions Φj is a Riesz basis of V j with respect to
the L2-norm, for any j ≥ 0. Then the set of wavelets Ψj, obtained by local semiorthogonal lifting, is
a Riesz basis of W j with respect to the L2-norm.

Proof. It is sufficient to show that the one level wavelet transform filters satisfy
∥∥∥∥
[
Pj

Qj

]∥∥∥∥
2

= O(1) ,
∥∥[Aj Bj

]∥∥
2

= O(1),

uniformly in j. Then, by the Riesz stability of Φj, the proposition follows. From (2.6) and (2.7) it
is sufficient to prove that ‖αj‖2, ‖Nj‖2, ‖Oj‖2, ‖(Oj)−1‖2 = O(1). Because of the Riesz stability of
Φj one can easily deduce that ‖Nj‖2, ‖Oj‖2, ‖(Oj)−1‖2 = O(1), using results from [3]. It remains to
check whether the update is stable, i.e., ‖αj‖2 = O(1). For band matrices with uniformly bounded
bandwidth, the 1-norm and the 2-norm are equivalent uniformly in the dimensions of the matrix.
Therefore it is sufficient to show that ‖αj‖1 ∼ maxkl |(αj)kl| is uniformly bounded. Let us focus on
the update of a particular wavelet function ψj

k where k corresponds to a vertex that is added when

going from M̂ j to M̂ j+1. The update involves a set of neighboring scaling functions in V j. Let us
denote these scaling functions by {φj

i |i ∈ Ik}, with Ik and index set representing vertices in M̂ j. By
construction #Ik . 1. The update step solves the system

Gα = b, G :=

(〈
φj

i1
, φj

i2

〉
L2

)

i1,i2∈Ik

, b :=

(〈
φj

i , φ
j+1
k

〉
L2

)

i∈Ik

. (3.1)

Suppose that {ϑj
i |i ∈ Ik} is a dual base for {φj

i |i ∈ Ik}, i.e.,
〈
ϑj

i1
, φj

i2

〉
L2

= δi1,i2 ,
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and suppose that ϑj
i =:

∑
n∈Ik

ci,nφ
j
n, then G−1 = (ci,n)i,n∈Ik

and

∥∥∥ϑj
i

∥∥∥
2

L2

=
〈
ϑj

i , ϑ
j
i

〉
L2

=

〈
ϑj

i ,
∑

n∈Ik

ci,nφ
j
n

〉

L2

= ci,i.

Such a dual basis always exists by the Riesz representation theorem. From the Riesz stability of the
scaling functions we get ∑

n∈Ik

c2i,n .
∥∥∥ϑj

i

∥∥∥
2

L2

,

thus
∑

n∈Ik
c2i,n . ci,i and we derive c2i,n . ci,i. For i = n this becomes ci,i . 1, hence |ci,n| . 1 and

‖α‖∞ ≤
∥∥G−1

∥∥
∞
‖b‖∞ . ‖b‖∞ . 1.

This proves the proposition.

Proposition 3.1 does not imply that the multilevel system Ψ is a Riesz basis for L2. However, the
uniform L2 stability of the wavelets at a fixed resolution level j is a necessary condition to generate a
Riesz basis for L2. Another necessary condition is that the wavelets must have at least one vanishing
moment, see for instance [6]. To enforce the vanishing moment one can use a combined approach
[25, 26, 34]. One degree of freedom in the update step makes the wavelet orthogonal to polynomials
of degree zero. The other degrees of freedom make the wavelet as orthogonal as possible in a least
squares sense to its predefined set of scaling functions.

Proposition 3.2. Suppose that the set of scaling functions Φj is a Riesz basis of V j with respect to
the L2-norm, for any j ≥ 0. Then the set of wavelets Ψj, obtained by local semiorthogonal lifting with
an additional linear constraint that forces each wavelet to have a vanishing moment, is a Riesz basis
of W j with respect to the L2-norm, provided that for any scaling function φj+1

k ∈ N j+1 there exists a

scaling function φj
m in its update stencil such that

∣∣∣∣
∫
φj+1

k dω

∣∣∣∣ .

∣∣∣∣
∫
φj

mdω

∣∣∣∣ . (3.2)

Proof. The first part of the proof is similar to the proof of Proposition 3.1. It is sufficient to prove
that maxkl |(αj)kl| is uniformly bounded. Instead of (3.1) we now solve the minimization problem

min
α

‖Gα− b‖2 subj. to

(〈
1, φj

i

〉
L2

)

i∈Ik

α =
〈
1, φj+1

k

〉
L2

, (3.3)

with G, b and Ik as in the proof of Proposition 3.1. We already know that

‖G‖∞ . 1,
∥∥G−1

∥∥
∞

. 1, ‖b‖∞ . 1. (3.4)

Let ε := Gα− b, then we deduce from (3.4) that

‖ε‖∞ . max (‖α‖∞ , 1) , ‖α‖∞ . max (‖ε‖∞ , 1) . (3.5)

Hence if we can find a α such that the vanishing moment condition is satisfied and such that ‖ε‖∞ . 1,
then the minimalization problem (3.3) will always yield a ‖ε‖∞ . 1, and from (3.5) we get ‖α‖∞ . 1
which proves the proposition. Suppose that we choose α such that all entries αi, i ∈ Ik, are zero,
except for one entry αm. From the vanishing moment condition we find

αm =

〈
1, φj+1

k

〉
L2〈

1, φj
m

〉
L2

.

By (3.2), ‖α‖∞ = |αm| . 1, and (3.5) implies ‖ε‖∞ . 1.
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Remark 3.3. Condition (3.2) is a weak assumption. Denote by {φj
i |i ∈ Ik} the set of scaling functions

in the update stencil of φj+1
k ∈ N j+1 and let V j

k = span{φj
i |i ∈ Ik}. Denote by {φj+1

i |i ∈ Jk} the set

of scaling functions at the next finer level whose support is contained in the domain Ω of V j
k . They

span the space V j+1
k and φj+1

k ∈ V j+1
k . By the Riesz representation theorem there exist dual Riesz

bases {ϑj
i |i ∈ Ik} and {ϑj+1

i |i ∈ Jk} such that V j
k = span{ϑj

i |i ∈ Ik} and V j+1
k = span{ϑj+1

i |i ∈ Jk}.
Furthermore the full set of scaling functions in V j will reproduce polynomials of degree zero, since
they are a Riesz basis with respect to the norm in L2, see, e.g., [33]. Therefore, provided that the
space V j

k is large enough, the orthogonal projection of the constant function onto the space V j
k will

reproduce the constant function exactly in the interior of the domain Ω of V j
k and will tend to zero

near the boundary ∂Ω of the domain of V j
k . Similar results hold for V j+1

k . We find that

∥∥∥∥∥∥
∑

i∈Ik

〈
1, φj

i

〉
L2

ϑj
i

∥∥∥∥∥∥

2

L2(Ω)

∼ ‖1‖2
L2(Ω) ∼

∥∥∥∥∥∥
∑

i∈Jk

〈
1, φj+1

i

〉
L2

ϑj+1
i

∥∥∥∥∥∥

2

L2(Ω)

,

and because the dual bases are also Riesz bases,

∑

i∈Ik

〈
1, φj

i

〉2

L2

∼
∑

i∈Jk

〈
1, φj+1

i

〉2

L2

.

Since #Ik < #Jk, this equivalence implies the existence of a scaling function φj
m in the update stencil

of φj+1
k such that (3.2) holds.

4 Stability over all levels

Propositions 3.1 and 3.2 do not imply that the multilevel system Ψ is a uniformly stable Riesz basis
for L2(M

0). More generally, we are interested in the range of s for which Ψ forms a Riesz basis for
the Sobolev space Hs(M0). In realistic applications M 0 is a bounded domain of arbitrary topological
type such that the nested spaces V j on M0 are not shift-dilation invariant. For our stability analysis
we will assume a shift-dilation invariant setting for our multilevel system, because this allows us to
make use of Fourier techniques. Hence, the main objective of this section is to estimate the range
of Sobolev exponents s for which the shifts and dilations of the wavelets, that are derived from the
two-step lifted wavelet transform of the previous section around a regular vertex, form a Riesz basis
of Hs(Rd), with d the spatial dimension.

We start with a geometric refinement described by the dilation matrix M and we suppose that M is
isotropic, i.e. there exists an invertible matrix Σ such that

ΣMΣ−1 = diag(σ1, . . . , σd)

with |σ1| = · · · = |σd| = m1/d, and m := |detM| > 1. Let λk + MZ
d be the m distinct elements of

Z
d/(MZ

d), with λ0 = 0. Define the sets

Λ := {λk, k = 0, . . . ,m− 1}, Λ′ := Λ \ {λ0}.

In the most general case we find a multilevel system

Ψ = {φ(x− α),mj/2ψλ(Mjx− α), α ∈ Z
d, j = 0, 1, . . . , λ ∈ Λ′}, (4.1)

where

φ(x) := (φ1(x), φ2(x), . . . , φr(x))
T , ψλ(x) :=

(
ψλ

1 (x), ψλ
2 (x), . . . , ψλ

r (x)
)T

9



are r × 1 function vectors on R
d that satisfy vector refinement equations of the form

φ(x) =
∑

α∈Zd

Aαφ(Mx− α), (4.2)

ψλ(x) =
∑

α∈Zd

Aλ
αφ(Mx− α), (4.3)

with {Aα}α and {Aλ
α}α finitely supported sequences of r × r mask coefficient matrices. By the

biorthogonality (2.8) we also have a dual system

Ψ̃ = {φ̃(x− α),mj/2ψ̃
λ
(Mjx− α), α ∈ Z

d, j = 0, 1, . . . , λ ∈ Λ′}

where
φ̃(x) =

∑

α∈Zd

Ãαφ̃(Mx− α), ψ̃
λ
(x) =

∑

α∈Zd

Ãλ
αφ̃(Mx− α). (4.4)

It turns out that the range of Sobolev exponents s for which the multilevel system Ψ is a Riesz basis for
Hs(Rd), is determined by the Sobolev regularity of the scaling function vectors φ and φ̃. The Sobolev
regularity or smoothness of an arbitrary function f on R

d is measured by the critical exponent

sf := sup
{
s : f ∈ Hs(Rd)

}

and the Sobolev regularity of a function vector is just the infimum of the Sobolev regularities of the
functions that it contains. It is known from [7] that if φ, φ̃ ∈ L2(R

d) have compact support, then the
multiscale basis Ψ is a Riesz basis for H s(Rd) for all s with

−s �

φ
< s < sφ

and that this interval is sharp. Recently there has been a growing interest in the numerical computation
of the smoothness of refinable functions, see, e.g., [4, 19, 32] and references therein. However, a
necessary condition in those papers is that the refinable functions exist in L2. As we have already
mentioned in Section 2.6, the duals arising from the lifting scheme do not necessarily satisfy this
condition [36]: it is possible that they only exist in distributional sense in L2. This difficulty was
dealt with by Lorentz and Oswald for the single function refinable case (r=1). In their paper [24] they
provide sharp stability estimates for systems where the duals do not belong to L2. We will extend
this result to refinable function vectors (i.e for arbitrary r ≥ 1).

We now introduce a lot of new notation and some theorems to estimate the range of stability for some
given multilevel system. Taking the Fourier transform of both sides of (4.2), we obtain

φ̂(ω) = P (M−Tω)φ̂(M−Tω), ω ∈ R
d,

and
P (ω) := m−1

∑

α∈Zd

Aαe
−iα·ω, ω ∈ R

d,

is the symbol associated with (4.2). Here P (ω) is an r×r matrix function. Its entries are trigonometric
polynomials with real coefficients. It is well-known that if P (0) satisfies Condition E, i.e. 1 is a simple
eigenvalue of P (0) and all other eigenvalues of P (0) lie inside the open unit disk, then there exists a
unique compactly supported distributional solution vector φ(u) satisfying (4.2) and φ(0) = yR, with
yR (yL) the normalized right (left) eigenvector of P (0) associated with eigenvalue 1, see [30]. Without
loss of generality we assume that the support of the symbol P (ω) is in the cube [−N,N ]d for some
fixed N ≥ 0, so Aα = 0 for all α /∈ [−N,N ]d. Let

K :=




∞∑

j=1

M−j([−2N, 2N ]d)


 ∩ Z

d.
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Define the torus T := [0, 2π]d and let C0(T)r×r denote the space of all r × r matrix functions with
trigonometric polynomial entries. For a given refinement equation with symbol P (ω) ∈ C0(T)r×r we
define the associated transition operator TP on C0(T)r×r by

TPH(ω) :=

m−1∑

k=0

P (M−T (ω + 2πλk))H(M−T (ω + 2πλk))P (M−T (ω + 2πλk))
∗.

Define
H := {H(ω) ∈ C0(T)r×r : H(ω) =

∑

α∈K

Hαe
−iα·ω},

then H is invariant under TP . Furthermore we know from [14, 20] that the eigenfunctions of TP

corresponding to nonzero eigenvalues lie in H. So it is sufficient to consider the restriction of TP to H

in order to study the eigenvalues and eigenfunctions of TP . Let us define the refinement operator RP

on L2(R
d)r×1 by

RPF :=
∑

α∈Zd

AαF (M · −α),

then φ solves (4.2) if RPφ = φ. The cascade algorithm [11] consists in the repeated application of
RP . If for some compactly supported initial F ∈ L2(R

d)r×1 the cascade algorithm converges in the L2

norm, then the vector function obtained in the limit is an L2(R
d)r×1-solution of (4.2). The following

theorem gives necessary but sufficient conditions to guarantee that (4.2) has a solution in L2.

Theorem 4.1. The cascade algorithm associated with the symbol P (ω) converges in the L2 norm if
and only if P (ω) satisfies sum rules of order 1, i.e.,

yLP (2πM−Tλk) = 0, k = 1, . . . ,m− 1,

and the transition operator TP satisfies Condition E.

Proofs can be found in [14, 23, 33]. Note that the requirement that P (ω) satisfies sum rules of order 1
implies that the shifts of the solution φ of (4.2) reproduce polynomials of degree 0. For the converse
to hold true one needs some additional conditions on φ, see [17, Theorem 2.4]. The following theorem
is the main result of the paper [19], and it can be used to estimate the smoothness of the solution to
(4.2).

Theorem 4.2. Let φ ∈ L2(R
d)r×1 be the normalized solution of (4.2) with symbol P (ω). Suppose the

highest degree of polynomials reproduced by φ is k − 1. Let

Ek := {ηlm
−µ/d, ηlm

−µ/d : |µ| < k, l = 2, . . . , r} ∪ {m−µ/d : |µ| < 2k},

with µ = (µ1, . . . , µd) ∈ N
d
0, m

−µ/d := m−µ1/d · · ·m−µd/d and {η1, . . . , ηr} := spec(P (0)), where η1 = 1
and ηl 6= 1 for l = 2, . . . , r. Here spec(·) denotes the spectrum. Define

ρk := max{|ν| : ν ∈ spec(TP |H) \Ek}.

Then

sφ ≥ −d
2

logm ρk.

If φ is L2-stable then we have equality:

sφ = −d
2

logm ρk.

11



One can compute the spectrum of TP |H by the formula

spec (TP |H) = spec (b(Mα − β))α,β∈K ,

where b(α) := m−1
∑

β∈Zd Aβ ⊗ Aα+β and ⊗ denotes the (right) Kronecker product. The following
theorem is due to Dahmen [7].

Theorem 4.3. Assume that Ψ and Ψ̃ are dual Riesz bases in L2(R
d) with compactly supported

basis functions. In particular the symbols P (ω) and P̃ (ω) of the scaling functions φ resp. φ̃ are
trigonometric polynomials (i.e. they have finitely supported masks (Aα)α, (Ãα)α). Then the regularity
exponents of φ and φ̃ are positive, and

Ψ is a Riesz basis in Hs(Rd) ⇐⇒ −s �

φ
< s < sφ,

Ψ̃ is a Riesz basis in Hs(Rd) ⇐⇒ −sφ < s < s �

φ
,

where sφ and s �

φ
are the smoothness exponents of φ resp. φ̃.

Theorem 4.3 is not always applicable because it assumes that φ̃ ∈ L2(R
d)r×1, which can be checked

by Theorem 4.1. Generally we do not know in advance whether our multilevel system Ψ of the form
(4.1) is an L2 Riesz basis. Therefore, it is possible that the dual system only exists in distributional
sense in L2 which is not sufficient. In that case we cannot use Theorem 4.2 either to compute s �

φ
.

This problem was solved by Lorentz and Oswald in [24] for the case r = 1. For the remainder of this
section we will treat here the more general case r ≥ 1 which is a generalization of some of the results
in [24]. We prove the following theorem.

Theorem 4.4. Assume that the scaling function φ is of compact support, and generates a multires-
olution analysis Ψ. Assume that the associated dual symbol P̃ (ω) is a function vector containing
trigonometric polynomials. Furthermore assume that the system Φ0 ∪ Ψ0 is an L2-Riesz basis of V 1.
If s̃ := −d

2 logm ρ̃ ≤ 0 satisfies −s̃ < sφ with ρ̃ := max{|ν| : ν ∈ spec(T �

P

∣∣
H
)}, then the multilevel

system Ψ of the form (4.1) is a Riesz basis in H s(Rd) for all s in the interval

−s̃ < s < sφ.

Furthermore, Ψ is not a Riesz basis in H s(Rd) for any s < −s̃.

First we introduce some notation and we prove some auxiliary lemmas. Suppose that (cα)α is a
sequence of r × 1 vectors, then we denote the periodic function vector

c(ω) :=
∑

α∈Zd

cαe
−iα·ω

by the same letter. Likewise we have

cT (ω) :=
∑

α∈Zd

cT
αe

−iα·ω.

We introduce the matrix function

L(ω) :=
(
P λl(ω + 2πM−Tλk)

)
k,l∈Λ

,

which is invertible for all ω ∈ T if and only if {φ(x−α),ψ(x−α), α ∈ Z
d} is an L2 Riesz basis in V1,

see [35, Theorem 13]. For our purposes this is satisfied, see Propositions 3.1 and 3.2. From (2.5) and
(2.8) we get

L−1(ω) =
(
P̃ λk(ω + 2πM−Tλl)

∗
)

k,l∈Λ
. (4.5)
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Lemma 4.5. Consider the unique decomposition of v1 ∈ V1:

v1 :=
∑

α∈Zd

cT
αφ(M · −α) = v0 + w0,

with
v0 :=

∑

β∈Zd

(dλ0

β )Tφ(· − β) ∈ V0, w0 :=
∑

λ∈Λ′

∑

β∈Zd

(dλ
β)Tψ(· − β) ∈W0.

Then, with

c(ω) :=
∑

α∈Zd

cαe
−iα·ω,

dλ0(ω) :=
∑

β∈Zd

dλ0

β e−iβ·ω,

we have that

dλ0(MTω) = m−1
m−1∑

l=0

P̃ (ω + 2πM−Tλl)
∗c(ω + 2πM−Tλl). (4.6)

Proof. This is a straightforward generalization of Equation (41) in [24]. Some algebra using (4.2) and
(4.3) gives

v0 + w0 =
∑

α∈Zd


∑

λ∈Λ

∑

β∈Zd

(dλ
β)T Aλ

α−Mβ


φ(M · −α),

with Aλ0

α := Aα. Hence,

cT
α =

∑

λ∈Λ

∑

β∈Zd

(dλ
β)TAλ

α−Mβ .

Since Mβ · ω = β · MTω we infer

cT (ω) = m
∑

λ∈Λ

(dλ)T (MTω)P λ(ω).

Substituting the arguments ω + 2πM−Tλl we get

CT (ω) =
(
cT (ω + 2πM−Tλl

)m−1

l=0

= m

(
m−1∑

k=0

(dλk)T (MTω)P λk(ω + 2πM−Tλl)

)m−1

l=0

= m
(
(dλk)T (MTω)

)m−1

k=0
·
(
P λk(ω + 2πM−Tλl

)m−1

k,l=0

= m DT (MTω) · LT (ω),

where CT (ω) and DT (MTω) are 1 × rm row vectors. We find that

D(MTω) = m−1L−1(ω)C(ω)

and (4.6) follows from (4.5).

Let us define the two-level projection Q1
0 : V1 → V0 by

Q1
0v1 = v0, v1 ∈ V1,

13



where v1 has a unique decomposition v0 +w0 with v0 ∈ V0 and w0 ∈W0. If the dual system Ψ̃ exists
in L2, then this two-level projector can be written as

Q1
0v1 =

∑

α∈Zd

〈
φ̃(Mj · −α)T , v1

〉
L2

φ(Mj · −α).

By a dilation argument, we define Qj+1
j vj+1 := Q1

0(vj+1(M
−j ·))(Mj ·) for all vj+1 ∈ Vj , and Qj+k

j :=

Qj+1
j Qj+2

j+1 · · ·Q
j+k
j+k−1. These operators satisfy Qk

jQ
k
j+1 = Qk

j for all 0 ≤ j < k < ∞. We also define

the following norm on C0(T)r×r:

∥∥∥T k
PH
∥∥∥
∞

:=
∑

1≤i,j≤r

sup
ω∈T

{
|eT

i T
k
PH(ω)ej |

}
,

with ei, ej the i-th resp. j-th column of Ir, and

∥∥∥T k
P

∣∣∣
H

∥∥∥
∞

:= sup
H∈H

∥∥T k
PH
∥∥
∞

‖H‖∞
.

Lemma 4.6. For arbitrary k > 0 we have the norm equivalence

∥∥∥Qj+k
j

∥∥∥
2

L2

=
∥∥∥Qk

0

∥∥∥
2

L2

∼
∥∥∥T k

�

P ∗
Ir

∥∥∥
∞
.

Proof. First we show that
∥∥Q1

0

∥∥2

L2

∼
∥∥T �

P ∗
Ir

∥∥
∞
. Define v0, v1 and w0 as in Lemma 4.5. Then, by the

Riesz basis property of {φ(Mj · −α), α ∈ Z
d} and because {eiα·ω, α ∈ Z

d, ω ∈ T} is an orthonormal
basis for L2(T),

∥∥Q1
0

∥∥2

L2

= sup
v1 6=0

∥∥Q1
0v1
∥∥2

L2

‖v1‖2
L2

∼ m sup
c6=0

∥∥dλ0

∥∥2

F (T)

‖c‖2
F (T)

,

where
‖d‖2

F (T) :=
∑

1≤j≤r

‖dj‖2
L2(T)

is the Frobenius norm of the function vector d(ω) = [d1(ω) · · · dr(ω)]T . Now we use Lemma 4.5 and
Hölder’s inequality to derive that

m ‖d‖2
F (T)

= m2
∥∥d(MT ·)

∥∥2

F (M−T T)

=

∥∥∥∥∥
m−1∑

k=0

P̃ (ω + 2πM−Tλk)
∗c(ω + 2πM−Tλk)

∥∥∥∥∥

2

F (M−T T)

=

r∑

j=1

∫

M−T T

∣∣∣∣∣
m−1∑

k=0

r∑

i=1

P̃ij(ω + 2πM−Tλk)ci(ω + 2πM−Tλk)

∣∣∣∣∣

2

dω

≤
r∑

j=1

∫

M−T T

(
m−1∑

k=0

r∑

i=1

∣∣∣P̃ij(ω + 2πM−Tλk)
∣∣∣
2
)

·
(

m−1∑

k=0

r∑

i=1

∣∣ci(ω + 2πM−Tλk)
∣∣2
)
dω

≤
r∑

j=1

∥∥∥∥∥
m−1∑

k=0

r∑

i=1

P̃ij(ω + 2πM−Tλk)P̃ij(ω + 2πM−Tλk)

∥∥∥∥∥
L∞(M−T T)

·
r∑

i=1

∫

M−T T

(
m−1∑

k=0

∣∣ci(ω + 2πM−Tλk)
∣∣2
)
dω
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=

r∑

j=1

∥∥∥∥∥
m−1∑

k=0

r∑

i=1

P̃ji(ω + 2πM−Tλk)
∗P̃ij(ω + 2πM−Tλk)

∗∗

∥∥∥∥∥
L∞(M−T T)

‖c‖2
F (T)

=

r∑

j=1

∥∥∥∥∥∥

[
m−1∑

k=0

P̃ (ω + 2πM−Tλk)
∗P̃ (ω + 2πM−Tλk)

∗∗

]

j,j

∥∥∥∥∥∥
L∞(M−T T)

‖c‖2
F (T)

≤
∥∥T �

P ∗
Ir

∥∥
∞

· ‖c‖2
F (T) .

Thus we have
∥∥Q1

0

∥∥2

L2

.
∥∥T �

P ∗Ir

∥∥
∞
. Since Hölder’s inequality is a sharp estimate we can find a function

vector c(ω) such that
∥∥Q1

0

∥∥2

L2

∼
∥∥T �

P ∗Ir

∥∥
∞
. To show this equivalence we first prove that, for arbitrary

j, there always exists a choice for c(ω) such that

∫

M−T T

∣∣∣∣∣
m−1∑

k=0

r∑

i=1

P̃ij(ω + 2πM−Tλk)ci(ω + 2πM−Tλk)

∣∣∣∣∣

2

dω =
∥∥∥
[
T �

P ∗
Ir

]
j,j

∥∥∥
L∞(T)

‖c‖2
F (T) (4.7)

holds. Indeed, choose ci(ω + 2πM−Tλk) = a(ω)P̃ij(ω + 2πM−Tλk) for all ω ∈ M−T
T and λk ∈ Λ,

with a(ω) some measurable function on M−T
T, then

∫

M−T T

∣∣∣∣∣
m−1∑

k=0

r∑

i=1

P̃ij(ω + 2πM−Tλk)ci(ω + 2πM−Tλk)

∣∣∣∣∣

2

dω

=

∫

M−T T

(
m−1∑

k=0

r∑

i=1

∣∣∣P̃ij(ω + 2πM−Tλk)
∣∣∣
2
)

·
(

m−1∑

k=0

r∑

i=1

∣∣ci(ω + 2πM−Tλk)
∣∣2
)
dω.

Choose a(ω) as the characteristic function of the set of all ω ∈ M−T
T for which

m−1∑

k=0

r∑

i=1

∣∣∣P̃ij(ω + 2πM−Tλk)
∣∣∣
2
≥ (1 − ε)

∥∥∥∥∥
m−1∑

k=0

r∑

i=1

∣∣∣P̃ij(ω + 2πM−Tλk)
∣∣∣
2
∥∥∥∥∥

L∞(M−T T)

and let ε→ 0. Then

∫

M−T T

(
m−1∑

k=0

r∑

i=1

∣∣∣P̃ij(ω + 2πM−Tλk)
∣∣∣
2
)

·
(

m−1∑

k=0

r∑

i=1

∣∣ci(ω + 2πM−Tλk)
∣∣2
)
dω

=

∥∥∥∥∥
m−1∑

k=0

r∑

i=1

∣∣∣P̃ij(ω + 2πM−Tλk)
∣∣∣
2
∥∥∥∥∥

L∞(M−T T)

‖c‖2
F (T)

which implies (4.7). If we treat r as a constant we find that

∥∥T �

P ∗
Ir

∥∥
∞

· ‖c‖2
F (T) ∼ max

1≤i,j≤r

∥∥∥
[
T �

P ∗
Ir

]
i,j

∥∥∥
L∞(T)

‖c‖2
F (T) .

By the special symmetric structure of T �

P ∗
Ir we have that

max
1≤i,j≤r

∥∥∥
[
T �

P ∗
Ir

]
i,j

∥∥∥
L∞(T)

‖c‖2
F (T) ∼ max

1≤j≤r

∥∥∥
[
T �

P ∗
Ir

]
j,j

∥∥∥
L∞(T)

‖c‖2
F (T) . m ‖d‖2

F (T) ,

and thus ‖Q1
0‖2

L2
∼ ‖T �

P ∗
Ir‖∞. By iterating Lemma 4.5 one obtains

‖Qk
0‖2

L2
∼ ‖T k

�

P ∗
Ir‖∞

in the same way. For the convenience of the reader we present a proof for the case k = 2. Let

v2 :=
∑

α∈Zd

(bλ0

α )Tφ(M2 · −α) ∈ V2, w1 :=
∑

λ∈Λ′

∑

α∈Zd

(cλ
α)Tψ(M · −α) ∈W1,
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so that v2 = v1 + w1 = v0 + w0 + w1. From Lemma 4.5 we find

dλ0(MTω) = m−1
m−1∑

k=0

P̃ (ω + 2πM−Tλk)
∗cλ0(ω + 2πM−Tλk),

cλ0(MTω) = m−1
m−1∑

l=0

P̃ (ω + 2πM−Tλl)
∗bλ0(ω + 2πM−Tλl),

and, by substitution,

d(M2Tω) = m−2
m−1∑

k,l=0

P̃ (MTω + 2πM−Tλk)
∗P̃ (ωk,l)

∗bλ0(ωk,l)

holds, with ωk,l := ω + 2πM−Tλl + 2πM−2Tλk. For ease of notation we introduce the r × r matrix

S(k, l, ω) := P̃ (ωk,l)P̃ (MTω + 2πM−Tλk),

then

d(M2Tω) = m−2
m−1∑

k,l=0

S(k, l, ω)∗bλ0(ωk,l).

Using the same techniques as before we deduce that

m2‖d‖2
F (T)

= m4‖d(M2T ·)‖2
F (M−2T T)

=

∥∥∥∥∥∥

m−1∑

k,l=0

S(k, l, ω)∗bλ0(ωk,l)

∥∥∥∥∥∥

2

F (M−2T T)

=

r∑

j=1

∫

M−2T T

∣∣∣∣∣∣

m−1∑

k,l=0

r∑

i=1

Sij(k, l, ω)bλ0

i (ωk,l)

∣∣∣∣∣∣

2

dω

≤
r∑

j=1

∫

M−2T T




m−1∑

k,l=0

r∑

i=1

∣∣∣Sij(k, l, ω)
∣∣∣
2






m−1∑

k,l=0

r∑

i=1

∣∣∣bλ0

i (ωk,l)
∣∣∣
2


 dω

≤
r∑

j=1

∥∥∥∥∥∥

m−1∑

k,l=0

r∑

i=1

Sij(k, l, ω)Sij(k, l, ω)

∥∥∥∥∥∥
L∞(M−2T T)

∥∥∥bλ0

∥∥∥
2

F (T)

=

r∑

j=1

∥∥∥∥∥∥

m−1∑

k,l=0

r∑

i=1

Sji(k, l, ω)∗Sij(k, l, ω)

∥∥∥∥∥∥
L∞(M−2T T)

∥∥∥bλ0

∥∥∥
2

F (T)

=
r∑

j=1

∥∥∥∥∥∥




m−1∑

k,l=0

S(k, l, ω)∗S(k, l, ω)




j,j

∥∥∥∥∥∥
L∞(M−2T T)

∥∥∥bλ0

∥∥∥
2

F (T)
.

It is straightforward to check that

m−1∑

k,l=0

S(k, l,M−2Tω)∗S(k, l,M−2Tω)

=
m−1∑

k=0

P̃ (M−T (ω + 2πλk))
∗
(
T �

P ∗
Ir

) (
M−T (ω + 2πλk)

)
P̃ (M−T (ω + 2πλk))

∗∗
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= T 2
�

P ∗
Ir(ω).

This shows that
∥∥Q2

0

∥∥2

L2

.
∥∥∥T 2

�

P ∗
Ir

∥∥∥
∞
. Similar to the case k = 1 one can construct a function vector

c(ω) so that the estimates in the derivation above become sharp, hence
∥∥Q2

0

∥∥2

L2

∼
∥∥∥T 2

�

P ∗
Ir

∥∥∥
∞
. This

concludes the proof for k = 2. The lemma follows for general k by iteration.

Proof of Theorem 4.4. It follows from properties of the spectral radius and Lemma 4.6 that

∥∥∥Qj+k
j vj+k

∥∥∥
2

L2

. m−2
�

sk/d ‖vj+k‖2
L2
, j, k ∈ N, vj+k ∈ Vj+k. (4.8)

Indeed, we have the equality ρ̃ = limk→∞

∥∥(T �

P

∣∣
H
)k
∥∥1/k

∞
. Choose an ε > 0. The spectral radius of the

operator (ρ̃+ ε)−1 T �

P

∣∣
H

is strictly smaller than one. Therefore we find that

lim
k→∞

∥∥∥((ρ̃+ ε)−1 T �

P

∣∣
H
)k
∥∥∥
∞

= 0,

such that for arbitrary k > 0 there exists a constant Cε for which

∥∥∥((ρ̃+ ε)−1 T �

P

∣∣
H
)k
∥∥∥
∞
< Cε,

or ∥∥∥(T �

P

∣∣
H
)k
∥∥∥
∞

. (ρ̃+ ε)k.

Because Ir ∈ H and ‖Ir‖∞ ∼ 1 we find from Lemma 4.6 that

∥∥∥Qj+k
j vj+k

∥∥∥
2

L2

. (ρ̃+ ε)k ‖vj+k‖2
L2
.

By definition of s̃ and by taking a sufficiently small ε > 0 we find (4.8).

It is well known, see e.g. [29, Lemma 2], that

‖f‖2
Hs ∼ inf

vj∈Vj :f=
�

j vj

∞∑

j=0

m2js/d ‖vj‖2
L2

(4.9)

for all 0 < s < sφ. Because of the norm equivalence (4.9) it is sufficient to show that

inf
vj∈Vj :vJ=

�
j vj

J∑

j=0

m2js/d ‖vj‖2
L2

∼
J∑

j=0

m2js/d
∥∥(QJ

j −QJ
j−1)vJ

∥∥2

L2

for all −s̃ < s < sφ which follows from standard techniques as used in [10, 12, 28]. This equivalence
implies the Hs Riesz basis property for the finite set

ΨJ := {φ(x− α),mj(d/2−s)/dψλ(Mjx− α), α ∈ Z
d, j = 0, 1, . . . , J, λ ∈ Λ′}.

Then we let J → ∞ to obtain the Hs Riesz basis property for the (normalized) multilevel system Ψ.

Now suppose that s < −s̃. Let s′ ∈ (s,−s̃). Similar to the derivation of eq. (4.8) we can now find a

sequence vJ ∈ VJ with J → ∞ such that
∥∥QJ

0 vJ

∥∥2

L2

& m2s′J/d ‖vJ‖2
L2
. Using (4.9) we obtain

‖vJ‖Hs . inf
vj∈Vj :vJ=

�
j vj

J∑

j=0

m2js/d ‖vj‖2
L2

. m2J(s−s′)/d
∥∥QJ

0vJ

∥∥2

L2
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. m2J(s−s′)/d


∥∥QJ

0 vJ

∥∥2

L2

+

J∑

j=1

m2js/d
∥∥(QJ

j −QJ
j−1)vJ

∥∥2

L2


 .

The factor m2J(s−s′)/d goes exponentially fast to zero as J → ∞. Therefore the equivalence

‖vJ‖Hs ∼
J∑

j=0

m2js/d
∥∥(QJ

j −QJ
j−1)vJ

∥∥2

L2

does not hold. This establishes Theorem 4.4.

Remark 4.7. Q. Jiang and P. Oswald have written MATLAB routines for numerically estimating
smoothness exponents, see their papers [21] and [22].

5 Numerical examples

In this section we apply the theoretical framework of the previous sections to some example subdivision
schemes. We create subdivision wavelets with the lifting scheme and we investigate their stability. The
update method that we use is local semiorthogonalization with or without an additional constraint
that enforces a vanishing moment. In most constructions the wavelets are not a Riesz basis of L2, but
they do extend the range of stability when we compare them to the non-updated wavelet system.

5.1 Wavelets from polyhedral subdivision

Polyhedral subdivision converges to the original polyhedron that covers M 0. It does not provide any
more than a C0 continuous surface. Any triangle in the mesh is split into four subtriangles using the
midpoints of the edges of the original triangle, see Figure 4.

→ →

M0 M1 M2

Figure 4: Polyhedral subdivision of an icosahedron.

For each vertex k in the mesh M̂ j we have a piecewise linear scaling function φj
k on M̂ j that takes the

value one at vertex k and that is zero at all other vertices, i.e. we simply have the hat functions over
M̂ j . Around regular vertices the scaling functions satisfy a refinement equation of the form

φ(x) = φ(Mx) +
1

2

∑

k∈K1

φ(Mx− k),

with
K1 := {(0, 1), (1, 0), (−1, 0), (0,−1), (1,−1), (−1, 1)}

and M := 2I2. It is well-known that sφ = 3
2 , but this can also be computed from Theorem 4.2.

If we do not perform an update we simply have the hierarchical basis from [43] which is a Riesz basis
for Hs(R2) for all s ∈ (1, 3

2 ). To enlarge the range of Sobolev exponents s we update a wavelet at a
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γ1 γ2

γ3

γ4

λ

Figure 5: The update stencil for the polyhedral wavelet.

new vertex λ in M̂ j+1 by the four old vertices γ1, . . . , γ4 in M̂ j as in Figure 5. Local semiorthogonal
lifting yields

ψj
λ = φj+1

λ − 11

60

(
φj

γ1
+ φj

γ2

)
+

1

60

(
φj

γ3
+ φj

γ4

)

around regular vertices. The dual system satisfies a refinement relation of the form

φ̃(x) =
9

5
φ̃(Mx) +

11

15

∑

k∈K1

φ̃(Mx− k) − 3

10

∑

k∈K2

φ̃(Mx− k) − 1

15

∑

k∈K3

φ̃(Mx− k)

with

K2 := {(0, 2), (2, 0), (−2, 0), (0,−2), (2,−2), (−2, 2)},
K3 := {(1, 1), (−1,−1), (−1, 2), (−2, 1), (1,−2), (2,−1)}.

This can be computed from (2.4), (2.5), and (2.8). The dual symbol P̃ (ω) satisfies Condition E and we
compute in MAPLE that s̃ := − d

2 logm ρ̃ equals −0.254098..., with ρ̃ := max{|ν| : ν ∈ spec(T �

P

∣∣
H
)}.

From Theorem 4.4 we find that the multilevel system Ψ is a Riesz basis for H s(R2) for all s ∈
(0.254098..., 3

2 ). We do not have a Riesz basis for L2. Figure 6 shows the scaling function and the
wavelet function.

φ ψ

Figure 6: Hat function and corresponding wavelet from local semiorthogonal lifting.

Let us now add a constraint that forces the wavelets to have a vanishing moment. In this case we find
that

ψj
λ = φj+1

λ − 13

80

(
φj

γ1
+ φj

γ2

)
+

3

80

(
φj

γ3
+ φj

γ4

)

and

φ̃(x) =
41

20
φ̃(Mx) +

13

20

∑

k∈K1

φ̃(Mx− k) − 7

40

∑

k∈K2

φ̃(Mx− k) − 3

20

∑

k∈K3

φ̃(Mx− k).
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From Theorem 4.2 we find, using MAPLE, that s �

φ
= 0.328857... and the corresponding multilevel

system Ψ is a Riesz basis for Hs(R2) for all s ∈ (−0.328857..., 3
2), hence we do have a Riesz basis for

L2. Figure 7 shows the wavelet function and the dual scaling function.

ψ φ̃

Figure 7: Polyhedral wavelet from local semiorthogonal lifting with a linear constraint that enforces
a vanishing moment, and the corresponding dual scaling function.

In [40, 41] an approach similar to local semiorthogonal lifting is used to stabilize hierarchical bases. The
resulting approximate wavelets are used to precondition linear systems that arise from the Galerkin
discretization of second order elliptic partial differential equations. For instance, consider the elliptic
problem

−∆u+ qu = f on Ω := [0, 1]2, u|∂Ω = 0, (5.1)

with f(x, y) = 2y(1− y) + 2x(1− x) + qx(1− x)y(1− y). Then u(x, y) = x(1− x)y(1− y) is the exact
solution. The Ritz–Galerkin approximation uJ ∈ V J solves

a(uJ , v) = 〈f, v〉L2
, (v ∈ V J),

with a(u, v) := 〈∇u,∇v〉L2
+q 〈u, v〉L2

. Here V J is the space spanned by the shifts of the standard hat
function at resolution level J whose supports are contained in the domain Ω such that the homogeneous
boundary conditions are satisfied. Since a(u, u) ∼ ‖u‖2

H1(Ω) for small q, exploiting the polyhedral
wavelets leads to uniformly well-conditioned stiffness matrices [9]. If the value of q increases, the
zero order term starts to affect stability and we practically have a(u, u) ∼ ‖u‖2

L2(Ω). The polyhedral
wavelets should handle this zero order term much better than the standard hierarchical basis, since
the wavelets form a Riesz basis of L2. To solve problem (5.1) we employ a conjugate gradient method
and we discretize the problem with the suboptimal hierarchical basis (HB) of Yserentant [43], the
polyhedral wavelets with one vanishing moment that we have just derived, and the BPX preconditioner
from [2]. Tables 1 and 2 show the results for the cases q = 1 resp. q = 108. For each method we show
the number of iterations that are needed to reach the stopping criterion, and the spectral condition
number κ of the system matrix for the linear system of equations that is solved. We always take a zero
starting vector, and we stop the conjugate gradient iteration if the `2 norm of the discrete residual is
smaller than 10−7.

BPX Wavelets HB
J # κ # κ # κ
2 13 5.24 16 9.57 16 10.65
3 16 6.99 20 12.66 24 19.64
4 18 8.22 23 14.88 32 32.04
5 20 9.19 25 16.50 39 47.41
6 21 9.97 26 17.74 46 65.74

Table 1: Iteration history for problem (5.1), q = 1.
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BPX Wavelets HB
J # κ # κ # κ
2 13 8.25 22 14.62 23 108.24
3 18 12.60 30 19.40 56 607.60
4 21 16.74 34 23.90 120 3.13e+3
5 24 20.76 39 27.74 223 1.53e+4
6 27 24.68 43 31.04 456 7.25e+4

Table 2: Iteration history for problem (5.1), q = 108.

5.2 Wavelets from Hermite piecewise cubic spline subdivision

Consider the piecewise cubic Hermite splines defined by

φ1(x) :=

{
(x+ 1)2(−2x+ 1), x ∈ [−1, 0],
(1 − x)2(2x+ 1), x ∈ [0, 1]

φ2(x) :=

{
(x+ 1)2x, x ∈ [−1, 0],
(1 − x)2x, x ∈ [0, 1]

,

see Figure 8. Integer translates of φ1, φ2 generate the space of C1 piecewise cubic functions on R
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0.8

1

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

φ1 φ2

Figure 8: Piecewise cubic Hermite splines.

which interpolate function values and first derivatives at the integers. Define the generator φ(x) =
(φ1(x), φ2(x))

T . Then φ(x) satisfies the refinement equation

φ(x) =

[
1
2

3
4

−1
8 −1

8

]
φ(2x+ 1) +

[
1 0
0 1

2

]
φ(2x)

[
1
2 −3

4
1
8 −1

8

]
φ(2x− 1),

and sφ = 5
2 . The wavelets can be represented by the generator ψ(x) = (ψ1(x), ψ2(x))

T . We define

the update stencil for a new vertex λ in M̂ j+1 by the two neighbouring old vertices γ1 and γ2 as in
Figure 9. Local semiorthogonal lifting gives

ψ(x) = φ(2x− 1) −
[

491
2204

1989
1102

−255
4484

−446
1121

]
φ(x) −

[
491
2204

−1989
1102

255
4484

−446
1121

]
φ(x− 1).

Figure 10 depicts the wavelet functions. From (2.4), (2.5), and (2.8) we compute that the dual scaling

γ1 γ2

λ

Figure 9: The update stencil for the piecewise cubic Hermite spline wavelet.
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Figure 10: Piecewise cubic Hermite spline wavelets from local semiorthogonal lifting.

functions satisfy a refinement relation of the form

φ̃(x) =

[
−35753
260072

−10787
130036

78549
65018

91483
130036

]
φ̃(2x+ 2) +

[
491
1102

255
2242

−1989
551

−892
1121

]
φ̃(2x+ 1)

+

[
9471
6844 0
0 116853

65018

]
φ̃(2x) +

[
491
1102

−255
2242

1989
551

−892
1121

]
φ̃(2x− 1) +

[
−35753
260072

10787
130036

−78549
65018

91483
130036

]
φ̃(2x− 2).

The dual symbol P̃ (ω) satisfies Condition E and we compute in MAPLE that s̃ := − d
2 logm ρ̃ equals

−0.026490..., with ρ̃ := max{|ν| : ν ∈ spec(T �

P

∣∣
H
)}. From Theorem 4.4 we find that the multilevel

system Ψ is a Riesz basis for Hs(R) for all s ∈ (0.026490..., 5
2 ). We do not have a Riesz basis for L2.

If one adds a linear constraint to the update that forces the wavelets to have one vanishing moment
one will find that the corresponding dual symbol P̃ (ω) does not satisfy Condition E. Hence, the dual
functions do not exist in distributional sense in L2 and Theorem 4.4 is not applicable in this case (one
will find that −s̃ > sφ).

5.3 Wavelets from the tangent scheme

The tangent scheme [38, 39] is a subdivision scheme that yields C 1 continuous surfaces and it is

based on uniform Powell–Sabin spline subdivision. For each vertex in M̂ j we have a control triangle
tangent to the subdivision surface instead of a control point. Hence we can associate three scaling
functions with each vertex in M̂ j , one for each vertex of the control triangle. The main advantage of
this subdivision scheme is that one can choose the values of the tangent vectors in the vertices of the
initial polyhedronM 0, see Figure 11. Around regular vertices uniform Powell–Sabin spline subdivision
rules [42] are used. Therefore, in the regular regions the three scaling functions that can be associated
with a vertex are Powell–Sabin splines [31]. They satisfy a refinement relation of the form (4.2) with
M := 2I2, and where A(−1,−1) and A(0,−1) are given by

1

4




1 0 2
0 1 2
0 0 0


 , 1

4




1 0 0
2 0 2
0 0 1


 ,

A(−1,0), A(0,0) and A(1,0) are given by

1

4




0 2 2
0 1 0
0 0 1


 , 1

6




4 1 1
1 4 1
1 1 4


 , 1

4




0 0 0
2 1 0
2 0 1


 ,
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Figure 11: With the tangent scheme the normal on the limit surface in the vertices of the initial
polyhedron M 0 can be chosen in advance.

and A(0,1) and A(1,1) are given by

1

4




1 2 0
0 0 0
0 2 1


 , 1

4




1 0 0
0 1 0
2 2 0


 .

One can compute, using MAPLE, that sφ = 5
2 .

If we do not perform an update we have the hierarchical basis from [27] which is a Riesz basis for
Hs(R2) for all s ∈ (2, 5

2). To enlarge the range of Sobolev exponents s we update the three wavelet

functions at a new vertex λ12 ∈ M̂ j+1 by the six neighbouring coarser scaling functions associated
with the vertices γ1 and γ2 in M̂ j as in Figure 12. Local semiorthogonal lifting yields a dual symbol

γ1 γ2

γ3

λ23λ31

λ12

Figure 12: The update stencil for the tangent scheme wavelet.

P̃ (ω) that does not satisfy Condition E, hence Theorem 4.4 is not applicable. Local semiorthogonal
lifting with a linear constraint that enforces a vanishing moment yields

ψ
j
λ12

= φ
j+1
λ12

−




−10815353
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489004135
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−



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Figure 13 shows a scaling function and a wavelet function.

φ1 ∈ φ ψ1 ∈ ψ

Figure 13: Powell–Sabin spline scaling function and corresponding wavelet from local semiorthogonal
lifting with a linear constraint that enforces a vanishing moment.

The dual scaling functions satisfy a refinement relation of the form (4.4) where Ã(−2,−2) and Ã(0,−2)

are given by


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Ã(0,1) and Ã(1,1) are given by




734318841
1123635604

489004135
481558116

179538083
842726703

−20302895
37042932

−10815353
9260733

−20302895
37042932

79538083
842726703

489004135
481558116

734318841
1123635604


 ,




−164964803
1123635604

−494924650
842726703

−71233997
481558116

−494924650
842726703

−164964803
1123635604

−71233997
481558116

681707773
481558116

681707773
481558116

52104049
120389529


 ,

and finally Ã(0,2) and Ã(2,2) are given by




−37
336

−417301265
642077488

37
336

0 20302895
24695288 0

37
336

−417301265
642077488

−37
336


 ,




1494625759
13483627248

1488078047
4494542416

−212816425
1926232464

1488078047
4494542416

1494625759
13483627248

−212816425
1926232464

−366180055
481558116

−366180055
481558116

366180055
963116232


 .

The dual symbol P̃ (ω) satisfies Condition E and we compute in MAPLE that s̃ := − d
2 logm ρ̃ equals

−0.431898..., with ρ̃ := max{|ν| : ν ∈ spec(T �

P

∣∣
H
)}. From Theorem 4.4 we find that the multilevel

system Ψ is a Riesz basis for Hs(R2) for all s ∈ (0.431898..., 5
2). We do not have a Riesz basis for L2.

5.4 Optimization on uniform grids

The previous lifting constructions are general in the sense that they apply to non-uniform meshes
of arbitrary topological type. The lifting coefficients from local semiorthogonal lifting vary with the
underlying non-uniform mesh. For many applications it is however sufficient to work on uniform grids.
In such a case all lifting computations can be done in advance, and smarter ways exist to construct
wavelets, see, e.g., [15, 16, 17]. The lifting scheme allows us to create wavelets with certain properties
such as vanishing moments, symmetry, etc. The remaining degrees of freedom can be chosen in such
a way that the range of stability is as large as possible by solving a minimization problem. Let us
demonstrate this principle with an example. Consider the piecewise Hermite cubics from Section 5.2.
The update stencil for the wavelets is as in Figure 9, so we get

Ψ(x) = Φ(2x− 1) −
[
α1 α2

β1 β2

]
Φ(x) −

[
α3 α4

β3 β4

]
Φ(x− 1).

Suppose that we want two vanishing moments, ψ1 has to be symmetric and ψ2 has to be anti-
symmetric. Then we need 6 degrees of freedom to satisfy these properties. Hence 2 degrees of freedom
remain and the dual generator Φ̃(x) satisfies the refinement equation

Φ̃(x) =

[
− 9

40 − β2

5 − 7
60 − β2

15

α2 + 3β2

2
α2+β2

2

]
Φ̃(2x+ 2) +

[
1
2

1
30 − 4β2

15
−2α2 2β2

]
Φ̃(2x+ 1)

+

[
29
20 + 2β2

5 0
0 4 − α2 + β2

]
Φ̃(2x)

+

[
1
2 − 1

30 + 4β2

15
2α2 2β2

]
Φ̃(2x− 1) +

[
− 9

40 − β2

5
7
60 + β2

15

−α2 − 3β2

2
α2+β2

2

]
Φ̃(2x− 2)

Theorems 4.3 and 4.4 characterize the range of stability, and Theorem 4.2 tells us how to compute the
smoothness of Φ̃(x). We use the minimization toolbox in MATLAB to compute the optimal values
(i.e. those values that give the largest range of stability) for the two remaining degrees of freedom α2

and β2 . We find α2 = 11
7 and β2 = − 6

11 , or

Ψ(x) = Φ(2x− 1) −
[

1
4

11
7

− 59
660 − 6

11

]
Φ(x) −

[
1
4 −11

7
59
660 − 6

11

]
Φ(x− 1).

These wavelets are stable for Hs(R) with −0.828823 < s < 2.5. Figure 14 visualizes the constructed
functions. Note that these cubic Hermite spline wavelets are similar to the ones constructed in [8].
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Figure 14: Cubic Hermite spline wavelet on R

We conclude with a last example. Let us try to construct linear wavelets in R
2 on the hexagonal

lattice. We want them to have two vanishing moments, and we want hexagonal symmetry. If we use
the same setting as in Section 5.1, then we initially have

ψj,λ = φj+1,λ − α1φj,γ1
− α2φj,γ2

− α3φj,γ3
− α4φj,γ4

.

After some straightforward algebra we find that, in order to satisfy our wish list, we need three degrees
of freedom out of four. Hence we keep one degree of freedom to stabilize our wavelet. The dual Φ̃(x)
satisfies

Φ̃(x) = (4 − 12α1)Φ̃(Mx) + 4α1

∑

k∈K1

Φ̃(Mx− k) + (2α1 −
1

2
)
∑

k∈K2

Φ̃(Mx− k)

+(
1

2
− 4α1)

∑

k∈K3

Φ̃(Mx− k), x ∈ R
2.

The optimal value for α1 is computed with the optimization toolbox of MATLAB and we find α1 = 3
16 .

The resulting wavelet

ψj,λ = φj+1,λ − 3

16
(φj,γ1

+ φj,γ2
) +

1

16
(φj,γ3

+ φj,γ4
)

is the same as the one constructed in [5] and the multilevel basis is a stable basis for H s(R2) with
−0.440765 < s < 1.5.

Obviously in such situations one needs to be able to compute the spectral radius of the transition
operator in an efficient way. One can for instance take into account the symmetry of the mask to
optimize the computations. We refer to [13, 16] for more details.
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