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Orthogonal rational functions on the unit circle:

from the scalar to the matrix case

A. Bultheel∗, P. González-Vera††, E. Hendriksen‡, O. Nj̊astad§

Abstract

The purpose of these lecture notes is to give a short introduction to the theory of
orthogonal rational functions (ORF) on the unit circle. We start with the classical
problem of linear prediction of a stochastic process to give a motivation for the study
of Szegő’s problem and to show that in this context it will turn out that not as much
the ORF but rather the reproducing kernels will play a central role. Another example
of rational Krylov iteration shows that it might also be interesting to consider ORF on
the real line, which we shall not discuss in these lectures.

In a second part we will show that most of the results of the scalar case thanslate
easily to the case of matrix valued orthogonal rational functions (MORF).

There are however many aspects that are intimately related to these ideas that
we do not touch upon like continued fractions, Nevanlinna-Pick interpolation, moment
problems, and many other aspects of what is generally known as Schur analysis.
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Part 0: Motivation

1 Why orthogonal rational functions?

We want to give a summary of known results about orthogonal rational functions (ORF)
with respect to some measure whose support is contained in the unit circle of the complex
plane. But before we start, we want to give some motivation of why it may be interesting
to generalize orthogonal polynomials to ORF for which the poles of the successive rational
functions of increasing degree are taken from a preselected sequence of complex numbers.

1.1 Linear prediction

Consider a discrete time stationary stochastic process {yn}n∈Z. The index n denotes a time
instance. Stationarity means that µk = E{ynyn−k} is independent of n. We suppose that all
the yn are zero mean, identically distributed. A problem considered already by Wiener is to
predict yn at instant n from observation of the preceding yn−k, k ≥ 1. Thus we want to find
coefficients ak such that yn is predicted by ŷn = −∑∞

k=1 akyn−k such that we minimize the
energy of the prediction error or innovation process en =

∑∞
k=0 akyn−k where a0 = 1. That

is we want to minimize the expected value E{|en|2}
Because in the space spanned by {yn}n∈Z, we can consider E{xy} as an inner product of

x and y, we can formulate the previous problem by saying that we look for the orthogonal
projection of the present onto its past. Modulo some technical details, it can be shown that
this problem can be reformulated in an L2 setting as an infinite dimensional least squares
problem, i.e., finding the projection of 1 onto the space H−

2 spanned by {z−1, z−2, . . .} in the
Hilbert space L2(µ) of the unit circle where the orthogonality measure is the spectral measure
of the process (the trigonometric moments of this measure are the µk introduced above). The
result is that the optimal predictor is given by the spectral factor of the spectral measure.
Suppose for simplicity that the spectral measure is absolutely continuous with weight w(eiω),
then the spectral factor is the function σ(z) which is the outer spectral factor of w (σ and
1/σ are analytic outside the unit disk, and satisfy |σ(t)|2 = w(t) for |t| = 1).

There are two ways one can think of to solve this problem. Either we project 1 onto
subspaces L−

n of H−
2 of dimension n = 1, 2, . . . and let n tend to ∞, or we can solve the

trigonometric moment problem to find the spectral measure and subsequently or simultane-
ously do a spectral factorization.

If we assume that the value of yn is mostly defined by the near past and much less by
a past that is longer ago, then a natural choice is to take L−

n = span{z−1, . . . , z−n}. So
the optimal predictor of this finite dimensional problem is to find the polynomial ϕ̂n(z) =
∑n

k=0 akz
−k with a0 = 1 that has minimal norm in L2(µ). This is known to be the reciprocal

of the monic nth orthogonal polynomial. From the classical Szegő theory, it is known that
(under appropriate conditions on the measure) these orthogonal polynomials converge (up
to a constant) to the outer spectral factor of the orthogonality measure (whose inverse is
often called Christoffel function in this context). Thus solving the projection problem leads
asymptotically to a spectral factor of the measure. For practical applications though we do
not want n to be very large, since that would need long and expensive filters. So we stop this
process with a finite n, and hope to have a good approximation. It is not difficult however
to find a simple example that requires a very long filter to get a reasonable approximation.
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Suppose yn = −
∑∞

k=1 a
kyn−k. Thus the predictor is 1 + a/z+ a2/z2 + · · · = 1/(1− a/z).

If |a| is close to 1, then the sequence ak will decay very slowly, and we shall need a high
degree polynomial ϕ̂n to obtain a good approximation. If however, we know from observing
the FFT of the observations, an estimate â of a, then a filter expanded in terms of powers
of (1 − â/z) might need only a couple of terms to give a good approximation. For a more
complicated behaviour of the spectral density of the process, one might need more poles
to get an accurate model and in such a case a rational approximant from span{1, 1/(1 −
α1/z), 1/[(1 − α1/z)(1 − α2/z)], . . .} will be a better option to model the system.

1.2 Krylov subspace methods

If A is a linear operator on a Hilbert space H (e.g., a large N × N matrix operating on
R

N) and v ∈ H, then the space Kn+1(A, v) = span{v0, . . . , vn} with vk = Akv, is called a
Krylov subspace. To solve a linear equation Ax = b or an eigenvalue problem for A, the
problem is projected onto a Krylov subspace of finite (i.e., low) dimension (n � N in the
matrix example) and this low dimensional problem is solved to give an approximation to
the original problem. To compute the projection, an orthogonal basis is constructed for the
Krylov subspace. Clearly, the (k + 1)st orthogonal vector qk has to be a combination of the
the first k + 1 vectors in the Krylov subspace. Hence it is of the form qk = ϕk(A)v with
ϕk(z) a polynomial of degree k.

Exercise 1.1 Suppose that A is real self adjoint and positive definite, then prove that the
orthonormality qT

k ql = δk,l is equivalent with the orthogonality of the polynomials 〈ϕk, ϕk〉 =
δkl with respect to the inner product defined by 〈ϕk, ϕl〉 = L(ϕkϕl) where the linear functional
L is defined on the space of polynomials by its moments mk = L(zk) = vTAkv. Note that
the metric for the standard basis {1, z, z2, . . .} is a Hankel matrix whose rank can not be
larger than N , the size of A. 3

Thus in the classical Lanczos method for symmetric matrices, the three-term recurrence
relation for the orthogonal polynomials leads to a short recurrence between the successive
vectors qk, meaning that qn can be computed from qn−1 and qn−2, which does not need a full
Gram-Schmidt orthogonalization.

However, computing the vk is like an application of the power method and therefore, the
vk will quickly converge to an eigenvector corresponding to a dominant eigenvalue. Thus,
if we want an eigenvalue in the neighborhood of α, then we should not iterate with A, but
with B = (A − αI)−1. The rational Krylov method (RKS) of A. Ruhe [26, 27, 28] allows
for a different shift α in every iteration step. Thus vk = (A − αkI)

−1vk−1, or even more
generally vk = (A − σkI)(A − αkI)

−1vk−1, where αk is used to enforce the influence of the
eigenspaces of the eigenvalues in the neighborhood of αk, while σk is used to suppress the
influence of the eigenspaces of the eigenvalues in the neighborhood of σk. Anyway, this
construction of vk means that we may write vk as vk = rk(A)v with rk a rational function
of the form pk(z)/[(z − α1) · · · (z − αk)] with pk a polynomial of degree at most k, so that
after orthogonalizing vk with respect to the previous vectors, we obtain a vector qk = ϕk(A)v
where ϕk(z) is again a rational function of the same form as rk. pk(z)/[(z− α1) · · · (z− αk)]
with pk a polynomial of degree at most k. Since the classical moment matrix has a Hankel
structure, this theory will be related to orthogonality on the real line.

Skipping all the technical details, it will be obvious that orthogonality of the qk will lead
to some orthogonality of the rational functions ϕk. Again, a simple recurrence of the ORF
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will lead to an efficient implementation of the RKS.

1.3 Numerical quadrature

One more example, before we dive into the general theory of ORF.
To compute an integral

∫ b

a
f(x)w(x)dx, it is well known that a quadrature formula of the

form
∑n

k=1 λkf(ξk) will be exact for all polynomials of degree up to 2n − 1 if the abscises
of this quadrature formula are the zeros of the polynomial ϕn which is the nth orthogonal
polynomial orthogonal with respect to the inner product 〈f, g〉 =

∫ b

a
f(x)g(x)w(x)dx, and if

the weights are given by the corresponding Christoffel numbers λk = 1/
∑n−1

j=0 |ϕk(ξk)|2.
However, if the integrand f does not behave much like a polynomial, some other quadra-

ture formula can be better. For example if we want to integrate f(x) = sin(x)/pn(x) over
the interval [0, π/2] with w = 1. If pn(x) is a real polynomial with complex conjugate pairs
of zeros that are close to the interval of integration, then it would be much better to have
a quadrature formula that is exact for all rational functions of degree n that have poles
close to the zeros of the polynomial pn. Using ORF for the interval [a, b] with respect to
the weight w, with prescribed poles, it is possible to derive formulas that are similar to
the Gaussian formulas, i.e., taking for the nodes the zeros of the ORF ϕn and as weights
λk = 1/

∑n−1
j=0 |ϕk(ξk)|2. These quadrature formulas will be exact in a certain space of di-

mension 2n− 1. It is clear that this should lead to much more accurate results in examples
like we described above.



lecture notes leganes - July 16, 2004 6

Part I: The scalar case

2 Orthogonal rational functions on the unit circle

We give in part I an introduction to the theory of ORF for a measure that is supported on
the unit circle of the complex plane. All the results of this part (and more) can be found in
the monograph [3].

2.1 Preliminaries

We denote

D = {z ∈ C : |z| < 1}, T = {z ∈ C : |z| = 1}, E = {z ∈ C : |z| > 1}.
For any function f we introduce the parahermitian conjugate f∗, defined by f∗(z) = f(1/z).
Note that for t ∈ T, f∗(t) = f(t).

Let µ be a probability measure on T with infinite support and L2(µ) the Hilbert space
with inner product 〈f, g〉µ =

∫

f(t)g(t)dµ(t). If dµ = dλ is the normalized Lebesgue measure
dλ = dt/(2π) we drop µ from the notation. The trigonometric moments are denoted by
ck =

∫

t−kdµ(t), k ∈ Z.
Introducing the Riesz-Herglotz kernel

D(t, z) =
t+ z

t− z

we can associate with µ its Riesz-Herglotz transform

Ωµ(z) = ic+

∫

D(t, z)dµ(t)

with Ωµ(0) = 1 + ic. This Ωµ belongs to the class C of Carathéodory functions

C = {f ∈ H(D) : Re f(D) > 0}
where H(D) denotes the functions analytic in D.

Exercise 2.1 Prove that

Re Ωµ(z) =

∫

P (t, z)dµ(t)

with Poisson kernel

P (t, z) =
1

2
[D(t, z) +D(1/t, z)] =

t(1 − |z|2)
(t− z)(1 − zt)

, (2.1)

which can be simplified for t ∈ T as follows

P (t, z) = ReD(t, z) =
1 − |z|2
|t− z|2 , t ∈ T, z ∈ D.

Moreover with ck =
∫

t−kdµ(t)

Ωµ(z) = c0 + 2
∞
∑

k=1

ckz
k, (c0 = 1)

and the nontangential limit of Re Ωµ(z) when |z| → 1 is a.e. (dλ) equal to µ′ which is the
density function of the absolute continuous part of µ. 3
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Let H2(D) be the classical Hardy space of functions analytic in D that have a boundary
value on T that is square integrable. Every function f ∈ H2(D) has a canonical inner-outer
factorization. This means that it can be written an f = UF with U inner and F outer. An
inner function belongs to the class of bounded analytic functions

B(D) = {f ∈ H(D) : f(D) ⊂ D}

and |f(t)| = 1 a.e. on T. A Blaschke product is an example of an inner function. It is
defined as B(z) =

∏

n ζn(z) with

ζn(z) = zn
z − αn

1 − αnz
, zn = −|αn|

αn

, αn ∈ D \ {0}

and zn = 1 if αn = 0. It is well known that a Blaschke product converges (to a finite function
not identically zero) if and only if

∑

n

(1 − |αn|) <∞

which means that the |αn| should approach 1 fast enough.
Any inner function is of the form

U(z) = eiγB(z)S(z), γ ∈ R, S(z) = exp

{

−
∫

D(t, z)dν(t)

}

with ν a bounded positive singular (ν ′ = 0 a.e.) measure and B a Blaschke product that
catches all the zeros of U .
An outer function in H2(D) is a function of the form

F (z) = eiγ exp

{
∫

D(t, z) logψ(t)dλ(t)

}

, γ ∈ R

where logψ ∈ L1 and ψ ∈ L2.
If log µ′ ∈ L1 (Szegő’s condition), then we may define the spectral factor of µ

σ(z) = c exp

{

1

2

∫

D(t, z) log µ′(t)dλ(t)

}

, c ∈ T, z ∈ D.

This constant can be fixed by requiring for example that σ(0) > 0. It is an outer function,
uniquely defined up to a constant c ∈ T. It has a nontangential limit to the boundary T

that satisfies |σ(t)|2 = µ′(t), a.e., t ∈ T.

Exercise 2.2 Prove that

|σ(z)|2 = exp

{
∫

P (t, z) log µ′(t)dλ

}

.

3

More about the material in this section can be found in many textbooks a.o. [8, 16, 15, 14,
25, 30].
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2.2 The fundamental spaces

We select a sequence {αk}∞k=0 ⊂ D with α0 = 0 and define the partial Blaschke products

B0 = 1, Bn(z) = Bn−1(z)ζn(z) =
n
∏

k=1

zk
z − αk

1 − αkz
, n ≥ 1.

The functions {B0, B1, . . . , Bn} span the space

Ln =

{

pn

πn

: πn(z) =
n
∏

k=1

(1 − αkz), pn ∈ Pn

}

(2.2)

where Pn is the space of polynomials of degree at most n.
If we set all αk = 0, then Ln = Pn. In that case the Gram matrix of Ln for the standard

basis is a Toeplitz matrix with entries 〈zi, zj〉µ = cj−i where i, j = 0, . . . , n. If all the αk are
mutually distinct, then the Gram matrix for the basis {1, 1/(1− α1z), . . . , 1/(1− αnz)} has
entries
〈

1

1 − αiz
,

1

1 − αjz

〉

µ

=
1

2(1 − αiαj)

∫

[

D(t, αi) +D(t, αj)
]

dµ(t) =
1

2

Ωµ(αi) + Ωµ(αj)

1 − αjαi

.

Such a matrix is called a Pick matrix.

Exercise 2.3 If ∂k
w denotes the kth derivative with respect to the variable w, prove that

Ω(k)
µ (w) = ∂k

wΩµ(w) =

∫

∂k
wD(t, w)dµ(t) = 2(k!)

∫

tdµ(t)

(t− w)k+1

and

Ω
(k)
µ (w) =

∫

∂k
wD(t, w)dµ(t).

3

In the more general situation where we want to construct a Gram matrix for the space Ln

for fixed n and where some of the of the αk are repeated, then we can rearrange them so
that equal αk are grouped. We can then take the basis consisting of functions of the form
1/(1 − αkz), . . . , 1/(1 − αkz)

νk if αk is repeated νk times, and similarly for the other αi.
Technically, it is rather difficult to write a general expression of an entry in the Gram matrix
for such a basis, but with the help op the previous exercise, one can show the following.

Exercise 2.4 Suppose that there are m+1 different α0, . . . , αm (recall α0 = 0) which appear
with multiplicity ν0, . . . , νm respectively with

∑m
i=0 νi = n + 1, then the Gram matrix for

the basis of Ln that we just mentioned will only depend on Ω
(k)
µ (αi), k = 0, . . . , νi − 1,

i = 0, . . . ,m. We could call this a generalized Pick matrix. 3

Whatever the basis is that we choose for Ln, it will always be similar to a Toeplitz matrix.

Theorem 2.1 If W = [w0, . . . , wn]T is a basis for Ln, with Gram matrix Gn(W ) = 〈W,W 〉µ =
[〈wk, wl〉µ]nk,l=0, then there is a Toeplitz matrix T and an invertible matrix V such that

V Gn(W )V H = T .

Proof. Note that we may always choose the basis {`k(z) = zk/πn(z) : k = 0, . . . , n} with
πn(z) as in (2.2). Note that the Gram matrix for this basis is Toeplitz, whose entries are
trigonometric moments for the measure dµ(t)/|πn(t)|2. Since every basis transformation is
represented by an invertible matrix, the theorem follows. 2
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2.3 Reproducing kernels

Suppose {e0, . . . , en} is a basis for Ln, orthonormal with respect to µ. Then kn(z, w) =
∑n

k=0 ek(z)ek(w) is a reproducing kernel for Ln. I.e., 〈f(·), kn(·, w)〉µ = f(w) for all f ∈ Ln

and w ∈ D. If f ∈ Lm with m > n, then 〈f(·), kn(·, w)〉µ gives the orthogonal projection of f
onto Ln. Both observations follow immediately by writing f as a linear combination of the
ek and using the orthonormality. Note that the reproducing kernel is unique. The previous
expression does not depend on a particular choice of the orthonormal basis. For example,
it is immediately seen that if {ek} is an orthonormal basis for Ln, then {Bnek∗} is also an
orthonormal basis because Bnek∗ ∈ Ln for k = 0, . . . , n and

〈Bnek∗, Bnel∗〉µ =

∫

|Bn(t)|2ek(t)el(t)dµ(t) = 〈el, ek〉 = δk,l.

Therefore, by using Bn(z)ek∗(z) = Bn(z)ek(1/z) as orthonormal basis:

kn(z, w) = Bn(z)Bn(w)
n
∑

k=0

ek(1/z)ek(1/w) = Bn(z)Bn(w)kn(1/w, 1/z).

By using a basis transformation, one may express kn(z, w) in terms of any basis for Ln as
follows.

Theorem 2.2 If En(z) = [e0(z), . . . , en(z)]T represents any basis for Ln, then the reproduc-
ing kernel is given by

kn(z, w) =
−1

detGn

det

[

Gn En(z)
En(w)H 0

]

where Gn = 〈En, En〉µ is the Gram matrix of En. The superscript H refers to the complex
conjugate (Hermitian) transpose.

Proof. Let Fn = V En with V invertible be a column of orthonormal basis functions. Then
I = 〈Fn, Fn〉µ = V 〈En, En〉µ V H = V GnV

H , so that G−1
n = V HV and thus kn(z, w) =

Fn(w)HFn(z) = En(w)HV HV En(z) = En(w)HG−1
n En(z), which proves the theorem. 2

From now on, we shall use the notation φk for the orthonormal basis for Ln that is ordered
such that φ0 = 1 and φk ∈ Lk\Lk−1 for k = 1, 2, . . .. Using the partial Blaschke products Bk,
which also form a basis, we can write φn = an,nBn +an,n−1Bn−1+ · · ·+an,1B1+an,0. We shall
denote the leading coefficient an,n (with respect to the basis Bk) by κn. Since φn is uniquely
defined up to a constant of modulus 1, we can fix φn uniquely, for example by assuming
that κn > 0, which we shall do throughout this lecture. Note that the trailing coefficient
an,0 (with respect to the basis Bk) is given by φn(α1). To derive a similar notation for the
leading coefficient, we need a generalization of the reciprocal function. We shall denote it by a
superscript ∗. In general we set for any function f ∈ Ln: f ∗(z) = Bn(z)f∗(z). Note that the
superstar notation is ambiguous since it depends on the n that is considered. So a notation
like f [n] instead of f ∗ would be more appropriate. However, in order not to overload the
notation, if not explicitly mentioned, it should be clear from the context which n is intended.
Note that with this notation we have φ∗

n(αn) = κn > 0. We can now immediately write down
as a consequence of the previous theorem:
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Corollary 2.3 If the φn = κnBn + · · · with κn > 0 are the orthonormal basis functions for
Ln as introduced above and kn(z, w) is the reproducing kernel, then kn(z, αn) = κnφ

∗
n(z) and

kn(αn, αn) = κ2
n.

Proof. Exercise. 2

The following Christoffel-Darboux (CD) relations hold:

Theorem 2.4 With the notation just introduced we have

kn(z, w) =
φ∗

n+1(z)φ
∗
n+1(w) − φn+1(z)φn+1(w)

1 − ζn+1(z)ζn+1(w)

=
φ∗

n(z)φ∗
n(w) − ζn(z)ζn(w)φn(z)φn(w)

1 − ζn(z)ζn(w)
.

If z = w = t ∈ T, then one may pass to the limit which will introduce derivatives:

P (t, αn+1)kn(t, t) = t[φ′
n+1(t)φn+1(t) − φ∗′

n+1(t)φ
∗
n+1(t)],

with P (t, z) the Poisson kernel (2.1).

Proof. Because the numerators and denominators of the expressions in the right hand side
vanish for z = 1/w, this zero cancels out and the right hand sides are in Ln as a function
of z. Using kn(z, w) = Bn(z)Bn(w)

∑n
k=0 φk∗(z)φk∗(w) (which follows from Theorem 2.2) we

may write
kn+1(z, w)

Bn+1(z)Bn+1(w)
− kn(z, w)

Bn(z)Bn(w)
= φ(n+1)∗(z)φ(n+1)∗(w).

Multiplying by the denominator gives

[kn(z, w) + φn+1(z)φn+1(w)] − ζn+1(z)ζn+1(w)kn(z, w) = φ∗
n+1(z)φ

∗
n+1(w)

which gives the first formula when z and w do not coincide on T. The other formula is
obtained when in the previous formula we replace n by n− 1 so that

kn(z, w) + ζn(z)ζn(w)[φn(z)φn(w) − kn(z, w)] = φ∗
n(z)φ∗

n(w)

from which the proof follows. The confluent case is left as an exercise. 2

It can be seen that this relation does not depend on the fact that all αk ∈ D.
Note that if we set φk = pk/πk with πk(z) =

∏k
i=0(1 − αiz), then the pk do not form an

orthogonal polynomial sequence w.r.t. a positive measure, so that the theory of ORF is not
quite the same as the theory of orthogonal polynomials w.r.t. a varying measure. With the
CD formula, setting z = w, it is not difficult to derive the following property.

Theorem 2.5 For all n ≥ 0, φ∗
n(z) 6= 0 for z ∈ D (hence, φn(z) 6= 0 for z ∈ E) and

|φn+1(z)/φ
∗
n+1(z)| < 1, (= 1, > 1) for z ∈ D, (T,E).

Proof. Exercise. 2
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2.4 Recurrence relations

The kernels satisfy a fundamental recurrence relation

Theorem 2.6 The kernels satisfy (superstar w.r.t. z)
[

k∗n(z, w)
kn(z, w)

]

= tn(z, w)

[

k∗n−1(z, w)
kn−1(z, w)

]

with

tn(z, w) = cn

[

1 ρn

ρn 1

] [

ζn(z) 0
0 1

] [

1 γn

γn 1

]

where

cn = (1 − |ρn|2)−1

ρn = ρn(w) = φn(w)/φ∗
n(w)

γn = γn(w) = −ζn(w)ρn(w).

Proof. The CD relation implies

kn(z, w) = φ∗
n(z)φ∗

n(w) + ζn(z)ζn(w)kn−1(z, w).

Multiply this with ρn(w) and substitute (superstar w.r.t. z)

φ∗
n(z)φ∗

n(w)ρn(w) = k∗n(z, w) − ζn(z)k∗n−1(z, w)

to get

kn(z, w)ρn(w) = ζn(z)ζn(w)kn−1(z, w)ρn(w) + k∗n(z, w) − ζn(z)k∗n−1(z, w).

Take the superstar conjugate of this relation and solve for k∗n(z, w) and kn(z, w) and the
result follows. 2

The CD relation also implies a recurrence relation for the φn.

Theorem 2.7 The orthonormal functions satisfy
[

φn(z)
φ∗

n(z)

]

= t̃n(z)

[

φn−1(z)
φ∗

n−1(z)

]

where

t̃n(z) =
κn

κn−1

[

1 0
0 zn

] [

εn δn
δn εn

] [ z−αn−1

1−αnz
0

0 1−αn−1z
1−αnz

]

=
κn

κn−1

1 − αn−1z

1 − αnz

[

zn−1εn 0
0 znεn

] [

1 λn

λn 1

] [

ζn−1(z) 0
0 1

]

=

√

1 − |αn|2
1 − |αn−1|2

1
√

1 − |λn|2
1 − αn−1z

1 − αnz

[

η1
n 0
0 η2

n

] [

1 λn

λn 1

] [

ζn−1(z) 0
0 1

]

,

with

εn = zn
1 − αn−1αn

1 − |αn−1|2
φ∗

n(αn−1)

κn

, δn =
1 − αnαn−1

1 − |αn−1|2
φn(αn−1)

κn

,
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λn = zn−1
δn

εn

= η1
n

φn(αn−1)

φ∗
n(αn−1)

∈ D, η1
n = znzn−1

1 − αn−1αn

1 − αnαn−1

∈ T,

η2
n = zn−1znη

1
n =

1 − αnαn−1

|1 − αnαn−1|
φ∗

n(αn−1)

|φ∗
n(αn−1)|

∈ T.

Proof.(sketch) From the superstar conjugate (w.r.t. z) of the CD relation we find

φ∗
n(z)φn(αn−1) − φn(z)φ∗

n(αn−1)

ζn(αn−1) − ζn(z)
= φn−1(z)κn−1.

The superstar conjugate of this relation is

φ∗
n(z)φ∗

n(αn−1) − φn(z)φn(αn−1)

1 − ζn(z)ζn(αn−1)
= φ∗

n−1(z)κn−1.

Eliminate φ∗
n(z) between these two relations and the first form of the recurrence for φn(z)

is obtained. The second one follows immediately from this because the CD relations imply
(|φ∗

n(z)|2 − |φn(z)|2)/(1 − |ζn(z)|2) > 0 so that φ∗
n(αn−1) 6= 0 and λn ∈ D. For the third

one, recall that κn = φ∗
n(αn), and use again the CD relation with z = w = αn to obtain the

appropriate factor in front. 2

Note that if all the αk are zero, then we recover the polynomial case. The recurrence
relation is just the Szegő recurrence and the λn being then equal to φn(0)/κn, are the Szegő
parameters (and are sometimes called Schur or reflection coefficients).

Since this is derived from the CD relation, the first recurrence does not depend on the αk

being in D. However, we can not allow αnαn−1 = 1, in which case λn is not defined. In such
a case we call the system degenerate. If φn(αn−1) = 0, then we call the system exceptional.
If all the αk are in D or all in E, then the system is non-degenerate and λn ∈ D.

The vector [φn, φ
∗
n]T is a solution of the recurrence with initial condition [φ0, φ

∗
0] = [1, 1].

This is not the only solution. With the initial condition [1,−1] we get another, independent
solution. It will be formulated in terms of some functions ψn ∈ Ln which we shall call the
ORF of the second kind. We introduce them as follows.

ψ0 = 1, ψn(z) =

∫

D(t, z)[φn(t) − φn(z)]dµ(t), n ≥ 1.

Exercise 2.5 Let f be such that f∗ ∈ Ln−1, then prove by orthogonality that
∫

D(t, z)[f(t)/f(z) − 1]φn(t)dµ(t) = 0.

From this derive that for such an f

ψn(z) =

∫

D(t, z)[φn(t)f(t)/f(z) − φn(z)]dµ(t), n ≥ 1. (2.3)

Similarly derive that for an f 6= 0 such that f ∈ Ln and f(αn) = 0 it holds that

ψ∗
n(z) =

∫

D(t, z) [φ∗
n(t)f(t)/f(z) − φ∗

n(z)] dµ(t), n ≥ 1.

3
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We can now prove that (ψn,−ψ∗
n) is another solution of the recurrence relation for (φn, φ

∗
n),

which corresponds to the initial condition (1,−1). In other words (ψn, ψ
∗
n) satisfies the same

recurrence relation as (φn, φ
∗
n), but with λn replaced by −λn.

Theorem 2.8 With the notation of theorem 2.7 we have
[

φn(z) ψn(z)
φ∗

n(z) −ψ∗
n(z)

]

= t̃n(z)

[

φn−1(z) ψn−1(z)
φ∗

n−1(z) −ψ∗
n−1(z)

]

. (2.4)

Proof. We only have to prove the relation for the ψn. From the definition and the previous
exercise we have for n > 1

[

ψn−1(z)
−ψ∗

n−1(z)

]

= −Ωµ(z)

[

φn−1(z)
φ∗

n−1(z)

]

+

∫

D(t, z)

[

φn−1(t)
ζn−1(z)
ζn−1(t)

φ∗
n−1(t)

]

dµ(t).

Multiply from the left by t̃n(z) and the right hand side becomes

−Ωµ(z)

[

φn(z)
φ∗

n(z)

]

+

∫

D(t, z)Q(t, z)

[

φn(t)
φ∗

n(t)

]

dµ(t)

with

Q(t, z) =
(z − αn−1)(1 − αnt)

(1 − αnz)(t− αn−1)
.

Using a technique like in the previous exercise, it can be shown that the integral equals

∫

D(t, z)

[

φn(t)
ζn(z)
ζn(t)

φ∗
n(t)

]

dµ(t)

so that in the right hand side we get again the same expression as in the starting relation
but with n− 1 replaced by n. This proves the theorem for n > 1. Checking the theorem for
n = 1 is left as an exercise. 2

Far reaching generalizations of the CD relations can be obtained for any couple of solutions
(xn, x

+
n ) and (yn, y

+
n ) of this recurrence. We give them without proof.

Theorem 2.9 Given two solutions (xn, x
+
n ) and (yn, y

+
n ) of this recurrence, we can define

Fn(z, w) = x+
n (z)yn(w) − xn(z)y+

n (w),

and then we have a Liouville-Ostrogradskii formula

Fn(z, w)

1 − ζn(z)/ζn(w)
−Bn(w)

F0(z, w)

1 − ζ0(z)/ζ0(w)
= −

n−1
∑

k=0

xk(z)y
+
k (w)

Bn(w)

Bk(w)

and with the definition

Gn(z, w) = x+
n (z)y+

n (w) − xn(z)yn(w),

we have a Green formula

Gn(z, w)

1 − ζn(z)ζn(w)
− G0(z, w)

1 − ζ0(z)ζ0(w)
=

n−1
∑

k=0

xk(z)yk(w).



lecture notes leganes - July 16, 2004 14

Choosing (xn, x
+
n ) and/or (yn, y

+
n ) equal to (φn, φ

∗
n) or (ψn, ψ

∗
n) gives several identities which

we leave for the reader to discover. We just give one example:

ψn(z)φ∗
n(z) + ψ∗

n(z)φn(z) = 2Bn(z)P (z, αn) (2.5)

with P (z, w) the Poisson kernel (2.1). It is obtained by taking z = w and (x, x+) = (φ, φ∗)
and (y, y+) = (ψ,−ψ∗) in de Liouville-Ostrogradskii formula. It can also be obtained by
taking determinants in (2.4). Therefore we refer to it as the determinant formula.

Note that the CD relation was crucial in our development so far. From this, we derived
the recurrence relation for the kernels, and for the ORF which gave rise to the introduction
of the second kind functions.

This can be inverted: if we have a recurrence relation for φn as given above, then they
will be ORF with respect to some positive measure on T. This is a Favard type theorem
which reads as follows:

Theorem 2.10 (Favard) Given a sequence {α0 = 0, α1, α2, . . .} ⊂ D and suppose that with
initial condition φ0 = 1, the φn are generated by a recurrence relation of the 3rd form given
in Theorem 2.7 with all λn ∈ D, and the unimodular constants such that φ∗

n(αn) > 0, then
these φn will form a sequence of ORF with respect to a probability measure on T.

We formulate the theorem here as a motivation for the introduction of quadrature formulas
and will give its proof later in section 4.

Because the functions of the second kind satisfy a recurrence relation of this form (the λn

have to be replaced by −λn), it follows by the Favard theorem that they also are a system
of ORF, with respect to a positive measure on T. Thus we can attribute to ψn the same
properties as we can attribute to the φn (location of the zeros, CD relations, etc.). If Ωµ ∈ C
is the Riesz-Herglotz transform of µ, then clearly 1/Ωµ is also in C. So it can be written
as the Riesz-Herglotz transform of some measure ν. It can be shown that if the φn are
orthogonal w.r.t. µ, then the associated functions of the second kind ψn, will be orthogonal
w.r.t. the associated ν.

To obtain a constructive proof for this theorem is closely related to the applications we
mentioned in the beginning: We construct a measure that will generate an inner product
that entails orthogonality in Ln and then let n tend to infinity. The first part is related to
numerical quadrature and interpolation which we shall consider in the next section.

3 Quadrature and interpolation

3.1 Quadrature

One way to obtain a quadrature formula for the integral Iµ{f} =
∫

f(t)dµ(t) is to interpolate
f by a function fn in a number of points {ξni}n

i=1 ⊂ T, and to approximate Iµ{f} by
In{f} = Iµ{fn}.
Exercise 3.1 Consider the function fn ∈ Lp,q = {fg : f ∈ Lp∗, g ∈ Lq}, p, q ≥ 0, p + q =
n − 1, where Lp∗ = {f : f∗ ∈ Lp}. Show that this fn shall interpolate f in the points
{ξni}n

i=1 ⊂ T if

fn(t) =
n
∑

k=1

Ln,k(t)f(ξnk), Ln,k(t) = `n,k(t)

(

q
∏

i=1

1 − αiξnk

1 − αit

)

p
∏

i=1

ξnk − αi

t− αi

,



lecture notes leganes - July 16, 2004 15

where `n,k are the classical Lagrange polynomials, i.e., `n,k(ξnj) = δk,j. Note that the Ln,k ∈
Lp,q are rational generalizations for which also Ln,k(ξnj) = δk,j. 3

Thus the quadrature formula is In{f} =
∑n

k=1 λn,kf(ξnk), λn,k = Iµ{Ln,k}. This is called an
interpolating quadrature formula, which is obviously exact for all f ∈ Lp,q.

To obtain the largest possible domain in which we get an exact quadrature formula, we
have to choose the nodes ξnk in a particular way. Like in Gaussian quadrature formulas, we
could try to choose them as the zeros of φn, but that is impossible because the ORF φn have
all their zeros inside D, and not on T. However the following result holds.

Theorem 3.1 The function Qn(z) = φn(z) + τφ∗
n(z), τ ∈ T has n simple zeros on T and it

is para-orthogonal which means that it is orthogonal to Ln−1 ∩Ln(αn) where Ln(αn) = {f ∈
Ln : f(αn) = 0}. Moreover 〈1, Qn〉µ 6= 0 6= 〈Bn, Qn〉µ.
Proof. By the CD relations we know that |φ∗

n|2 > |φn|2 in D and the opposite inequality
holds in E. Thus Qn can only have zeros in T. These zeros are simple, otherwise, we would
have Qn(ξ) = Q′

n(ξ) = 0, which implies that in ξ we have φn/φ
∗
n = −τ = −1/τ = φ∗

n/φn

or φ′
nφn − (φ∗

n)′φ∗
n = 0. But letting z and w approach ξ ∈ T in the CD formula leads to

(1−αnξ)(ξ−αn)
1−|αn|2

[φ′
n(ξ)φn(ξ) − (φ∗

n)′(ξ)φ∗
n(ξ)] = kn−1(ξ, ξ) > 0, which is a contradiction.

Concerning the para-orthogonality we note that 〈f, φn〉µ = 0 if f ∈ Ln−1 while if f ∈
Ln(αn), then it can be written as Bng∗ with g ∈ Ln−1, and thus 〈f, φ∗

n〉µ = 〈Bng∗, Bnφn∗〉µ =
〈φn, g〉µ = 0. On the other hand 〈1, Qn〉µ = τ 〈1, φ∗

n〉µ = τ 〈φn, Bn〉µ 6= 0, and similarly for
the other inequality. 2

Now take an arbitrary function R ∈ Ln−1,n−1, suppose we interpolate it with a function
Rn ∈ L0,n−1 = Ln−1, using the zeros {ξn1, . . . ξnn} of Qn. Then simply writing it out shows
that the interpolation error can be written as

En(z) = R(z) −Rn(z) = Qn(z)S(z), S ∈ Ln−1 ∩ Ln(αn).

Thus, because of the para-orthogonality of Qn, we get an integration error Iµ{En} = 0,
so that the quadrature formula is exact in Ln−1,n−1. This is the highest possible degree of
exactness that can be obtained with n nodes in the sense that with n nodes on T, it is
impossible to integrate exactly all functions in Ln,n−1 or Ln−1,n. In this sense the quadrature
formula is optimal and we shall refer to it as the rational (or R-) Szegő quadrature formula.
We denote the (discrete) measure having masses λnk in the points ξnk by µn so that by
definition In{f} = Iµn

{f}.

3.2 Interpolation

We have used interpolation to construct a quadrature formula and found that integration
with respect to µ and µn is the same in Ln−1,n−1. This happens if and only if their Riesz-
Herglotz transforms take the same values in the points {α0, . . . , αn} (taking multiplicity into
account) since the respective Gram matrices depend only on their (derivative) values in the
poles {αk}n−1

k=0 (see exercise 2.4). So let us first find out what the Riesz-Herglotz transform
of µn is.

Theorem 3.2 Set Ωn(z) =
∫

D(t, z)dµn(t) = − Pn(z)
Qn(z)

. Then for n ≥ 1

Pn(z) =

∫

D(t, z)[Qn(t)f(t)/f(z) −Qn(z)]dµ(t) = ψn(z) − τψ∗
n(z)
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for any f such that f∗ ∈ Ln−1 ∩ Ln(αn).

Proof. If we write the terms explicitly, then it becomes clear that the previous integrand is in
Ln−1,n−1 for n ≥ 2, and thus we can replace the integral by the R-Szegő quadrature formula
with nodes the zeros of Qn, giving Pn(z)f(z) = −f(z)Qn(z)In{D(·, z)} = −f(z)Qn(z)Ωn(z).
The case n = 1 is left as an exercise. The expression with ψk follows from (2.3) and its
superstar. 2

Because of this result we could call Pn a para-orthogonal function of the second kind. It is
para-orthogonal with respect to the same measure as for which the ψn are orthogonal.

The previous theorem has an interesting corollary.

Corollary 3.3 The weights of the R-Szegő formula are given by

λnk =
1

2ξnk

Pn(ξnk)

Q′
n(ξnk)

=
1

∑n−1
i=0 |φi(ξnk)|2

> 0.

Proof. Recall Ωn(z) = −Pn(z)/Qn(z) = In{D(·, z)} =
∑n

k=1 λnkD(ξnk, z) and Qn(ξnk) = 0.
Thus after multiplying by (z − ξnk) we have

(z − ξnk)Ωn(z) =
∑

j 6=k

λnjD(ξnj, z)(z − ξnk) + λnkD(ξnk, z)(z − ξnk).

Taking the limit for z → ξnk gives the first formula. For the expression with the kernel, use
the fact that Qn(ξnk) = 0, thus τ = 1/τ = −φn(ξnk)/φ

∗
n(ξnk), and the confluent CD formula

to get

Q′
n(ξnk) =

P (ξnk, αn)

ξnkφn(ξnk)
kn−1(ξnk, ξnk)

with P (t, z) the Poisson kernel (2.1), while the determinant formula leads to Pn(ξnk) =
2P (ξnk, αn)/φn(ξnk), so the corollary is proved. 2

We can now derive interpolation properties for Ωn = −Pn/Qn:

Theorem 3.4 Let Ωn and Ωµ be the Riesz-Herglotz transforms of µn and µ respectively,
then Ωµ(z) − Ωn(z) = zBn−1(z)h(z), for n ≥ 1 with h analytic in D.

Proof. This follows because of exercise 2.4. 2

Since we assumed τ ∈ T, we cannot set τ = 0, but we do have the same type of interpolation
with an extra interpolation in αn.

Theorem 3.5 For the ORF and the ORF of the second kind we have

Ωµ(z)φn(z) + ψn(z) = zBn−1(z)h(z), Ωµ(z)φ∗
n(z) − ψ∗

n(z) = zBn(z)g(z)

with h and g analytic in D.
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Proof. Since [φnΩµ + ψn]/Bn−1 =
∫

D(t, z)φn(t)/Bn−1(t)dµ(t), we find a function analytic
in D because it is a Cauchy-Stieltjes integral and setting z = 0, so that D(t, 0) = 1, the
integral becomes 〈φn, Bn−1〉µ = 0. The second relation is similarly proved since now for
z = 0 we find 〈φ∗

n, Bn〉µ = 0. 2

Note that by the determinant formula, we have for Rn(z) = ψ∗
n/φ

∗
n that for t ∈ T: wn(t) =

ReRn(t) = 1
2
[Rn(t) + Rn∗(t)] = P (t, αn)/|φn(t)|2. Because of the extra interpolation in αn,

one might expect that the absolute continuous measure wn(t)dλ(t) gives the same integrals
in Ln,n, and it does indeed.

Theorem 3.6 The inner product in Ln is the same for the measure µ and for the absolute
continuous measure with weight wn = P (·, αn)/|φn|2.

Proof. Since
∫

|φn(t)|2wn(t)dλ(t) =
∫

P (t, αn)dλ(t) = 1 = ‖φn‖2
µ, the norm is maintained.

Moreover

〈φn, φk〉wn
=

∫

P (t, αn)
φk∗(t)

φn∗(t)
dλ(t) =

∫

P (t, αn)

{

φ∗
k(t)Bn(t)/Bk(t)

φ∗
n(t)

}

dλ(t) = 0,

which follows because the factor in curly brackets is analytic in D∪T, so that we may apply
Poisson’s formula to find zero because Bn(z)/Bk(z) is zero in αn. Thus φn has norm 1 and
is orthogonal to Ln−1 for the weight wn, and because the recurrence relation then defines all
the previous φk uniquely (provided they have the proper normalization of positive leading
coefficient), the theorem follows. 2

We note that the para-orthogonality conditions alone do not define the functions Qn com-
pletely. The para-orthogonal functions that we proposed are also τ -invariant, which means
that Q∗

n = τQn. The latter is essential to guarantee that they have n simple zeros on T. It
can be shown that this invariance property and the para-orthogonality completely defines
the Qn up to the parameter τ ∈ T and a normalizing constant factor.

3.3 Interpolation and quadrature using the kernels

After we formulated the recurrence relation for the kernels in Theorem 2.4, we gave the
recurrence for the ORF in Theorem 2.7, but from there on, the kernels were neglected.
However, what has been developed for the ORF, can be repeated and generalized to the
kernels. Since the methodology is completely analogous, we leave the proofs in this section
as a major exercise.

First of all, we note that the kernels are produced by their recurrence relation when we
give the initial conditions (k∗0, k0) = (1, 1). As in the case of the ORF, we obtain another
independent solution when we start with (l∗0,−l0) = (1,−1). The resulting kernels could be
called kernels of the second kind. They satisfy

[

l∗n(z, w)
−ln(z, w)

]

= tn(z, w)

[

l∗n−1(z, w)
−ln−1(z, w)

]

with tn(z, w) as in Theorem 2.4. By our remark after Theorem 2.10, it should be clear that
ln(z, w) =

∑n
k=0 ψn(z)ψk(w) is a reproducing kernel for the space Ln w.r.t. the same measure
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as for which the ψk are the ORF. The interpolation properties are a bit harder to obtain
because they require a parameterized (in w) Riesz-Herglotz transform:

Ωµ(z, w) =

∫

D(t, z)

P (t, w)
dµ(t) + c, c =

w
∫

tdµ(t) − w
∫

t−1dµ(t)

1 − |w|2 ∈ iR, (z, w) ∈ D × D,

D(t, z) the Dirichlet and P (t, w) the Poisson kernel. The c is chosen to make Ωµ(w,w) real
(and hence it equals 1). Then it is possible to formulate an interpolation property saying
that ln(z, w) − kn(z, w)Ωµ(z, w) vanishes for all z ∈ {w, α1, . . . , αn}. Thus the special role
of α0 = 0 has been removed and is played by an arbitrary w ∈ D. Since kn(z, w) does
not vanish for any z ∈ D ∪ T if w ∈ D, we may consider Ωn(z, w) = ln(z, w)/kn(z, w),
which is the parameterized Riesz-Herlotz transform of the absolutely continuous measure
P (t, w)kn(w,w)/|kn(t, w)|2dλ(t). The inner product in Ln w.r.t. the latter will not depend
on w and will give the same results as the inner product w.r.t. dµ(t).

4 Density and the proof of Favard’s theorem

4.1 Density

For the density of the Blaschke products in Lp(T), one can easily adapt a result of [1, p.244]
to find the following.

Theorem 4.1 Define the Blachke products as before for n ≥ 0 and B−n = 1/Bn for n ≥ 1.
Then the system {Bn}n∈Z is complete in Lp(T), for any p ≥ 1 as well as in the space C(T)
of continuous functions on T if and only if

∑

(1−|αk|) = ∞ (the Blaschke product diverges).
Also the system {Bn}∞n=0 is complete in Hp for any p ≥ 1 if and only if

∑

(1 − |αk|) = ∞
(the Blaschke product diverges).

Walsh [31, p.305-306] states

Theorem 4.2 If the Blaschke product diverges and f ∈ H2, then fn ∈ Ln which interpolates
f in {w, α1, . . . , αn} ⊂ D (w is an arbitrary but fixed number in D) will converge to f
uniformly on compact subsets of D, and if f is continuous up to T, we also have uniform
convergence on T.

For a general probability measure, Szegő’s condition log µ′ ∈ L1 plays a role. For example,
from Walsh [31, p.116,186,50,92,144] we may conclude that the polynomials are dense in
Lp(µ) if and only if log µ′ 6∈ L1. For the rational case, the situation seems to be less simple.

Theorem 4.3 (1) If
∑

k(1 − |αk|) = ∞ then log µ′ 6∈ L1 ⇔ {Bn}n≥0 is complete in L2(µ)
(2) If log µ′ ∈ L1 then

∑

k(1 − |αk|) = ∞ ⇔ {Bn}n≥0 is complete in H2(µ)
(3) If

∑

k(1 − |αk|) = ∞ then {Bn}n∈Z is complete in L2(µ).

Note that we have no equivalence anymore. The divergence of the Blaschke product implies
completeness of {Bn}∞n=0 in H2(µ) and of {Bn}n∈Z in L2(µ), but the converse need not be
true. We leave it to the reader to look up the proofs of the above theorems. The precise
characterization of completeness of the Blaschke products in not totally cleared out.
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4.2 Proof of Favard theorem

It is easily proved by induction that the φ∗
n generated by the recursion are indeed superstar

conjugates of the φn that it generates and the parameters λn are given by their expressions
of Theorem 2.7. Moreover, the {φk}n

k=0 are a set of ORF with respect to the weight wn(t) =
P (t, αn)/|φn|2. This is shown as follows. Note that for 0 ≤ m ≤ n

〈φn, φm〉wn
=

∫

φm∗(t)

φn∗(t)
P (t, αn)dλ(t) =

Bn(z)

Bm(z)

φ∗
m(z)

φ∗
n(z)

∣

∣

∣

∣

z=αn

= δnm.

Thus φn ⊥wn
Ln−1, and because an inverse recurrence (obtained by multiplying (2.4) from

the left with the inverse of the matrix t̃n(z)), defines all the previous ORF uniquely, the
orthonormality with respect to wn is proved.

Now for n → ∞, we have a sequence of weights wn, uniformly bounded (
∫

wndλ = 1),
so that there is a subsequence wnk

which converges weakly. Thus there is some µ such that
limn→∞

∫

f(t)wnk
(t)dλ(t) =

∫

f(t)dµ(t) for all functions f continuous on T. If
∑

(1−|αk|) =
∞, then a previous completeness result shows that the measure µ is unique because the Riesz
representation of a linear functional on C(T) is unique.

5 Convergence

5.1 Orthogonal polynomials w.r.t. varying measures

For the convergence of the ORF we shall rely on convergence results of orthogonal polyno-
mials with respect to varying measures OPVM. Let Pm we the space of polynomials of at
most degree m and construct a sequence of OPVM for measure dµ(t)/|πn(t)|2 with πn(t) =
∏n

k=1(1− αkz). We denote the orthonormal ones by φn,k(z) = vn,kz
k + · · ·, vn,k > 0. By our

general theory they satisfy the recurrence φn,m(z) = en,m[zφn,m−1(z) + λn,mφ
∗̄
n,m−1(z)] with

λn,m = φn,m(0)/vn,m and en,m = (1−|λn,m|2)−1/2 = vn,m/vn,m−1. Here φ∗̄
n,m(z) = znφn,m(1/z).

From these OP we can construct a set of ORF for Ln, but as n increases, the whole set of
ORF will change.

Exercise 5.1 Denote fn,m(z) = tn,mφn,m(z)/πn(z) with tn,m ∈ T for an appropriate nor-
malization. Prove that the {fn,m : m = 0, . . . , n} is a set of orthonormal rational functions
for Ln with respect to µ. They are obtained by orthonormalizing the basis {zk/πn(z) : k =
0, . . . , n}. Show also that

hn(z) =
zφn,n(z) − φn,n(αn)

φ∗̄

n,n(αn)
αnφ

∗̄
n,n(z)

(z − αn)πn(z)
∈ Ln \ Ln−1 (5.1)

and that 〈hn, g〉µ = 0 for all g ∈ Ln−1, so that there is some constant cn with |cn| = |φ∗
n(0)|

such that hn = cnφn. 3

We need the following conditions for the probability measure µ and the point set A =
{α1, α2, . . .}:

1. µ′ > 0 a.e. (λ) (Erdős-Turán condition)

2.
∑∞

n=1(1 − |αn|) = ∞ (BD = Blaschke divergence condition)
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The first condition is denoted as µ ∈ ET . If it satisfies the stronger Szegő condition log µ′ ∈
L1, we denote it by µ ∈ SZ. The second condition is denoted as A ∈ BD, while if it is
replaced by the stronger condition that A is compactly contained in D (i.e., the αk stay away
from the boundary), we denote it as A ∈ CC. The following results are borrowed from the
work of Guillermo Lopez [20, 21, 22].

Theorem 5.1 If µ ∈ ET and A ∈ BD then with our previous notation

1. limn→∞ λn,n+k+1 = 0.

2. limn→∞ vn,n+k+1/vn,n+k = 1.

3. limn→∞ φn,n+k+1(z)/φn,n+k(z) = z locally uniformly in E.

4. limn→∞ φ∗̄
n,n+k+1(z)/φ

∗̄
n,n+k(z) = 1 locally uniformly in D.

5. limn→∞ φ∗̄
n,n+k(z)/φn,n+k(z) = 0 locally uniformly in E.

If µ ∈ SZ, A ∈ CC and σ is the outer spectral factor of µ, then

6. limn→∞ φ∗̄
n,n+k(z)/πn(z) = 1/σ(z) locally uniformly in D.

5.2 Szegő’s condition and convergence

We can now show that the following holds.

Theorem 5.2 If µ ∈ SZ and A ∈ BD, then we have the following (l.u. means locally
uniformly)

lim
n→∞

kn(z, w) =
1

σ(w)(1 − wz)σ(z)
, l.u. (z, w) ∈ D × D,

lim
n→∞

(1 − αnz)
φ∗

n(z)

φ∗
n(0)

=
σ(0)

σ(z)
, l.u. z ∈ D,

lim
n→∞

φn(z) = lim
n→∞

φn(z)φ∗
n(0)

φ∗
n(z)

= lim
n→∞

φn(z)

φ∗
n(z)

= 0, l.u. z ∈ D.

If µ ∈ SZ, σ(0) > 0, and A ∈ CC then

lim
n→∞

ηnφ
∗
n(z)

1 − αnz
√

1 − |αn|2
=

1

σ(z)
, ηn =

|φ∗
n(0)|
φ∗

n(0)
∈ T, l.u. z ∈ D.

Proof. For the first relation, note that since the fn,k form an orthonormal basis for Ln, we
have

kn(z, w) =
n
∑

k=0

fn,k(z)fn,k(w) =

∑n
k=0 φn,k(z)φn,k(w)

πn(z)πn(w)
.

Then use the CD relation for the φnk and divide by f ∗
n,n(z)f ∗

n,n(w):

kn(z, w)

f ∗
n,n(z)f ∗

n,n(w)
=

1

1 − wz
− zw

1 − wz

(

φn,n(z)

φ∗̄
n,n(z)

)(

φn,n(w)

φ∗̄
n,n(w)

)

. (5.2)
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The last two factors go to 0, while for some ηn ∈ T, limn→∞ ηnf
∗
n,n(z) = 1/σ(z), which proves

the first result.
Since hn = cnφn, we have by our expression for hn

(1 − αnz)φ
∗
n(z) =

1

cn

φ∗̄
n,n(z)

πn(z)

[

1 − ηnαnz
φn,n(z)

φ∗̄
n,n(z)

]

, ηn =
φn,n(αn)

φ∗̄
n,n(αn)

. (5.3)

Recall that φn,n(z)/φ∗̄
n,n(z) → 0 l.u. in D, and being a Blaschke product it is bounded by 1

in D ∪ T so that |ηn| ≤ 1. Hence the term between square brackets goes to 1 as n → ∞.
On the other hand, φ∗̄

n,n(z)/πn(z) converges to 1/σ(z) l.u. in D, up to some normalizing
constant. But this constant will cancel against the same constant in the denominator which
is obtained by setting z = 0. This proves the second result.
Taking z = w in the first relation implies

∑n
k=1 |φk(z)|2 converges for n → ∞. Thus

limn φn(z) = 0. When multiplying the inverse of the second relation of this theorem with
φn(z), and noting that (1 − αnz)

−1 is uniformly bounded if z is in a compact subset of D,
we also get the second limit.
For the third one, we note that |φ∗

n(0)| is uniformly bounded away from 0, because the CD
relation implies |φ∗

n(0)|2 ≥ 1.
For the last limit, note that ηn is used to normalize φ∗

n to make it positive in z = 0. By the
CD relation for z = w = 0

|φ∗
n(0)|2

1 − |αn|2
= kn−1(0, 0) +

|φn(0)|2
1 − |αn|2

.

Because φn(0) → 0, and the αk stay away from the circle, the last term goes to 0, and
we know that the second one goes to |σ(0)|−2. Thus |φ∗

n(0)|/
√

1 − |αn|2 → 1/σ(0). In
combination with the second limit of this theorem, the result follows. 2

When µ 6∈ SZ, then σ need not be defined, and the previous relations can not be obtained.
A way to avoid the σ is to consider ratio asymptotics, so that the σ cancel out. These are
weaker results in the sense that if µ ∈ SZ, then the ratio asymptotics are almost immediately
obtained from the stronger asymptotics that were previously obtained. We use again the
OPVM with measure µ/|πn|2. Denoting the reproducing kernel for Pn w.r.t. this measure
as kn,n(z, w), it is easily seen that kn,n(z, 0) = vnφ

∗̄
n,n(z). Also the usual rational kernel for

Ln satisfies kn(z, 0) = kn,n(z, 0)/πn(z).

Exercise 5.2 Applying Theorem 3.6 to the OPVM, prove that the inner product in Ln w.r.t.
dµ(t) and w.r.t. v2

n/|kn(t, 0)|2dλ(t) is the same. Of course, this is also a direct consequence
of the results in section 3.3. 3

Theorem 5.3 If µ ∈ ET and A ∈ BD, then

lim
n→∞

kn(z, 0)

kn+1(z, 0)
= 1, l.u. z ∈ D.

and with the superstar referring to z,

lim
n→∞

k∗n(z, 0)/kn(z, 0) = 0, l.u. z ∈ D.
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Proof. Set gn(z) = kn(z, 0)/kn+1(z, 0) − vn/vn+1, then by the previous exercise we see that

∫

|gn(t)|2dλ(t) = 2
v2

n

v2
n+1

(

1 − vn

vn+1

)

. (5.4)

On the other hand, because gn is analytic in D∪T, we have by the Poisson formula gn(z) =
∫

P (t, z)gn(t)dλ(t). For t ∈ T, |P (t, z)| ≤M holds uniformly for z in a compact subset of D.
Thus we also have |gn(z)| ≤M

∫

|gn(t)|dλ(t) and also |gn(z)|2 ≤M2
∫

|gn(t)|2dλ(t) so that

|gn(z)|2 ≤ 2M2 v2
n

v2
n+1

(

1 − vn

vn+1

)

. (5.5)

Thus kn(z,0)
kn+1(z,0)

→ 1 iff vn

vn+1
→ 1. Obviously kn−1(0, 0)/kn(0, 0) ≤ 1, but using the CD relation

we also have

kn−1(0, 0)

kn(0, 0)
=

|φ∗
n(0)|2 − |φn(0)|2

|φ∗
n(0)|2 − |αn|2|φn(0)|2 ≥ |φ∗

n(0)|2 − |φn(0)|2
|φ∗

n(0)|2 − |φn(0)|2 = 1.

So that limn→∞ v2
n/v

2
n+1 = 1, which proves the first part.

For the second relation, note that kn(z, 0) = φ∗̄
n,n(z)vnηn/πn(z) and hence k∗n(z, 0) =

φn,n(z)vnηn/πn(z) with ηn ∈ T. Take the ratio and use φn,n(z)/φ∗̄
n,n(z) → 0 l.u. in D, to

conclude the proof. 2

Theorem 5.4 If µ ∈ ET and A ∈ CC, then

lim
n→∞

ζn(z)φn(z)

φ∗
n(z)

= lim
n→∞

φn(z)

φ∗
n(z)

= lim
n→∞

λn = 0, l.u. in D.

Denote Φ∗
n(z) = φ∗

n(z)/φ∗
n(0), then under the previous conditions

lim
n→∞

Φ∗
n+1(z)(1 − αn+1z)

Φ∗
n(z)(1 − αnz)

= 1, l.u. in D.

Proof. Repeat the proof of the second part in Theorem 5.2. I.e., use exercise 5.1 giving
φn = cnhn and its superstar conjugate, to find expressions for (z−αn)φn(z) and (1−αnz)φ

∗
n(z)

and take their ratio. Then using φn,n(z)/φ∗̄
n,n(z) → 0 from theorem 5.1 leads to the first

conclusion. Note that we need φn,n(αn)/φ∗̄
n,n(αn) to go to zero, which can only be guaranteed

when A ∈ CC. It is also needed for the convergence of φn(0)/φ∗
n(0) because this will follow

form Theorem 5.3 or the previous exercise if A is in a compact subset of D. For the last
equality note that |λn| = |φn(αn−1)/φ

∗
n(αn−1)|.

For the second formula, write the second CD formula for kn(z, 0) and its superstar con-
jugate and eliminate φn(z) to obtain

Φ∗
n(z)(1 − αnz) =

φ∗
n(z)(1 − αnz)

φ∗
n(0)

=
kn(z, 0)

v2
n

[

1 − αnz
φn(0)

φ∗
n(0)

k∗n(z, 0)

kn(z, 0)

]

.

Note that the term in square brackets goes to 1 l.u. in D as n → ∞. Rewrite this for n
replaced by n + 1 and take their ratio. Because kn+1(z, 0)/kn(z, 0) and vn+1/vn go to 1 as
n→ ∞, the second result follows. 2
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6 Szegő’s problem

This problem is essentially the problem of linear prediction. Recall that the linear prediction
problem can be formulated as finding f ∈ H2(µ) such that ‖f‖2

µ is minimal with the side
condition that f(0) = 1. This f represented the prediction error. (Note that we have
replaced the z of the first section by 1/z to be in line with our discussion of ORF, which is
obviously a matter of convention.) We consider a slightly more general situation where we
replace the constraint by f(w) = 1 for some w ∈ D. This is a problem that can be solved in
any reproducing kernel Hilbert space.

Theorem 6.1 Let H be a reproducing kernel Hilbert space with kernel k(z, w), then the
minimum of ‖f‖2

µ with f(w) = 1 is obtained for f(z) = K(z) ≡ k(z, w)/k(w,w) and the
minimum is 1/k(w,w).

Proof. Obviously ‖K(z)‖2
µ = 1/k(w,w). For any other f satisfying f(w) = 1 for which

‖f‖2
µ = m we have 0 ≤ ‖f −K‖2

µ = ‖f‖2
µ + 1/k(w,w)− 2Re 〈f,K〉µ = m− 1/k(w,w). Thus

m ≥ 1/k(w,w). 2

From the polynomial case, it is known that the reproducing kernel for H2(µ) is given by the
Szegő kernel s(z, w) = [(1−wz)σ(z)σ(w)]−1 where σ is the outer spectral factor of µ, which
we suppose to be normalized by σ(0) > 0. Thus we have a completely predictable sequence
if the minimum |σ(0)|2 of ‖f‖2

µ, f(0) = 1 is zero, i.e. since |σ(0)|2 = exp{
∫

log µ′(t)dλ(t)}, if
∫

log µ′dλ = −∞, and thus log µ′ 6∈ L1. If we do not have complete predictability, it is still
a valuable objective to find the best possible predictor by minimizing the prediction error.

Instead of minimizing over the complete past (i.e. all of H2(µ)), we may be less ambitious
and start by minimizing over a finite dimensional subspace, e.g. Ln. There the minimum of
the general problem is kn(z, w)/kn(w,w).

The advantage of computing these approximants using ORF over the computation with
OPVM is that they are easily computed recursively. If the approximation is not good enough
for a certain n, then increasing n by 1 requires just one more step of the recurrence relation.
For the OPVM, increasing n by 1, would mean that we have to start the computations all
over again. Note also that we have at every step an estimate of the prediction error which is
1/kn(0, 0) or 1/kn(w,w) for the general problem. Thus if the |φn(w)| do not go to zero fast
enough, then kn(w,w) will go to ∞ and the error will go to zero, but under the conditions
of our theorems, the kn(w,w) will converge, so that the error will not go to zero. It will be
bounded from below by (1 − |w|2)|σ(w)|2.

We also note the following result

Theorem 6.2 Let µ ∈ SZ, w ∈ D a fixed number, and let sw(z) = s(z, w) be the Szegő
kernel. Consider the problem min ‖f − sw‖2

µ over all f ∈ Ln, then the solution is kn(z, w)
and the minimum is sw(w) − kn(w,w). If A ∈ BD then limn→∞ ‖kn(t, w) − sw(t)‖µ = 0.

Proof. Suppose f(w) = a, then ‖sw − f‖2
µ = ‖sw‖2

µ + ‖f‖2
µ − 2Ref(w). Thus we have to

minimize ‖f‖2
µ − 2Re a over f ∈ Ln with f(w) = a and minimize the result over all possible

a. In other words, we have to find the infimum over a of |a|2/kn(w,w) − 2Re a and this is
given by a = kn(w,w). This proves the first part. If A ∈ BD then as n → ∞, Ln becomes
dense in H2(µ), which means that the error in H2(µ) goes to 0. 2
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Part II: The matrix case

The results in this part can be found in [2, 5, 17, 19, 10, 13, 12, 11, 18]. For the polynomial
case and Hilbert modules see also [32, 33, 23, 7, 4, 9, 24].

7 Hilbert modules and Hardy spaces

7.1 Inner products and norms

We now consider matrix valued functions: f : C → C
N×N . The space of these functions is

a left and a right module over C
N×N . (The product is noncommutative.) We write A ≥ 0

to mean that A is nonnegative definite and A > 0 means that A is positive definite, while
A ≥ B is the same as A − B ≥ 0. By AH we mean the Hermitian conjugate and tr (A) is
the normalized trace of A, i.e., tr (A) =

∑N
k=1 akk. By S = A1/2 we denote the Hermitian

square root of A ≥ 0, thus A = S2 while L = AL/2, resp. R = AR/2 denote a left resp. right
square root, meaning A = LLH resp. A = RHR. Note that L is unique up to a right unitary
factor and R up to a left unitary factor.

We introduce a matrix valued and a scalar valued inner product which will define L2 of
square integrable functions that will be both a Hilbert module and a Hilbert space. Let µ be
a nonnegative Hermitian measure on T. This means that it is a square matrix whose entries
are complex valued measures such that the whole matrix takes values that are nonegative
definite. Because 0 ≤ M ≤ tr (M)I holds for any nonnegative definite matrix, it holds for
the scalar trace-measure τ = tr (µ) that τ(E) = 0 implies µ(E) = 0. This means that µ
is absolutely continuous with respect to τ and we may define the trace-derivative µ′

τ as the
matrix whose entries are dµi,j/dτ and it holds that µ(E) =

∫

E
µ′

τdτ . Furthermore it can

be shown that 0 ≤ µ′
τ ≤ I a.e. τ and also (µ′

τ )
1/2 is measurable. More generally, we define

∫

fdµgH as
∫

fµ′
τg

Hdτ , thus as a matrix whose entries are
∫

[fµ′
τg

H ]ijdτ . We denote this
matrix valued “inner product” as 〈〈f, g〉〉`,µ where the ` stands for “left” since it is possible

to define in a completely analogous way 〈〈f, g〉〉r,µ =
∫

fHdµg. In the sequel we treat only
the left version and leave the right version to the reader. For many results however, left and
right elements will be interacting. We shall always assume that

∫

dµ = I.
The class of matrix valued functions for which 〈〈f, f〉〉`,µ exists forms a left module over

C
N×N that has some pre-Hilbert space-like properties. Indeed, for any constant square

matrix a it holds that

• 〈〈f + g, h〉〉`,µ = 〈〈f, h〉〉`,µ + 〈〈g, h〉〉`,µ and 〈〈af, g〉〉`,µ = a 〈〈f, g〉〉`,µ (linearity)

• 〈〈f, g〉〉`,µ = [〈〈g, f〉〉`,µ]H (symmetry)

• 〈〈f, f〉〉`,µ ≥ 0 with tr 〈〈f, f〉〉`,µ = 0 ⇔ f = 0 (positive definite)

To equip this class of functions with some topology for which it has to be complete,
we also need a genuine scalar valued norm. This norm will be implied by a scalar valued
inner product, which we define as follows: 〈f, g〉`,µ = tr 〈〈f, g〉〉`,µ =

∫

tr (fµ′
τg

H)dτ . The

corresponding scalar norm is |f |`,µ = [〈f, f〉`,µ]1/2. So we can now thefine the Hilbert space
L2(µ) of square integrable matrix valued functions with respect to the scalar valued 〈·, ·〉`,µ,
that is complete with respect to the norm |f |`,µ. It is also a Hilbert module with respect to
the matrix valued 〈〈·, ·〉〉`,µ as we explained above.
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Occasionally we also use a Euclidean inner product, namely (f, g)E = tr (fgH) = tr (gHf)

and a Euclidean norm |f |E = (f, f)
1/2
E = |f |F/

√
N where |f |F is the Frobenius norm and N

the size of the matrix.
If µ = λI, we drop µ from the notation. For example L2 means L2(λI) and 〈〈f, g〉〉` means

〈〈f, g〉〉`,λ etc. We can define matrix valued Hardy spaces Hp as the matrix valued functions

f , analytic in D and such that |f |p = sup0≤r<1[
∫

|f(rt)|pEdλ(t)]1/p < ∞ if 0 < p < ∞ while
for p = ∞, |f |∞ = sup0≤r<1,t∈T

|f(rt)|E < ∞. As in the scalar case, any f ∈ Hp has a
nontangential limit to the circle that belongs to Lp (which has an obvious definition viz.,
f ∈ Lp ⇔ |f |E ∈ Lp).

7.2 Carathéodory function and spectral factor

Carathéodory functions are functions analytic in D with positive real part. Thus with
Re Ω(z) = 1

2
[Ω(z)+Ω(z)H ] ≥ 0. There is an essentially unique relationship between positive

measures and Carathéodory functions, which we represent as Ωµ(z) =
∫

D(t, z)dµ(t) +
iIm Ωµ(0). We shall assume that Ωµ(0) is real so that according to

∫

dµ = I we get Ωµ(0) = I.
Just like in the scalar case we have Re Ωµ(z) =

∫

P (t, z)dµ(t) and this has a nontangential
limit to the circle T which equals µ′ = dµ/dλ a.e. (λ) and its Fourier series is Ωµ(z) =
c0 + 2

∑∞
k=1 ckz

k where the coefficients are the moments ck =
∫

t−kdµ(t).
For the spectral factor, we need to assume that log detµ′ ∈ L1 (Szegő’s condition). If

that condition holds then there exist left and right outer spectral factors σL and σR such that
µ′ = σLσL

∗ = σR
∗ σ

R on T. The substar for a matrix function is defined as f∗(z) = f(1/z)H .
These σL and σR are outer in H2 in the sense that their determinant is scalar outer in H2/N .
They are analytic in D and their determinant does not vanish in D, so that their inverses
are also outer in H2. These σL, resp. σR are uniquely defined up to a right, resp. left unitary
constant factor.

8 MORF and reproducing kernels

8.1 Orthogonal rational functions

Matrix valued orthogonal rational functions (MORF) can now be obtained in much the
same way as in the scalar case. Given a sequence of αk ∈ D, we keep the notation of
Blaschke factors ζk(z) and Blaschke products Bn(z) from the scalar case and define Ln as
the linear span over C

N×N of {BkI}n
k=0. The block Gram matrix consists of the blocks

〈〈Bk, Bl〉〉`,µ = 〈〈Bk, Bl〉〉r,µ and it depends only on Ωµ(αk) and its derivatives in these points
up to an order depending on the multiplicity of αk in the sequence.

By a block Gram-Schmidt algorithm we can orthormalize the previous basis as follows:
assuming

∫

dµ = I, set φL
0 = I, and for n = 1, 2, . . . we set φ̃L

n = BnI−
∑n−1

k=0

〈〈

BnI, φ
L
k

〉〉

`,µ
φL

k

and φL
n = m−1

n φ̃L
n where mn is a left square root of 〈〈φ̃L

n , φ̃
L
n〉〉`,µ. Note that the left square

root need not be invertible in general if φ̃L
n is not zero. Then the algorithm will break down,

and we say that µ is degenerate. It can be shown that if log detµ′ ∈ L1, then this degeneracy
will not occur and all the ORF can be constructed. The basis φn for the Hilbert module
is orthonormal in the sense that

〈〈

φL
k , φ

L
j

〉〉

`,µ
= δk,jI. The φn are defined up to a constant

unitary factor from the left. To fix this, we shall assume that the leading coefficient κL
n of φL

n

with respect to the basis {BkI} is Hermitian positive definite (every invertible matrix A can
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be written as A = ULBL with UL unitary and BL positive definite [6, p. 22]). The leading
coefficient is κL

n = [φL∗
n (αn)]H where the superstar for f ∈ Ln is defined as in the scalar case:

f ∗ = Bnf∗. Note that for f, g ∈ Ln we have 〈〈f, g〉〉`,µ = 〈〈f ∗, g∗〉〉r,µ.

8.2 Reproducing kernels

Given a left orthonormal system φL
k for Ln, we can define a left reproducing kernel kL

n (z, w) =
∑n

k=0 φ
L
k (w)HφL

k (z) which reproduces because
〈〈

f, kL
n (·, w)

〉〉

`,µ
= f(w) for all f ∈ Ln. The

right reproducing kernel is given by kR
n (w, z) =

∑n
k=0 φ

R
k (z)[φR

k (w)]H and for any f ∈ Ln we
have

〈〈

kR
n (w, ·), f

〉〉

r,µ
= f(w).

Exercise 8.1 Mimic the scalar proof to derive the following CD-relations:

kL
n (z, w) =

[φR∗
n+1(w)]HφR∗

n+1(z) − [φL
n+1(w)]HφL

n+1(z)

1 − ζn+1(z)ζn+1(w)

and

kL
n (z, w) =

[φR∗
n (w)]HφR∗

n (z) − ζn(z)ζn(w)[φL
n(w)]HφL

n(z)

1 − ζn(z)ζn(w)
.

Consequently kL
n (z, αn) = κR

nφ
R∗
n (z) and kL

n (αn, αn) = κR
n [κR

n ]H .
The right versions are obtained by symmetry.

kR
n (w, z) =

φL∗
n+1(z)[φ

L∗
n+1(w)]H − φR

n+1(z)[φ
R
n+1(w)]H

1 − ζn+1(z)ζn+1(w)

and

kR
n (w, z) =

φL∗
n (z)[φL∗

n (w)]H − ζn(z)ζn(w)φR
n (z)[φR

n (w)]H

1 − ζn(z)ζn(w)
.

From this right variant we have kR
n (αn, z) = φL∗

n (z)κL
n and kR

n (αn, αn) = [κL
n ]HκL

n . 3

Theorem 8.1 The reproducing kernels satisfy the following recurrence relations

sn(w)

[

kR∗
n (w, z)
kL

n (z, w)

]

= tn(z, w)

[

kR∗
n−1(w, z)
kL

n−1(z, w)

]

where

sn(w) =

[

I − [ρR
n (w)]HρL

n(w) 0
0 I − ρL

n(w)[ρR
n (w)]H

]

,

tn(z, w) =

[

I [ρR
n (w)]H

ρL
n(w) I

] [

ζn(z)I 0
0 I

] [

I [γR
n (w)]H

γL
n (w) I

]

,

with
ρL

n(w) = [φL
n(w)]H [φL∗

n (w)]−1, ρR
n (w) = [φR∗

n (w)]−1[φR
n (w)]H ,

and [γR
n (w) γL

n (w)] = −ζn(w)[ρR
n (w) ρL

n(w)].
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Proof. The proof is along the same lines as in the scalar case. One needs the relation
kL

n (z, w) = Bn(z)Bn(w)kR
n (1/z, 1/w). We leave it as an exercise to the reader. 2

Note that it follows from the CD relations that

{I − ρL
n(w)[ρR

n (w)]H}[φR∗
n (w)]HφR∗

n (w) = [φR∗
n (w)]HφR∗

n (w) − [φL
n(w)]HφL

n(w) > 0.

Thus I − ρL
n(w)[ρR

n (w)]H can not be singular for w ∈ D. Note that this implies also that
[φR∗

n (w)]HφR∗
n (w) is not singular and hence positive definite, thus detφR∗

n (w) 6= 0 for all
w ∈ D and thus it is invertible in D. A similar observation holds for I − ρL

n(w)[ρR
n (w)]H and

for φL∗
n (w).

Exercise 8.2 From this recurrence derive that
(

I − γL
n (w)[γR

n (w)]H
)

kL
n−1(w,w) =

(

I − ρL
n(w)[ρR

n (w)]H
)

kL
n (w,w)

and symmetrically

(

I − [γR
n (w)]HγL

n (w)
)

kR
n−1(w,w) =

(

I − [ρR
n (w)]HρL

n(w)
)

kR
n (w,w).

3

We can bring a bit more symmetry into the recurrence for the kernels by considering nor-
malized versions of the kernels. Suppose Ln(w) = [kL

n (w,w)]L/2 is a left square root and
Rn(w) = [kR

n (w,w)]R/2 is a right square root, then we call KL
n (z, w) = [Ln(w)]−1kn(z, w) and

KR
n (w, z) = kR

n (w, z)[Rn(w)]−1 the normalized kernels.

Exercise 8.3 Use the CD relations to show that ρL
n(w)kR

n−1(w,w) = kL
n−1(w,w)ρR

n (w). With
the left square root Ln(w) and the right square roots Rn(w) that we just introduced, use this
result to prove that [Ln−1(w)]−1ρL

n(w)[Rn−1(w)]H = [Ln−1(w)]HρR
n (w)[Rn−1(w)]−1. Thus we

succeeded in symmetrizing the ρR
n and ρL

n and call the result ρn(w) the symmetrized recursion
parameter from now on. The CD relations also imply that ρn(w) is strictly contractive in
D, i.e., ρH

n ρn < I and hence also ρnρ
H
n < I. Similar observations can be made when ρ is

replaced by γ. 3

We need one more lemma before we can state our symmetrized recurrence relation for the
normalized kernels.

Lemma 8.2 Define F (ρ) = I − ρρH and G(ρ) = I − ρHρ, then it is always possible to
choose the square roots Ln(w) and Rn(w) in the definition of ρn(w) such that (recall that
A1/2 denotes the Hermitian square root and A−1/2 is its inverse)

[Ln−1(w)]−1Ln(w) = F (ρn(w))−1/2F (γn(w))1/2

and
Rn(w)[Rn−1(w)]−1 = G(ρn(w))−1/2G(γn(w))1/2.

Proof. First note that F (γn) = L−1
n−1(I − |ζn|2ρL

n [ρR
n ]H)Ln−1. Hence

Ln−1F (γn)LH
n−1 = (I − |ζn|2ρL

n [ρR
n ]H)kL

n−1(w,w),
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which by the previous exercise 8.2 equals (I − ρL
n [ρR

n ]H)kL
n (w,w) while I − ρL

n [ρR
n ]H =

Ln−1F (ρn)L−1
n−1. Thus we may conclude that F (γn)LH

n−1L
−H
n = F (ρn)L−1

n−1Ln. Multiply
by the inverse of F (γn) to get [F (ρn)]−1F (γn) = L−1

n−1LnL
H
n L

−H
n−1. This is obviously positive

definite, so we can take its Hermitian square root Qn = L−1
n−1LnUn with Un some unitary

matrix. This Un can be included in the left square root Ln. This proves the first relation.
The second one follows by symmetry. 2

We have now a simplified recursion for the normalized kernels which follows immediately
from the previous results.

Theorem 8.3 Define F (ρ) = I − ρρH and G(ρ) = I − ρHρ and the Halmos extension

H(ρ) =

[

G(ρ)−1/2 0
0 F (ρ)−1/2

] [

I ρH

ρ I

]

=

[

I ρH

ρ I

] [

G(ρ)−1/2 0
0 F (ρ)−1/2

]

,

the following recurrence holds

[

KR∗
n (w, z)
KL

n (z, w)

]

= θn(z, w)

[

KR∗
n−1(w, z)

KL
n−1(z, w)

]

,

with

θn(z, w) = H(ρn(w))Zn(z)H(γn(w)), Zn(z) =

[

ζn(z)I 0
0 I

]

.

where ρn(w) is as defined in the previous lemma and γn(w) = −ζn(w)ρn(w).

We can, like in the scalar case, define associated kernels LL
n(z, w) and LR(w, z), which start

from the initial conditions LR∗
0 = I = LL

0 and then obey the recursion

[

LR∗
n (w, z)

−LL
n(z, w)

]

= θn(z, w)

[

LR∗
n−1(w, z)

−LL
n−1(z, w)

]

,

with θn(z, w) like in the previous theorem.
The matrices θn have some special properties. For example, it is clear that they are

para-J-unitary, i.e., they satisfy

θ∗nJθn = θnJθ
∗
n = J, J =

[

I 0
0 −I

]

.

This immediately implies

Corollary 8.4 For the normalized kernels KL
n , KR

n , LL
n and LR

n , the following relations hold

• KL
n (z, w)LL∗

n (z, w) + LL
n(z, w)KL∗

n (z, w) = 2Bn(z)I,

• KR∗
n (w, z)LR

n (w, z) + LR∗
n (w, z)KR

n (w, z) = 2Bn(z)I,

• KL∗
n (z, w)KL

n (z, w) = KR
n (w, z)KR∗

n (w, z),

• LL∗
n (z, w)LL

n(z, w) = LR
n (w, z)LR∗

n (w, z).
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Proof. This follows from the fact that
[

KR∗
n LR∗

n

KL
n −LL

n

]

= Θn

[

I I
I −I

]

⇔ Θn =
1

2

[

KR∗
n + LR∗

n KR∗
n − LR∗

n

KL
n − LL

n KL
n + LL

n

]

where Θn = θnθn−1 · · · θ1. Because all the θk are *-J-unitary, the same holds for the product
Θn. Writing explicitly ΘnJΘ∗

n = J gives the previous results. 2

The matrices θn, and therefore also the product Θn, are also J-lossless, which means that as
a function of z, its entries are functions in the Nevanlinna class (ratios of H∞ functions), it
is J-contractive in D and J-unitary on T, thus θnJθ

H
n ≤ J for z ∈ D while θnJθ

H
n = J for

z ∈ T.
Among other things, it is shown in [5] that this induces the following properties.

• KL
n (z, w), LL

n(w, z), KR
n (w, z), and LR

n (w, z) are invertible for w ∈ D and z ∈ D ∪ T.
Hence also φR∗

n and φL∗
n are invertible in D ∪ T.

• [KL
n (z, w)]−1LL

n(z, w) and LR
n (w, z)[KR

n (w, z)]−1 are Carathéodory functions for w ∈ D.

• [KL
n (z, w)]−1 and [KR

n (w, z)]−1 are in H2.

9 Recurrence for the MORF

9.1 The recursion

The proof of the recurrence relation for the MORF is given in different steps which we for-
mulate as lemmas. Note that in these lemmas the φL

n and φR
n are temporarily just orthogonal

functions. They are not necessarily normalized in the particular way we agreed upon before.
In the ultimate theorem 9.4 we will be back to the usual situation.

Lemma 9.1 Starting with arbitrary invertible constant matrices φL
0 and φR

0 from C
N×N ,

define for k = 1, . . . , n

fL
k (z) =

z − αk−1

1 − αkz
φL

k−1(z), fR
k (z) =

z − αk−1

1 − αkz
φR

k−1(z),

DL
k = −CL

k

〈〈

fR∗
k , φL

0

〉〉

`,µ

〈〈

fL
k , φ

L
0

〉〉−1

`,µ
, DR

k = −
〈〈

φR
0 , f

R
k

〉〉−1

r,µ

〈〈

φR
0 , f

L∗
k

〉〉

r,µ
CR

k ,

φL
k (z) = DL

k f
L
k (z) + CL

k f
R∗
k (z), φR

k (z) = fR
k (z)DR

k + fL∗
k (z)CR

k ,

then {φL
k }n

k=0 and {φR
k }n

k=0 form a left, resp. right orthogonal basis for Ln. Moreover

DL
k = −CL

k

〈〈

fR∗
k , φL

p

〉〉

`,µ

〈〈

fL
k , φ

L
p

〉〉−1

`,µ
, DR

k = −
〈〈

φR
p , f

R
k

〉〉−1

r,µ

〈〈

φR
p , f

L∗
k

〉〉

r,µ

for any p = 0, . . . , k − 1 and

CL
k =

1 − αkαk−1

1 − |αk−1|2
φL

k (αk−1)[φ
R∗
k−1(αk−1)]

−1, CR
k =

1 − αkαk−1

1 − |αk−1|2
[φL∗

k−1(αk−1)]
−1φR

k (αk−1),

DL
k = −zk

1 − αk−1αk

1 − |αk−1|2
[

[φL∗
k−1(αk−1)]

−1φL∗
k (αk−1)

]H

and

DR
k = −zk

1 − αk−1αk

1 − |αk−1|2
[

φR∗
k (αk−1)[φ

R∗
k−1(αk−1)]

−1
]H

.
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Proof. This is by induction on n. The matrix DL
1 is chosen in such a way that φL

1 is left
orthogonal to φL

0 and similarly for φR
1 . Suppose now that the theorem holds up to n − 1.

Then it is clear that φL
n ∈ Ln \Ln−1. Using 〈〈f, g〉〉`,µ = 〈〈f ∗, g∗〉〉r,µ, it is not difficult to show

that it is left orthogonal to z−αn

1−αn−1z
Ln−2 ⊂ Ln−1, while DL

n is chosen such that φL
n is left

orthogonal to φL
0 . Because for any f ∈ Ln−1 clearly f(z) − f(αn) ∈ z−αn

1−αn−1z
Ln−2, the left

orthogonality to Ln−1 follows.
The relation between C’s and D’s follows because

〈〈

φL
k , φ

L
p

〉〉

`,µ
=
〈〈

φR
p , φ

R
k

〉〉

r,µ
= 0 for all

p = 0, . . . , k − 1. 2

Lemma 9.2 The following recursion also gives left and right MORF (we use the notation
of the previous lemma)

[

φL
n(z)

φR∗
n (z)

]

=
1 − αn−1z

1 − αnz

[

I [λL
n ]H

λR
n I

] [

ζn−1(z)I 0
0 I

] [

φL
n−1(z)
φR∗

n−1(z)

]

,

with

λL
n = −zn−1

〈〈

φL
n−1, φ

R∗
n

〉〉−1

`,µ

〈〈

φL
n−1, φ

L
n

〉〉

`,µ
, λR

n = −zn−1

〈〈

φR
n , φ

R
n−1

〉〉

r,µ

〈〈

φL∗
n , φR

n−1

〉〉−1

r,µ
.

Proof. Setting

λL
n = −zn−1[[D

L
n ]−1CL

n ]H , λR
n = −zn−1[C

R
n [DR

n ]−1]H ,

it readily follows from the previous relations that the right hand side of this theorem results
in

[

−zn−1[D
L
n ]−1φL

n(z)
−zn−1[D

R
n ]−1φR∗

n (z)

]

.

and because the φL
n are left orthogonal, so are the −zn−1[D

L
n ]−1φL

n(z) and a similar observa-
tion holds for the right versions. 2

Lemma 9.3 If we work with orthonormal MORF, then

λL
n = λR

n = zn−1zn
1 − αn−1αn

1 − αnαn−1

ρn(αn−1)

with the ρn(w) the symmetrized recursion parameter.

Proof. Recall κR
n = φR∗

n (αn) and κL
n = φL∗

n (αn) and the expressions for the λ’s, the C’s and
the D’s to find that

λL
n = zn−1zn

1 − αn−1αn

1 − αnαn−1

[κR
n−1]

−1[φL
n(αn−1)]

H [φL∗
n (αn−1)]

−1[κL
n−1]

H

and

λR
n = zn−1zn

1 − αn−1αn

1 − αnαn−1

[κR
n−1]

H [φR∗
n (αn−1)]

−1[φR
n (αn−1)]

H [κL
n−1]

−1.

We may now define matrices

NL
n =

〈〈

φL
n , φ

L
n

〉〉L/2

`,µ
, NR

n =
〈〈

φR
n , φ

R
n

〉〉R/2

r,µ
,
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and multiply φL
n from the left by [NL

n ]−1 and multiply φR
n from the right by [NR

n ]−1, then
we obtain orthonormal bases which we shall again denote by φL

n and φR
n . Note that the left

and right square roots can be chosen such that the leading coefficients are positive definite.
Furthermore, from the expression for λL

n and for ρL
n , we see that

λL
n = zn−1zn

1 − αn−1αn

1 − αnαn−1

[κR
n−1]

−1ρL
n(αn−1)[κ

L
n−1]

H .

Finally use ρn(w) = [KL
n−1(w,w)]L/2ρL

n(w)[[KR
n−1(w,w)]R/2]H and KL

n (αn, αn) = κR
n [κR

n ]H

and KR
n (αn, αn) = [κL

n ]HκL
n to find the expression for λn. 2

Theorem 9.4 The MORF have initial conditions φL
0 = φR

0 = I and satisfy the recurrence

[

φL
n(z)

φR∗
n (z)

]

= tn(z)

[

φL
n−1(z)
φR∗

n−1(z)

]

,

with

tn(z) =

√

1 − |αn|2
√

1 − |αn−1|2
1 − αn−1z

1 − αnz
H(λn)Zn−1(z)

where H(λn) and Zn(z) are as defined before and

λn = ηnρn(αn−1), ηn = znzn−1
1 − αn−1αn

1 − αnαn−1

∈ T

with ρn(w) the symmetrized recurrence parameter,

Proof. First note that
[

φ̂L
n(z)

φ̂R∗
n (z)

]

=
1 − αn−1z

1 − αnz

[

I λH
n

λn I

]

Zn−1(z)

[

φL
n−1(z)
φR∗

n−1(z)

]

gives orthogonal functions, so that it remains to define the normalizing factors

Nn =

[

〈〈

φ̂L
n , φ̂

L
n

〉〉L/2

`,µ

]−1

and Mn =

[

〈〈

φ̂R∗
n , φ̂R∗

n

〉〉L/2

`,µ

]−1

.

From the CD relation it follows that

[

φL
n(αn−1)

φR∗
n (αn−1)

]H

J

[

φL
n(αn−1)

φR∗
n (αn−1)

]

= −(1 − |ζn(αn−1)|2)κR
n−1[κ

R
n−1]

H .

On the other hand, the recursion gives

[

φL
n(αn−1)

φR∗
n (αn−1)

]

=
1 − αn−1z

1 − αnz

[

Nn 0
0 Mn

] [

λH
n [κR

n−1]
H

[κR
n−1]

H

]

.

Plug this into the previous relation and one gets (we set γj =
√

1 − |αj|2)

λnN
H
n Nnλ

H
n −MH

n Mn = − γ2
n

γ2
n−1

I.
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For arbitrary unitary matrices Un and Vn,

Nn =
γn

γn−1

Un(I − λH
n λn)−1/2, Mn =

γn

γn−1

Vn(I − λnλ
H
n )−1/2

are solutions. The Un and Vn can be used to normalize the leading coefficients of φL
n and

φR
n . 2

Again it can be noted that for all αk = 0, the matrix versions of Szegő polynomials appear
as a special case. The λn which are in this case given by ρn(0) and are the block Szegő
parameters.

9.2 Functions of the second kind

We can define functions of the second kind by setting φL
0 = ψR

0 = I as initial conditions for
the recursion

[

ψL
n (z)

−ψR∗
n (z)

]

= tn(z)

[

ψL
n−1(z)

−ψR∗
n−1(z)

]

,

with tn as in the previous theorem. Along the same lines as in the scalar case, it can be
proved that for n ≥ 1

ψL
n (z) =

∫

D(t, z)[φL
n(t) − φL

n(z)]dµ(t), ψR
n (z) =

∫

D(t, z)dµ(t)[φR
n (t) − φR

n (z)].

Because

Tn(z) = tn(z) · · · t1(z) =
1

2

[

φL
n(z) + ψL

n (z) φL
n(z) − ψL

n (z)
φR∗

n (z) − ψR∗
n (z) φR∗

n (z) + ψR∗
n (z)

]

and (1−αnz)Tn(z)/γn is again a lossless and *-J-unitary matrix, we may conclude as in the
case of the kernels that

• φR∗
n and ψR∗

n have no zeros in D∪T (a zero of a matrix means a zero of its determinant).

• [φR∗
n ]−1ψR∗

n and ψR∗
n [φR∗

n ]−1 are Carathéodory functions.

• [φL∗
n ]−1 and ψR∗

n ]−1 are in H2.

• φR
n∗(t)ψ

R
n (t) + ψR

n∗(t)φ
R
n = 2P (t, αn)I for t ∈ T

• φL
n(t)ψL

n∗(t) + ψL
n (t)φL

n∗ = 2P (t, αn)I for t ∈ T

• φR
nφ

R∗
n = φL∗

n φL
n and ψR

nψ
R∗
n = ψL∗

n ψL
n

10 Interpolation and quadrature

10.1 The kernels

We can obtain interpolation properties for the (normalized) kernels like we did in the scalar
case. This is related to polynomial kernels for varying measures in the sense that if kL

n (z, w)
is a left reproducing kernel for the left inner product w.r.t. µ, then it can be written as
kL

n (z, w) = kL
n,n(z, w)/|πn(z)|2 where kL

n,n(z, w) is the left polynomial reproducing kernel for
the left inner product with respect to the measure µ/|πn|2. We have
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Theorem 10.1 If KL
n (z, w) is the left normalized reproducing kernel for Ln with respect to

µ, then for dµL
n(t) = [KL

n∗(t, 0)K
L
n (t, 0)]−1dλ(t), we 〈〈f, g〉〉`,µ = 〈〈f, g〉〉`,µL

n
for all f and g in

Ln.

Proof. It suffices to prove that for all f ∈ Ln:
〈〈

f, kL
n (·, w)

〉〉

`,µ
=
〈〈

f, kL
n (·, w)

〉〉

`,µL
n

because

for a set of n + 1 mutually different ξk ∈ D, the kL
n (z, ξk) from a basis for Ln. Therefore, it

is sufficient to prove that for any polynomial p we have
〈〈

p/πn, k
L
n (·, w)

〉〉

`,µL
n

= p(w)/πn(w).

If φR
k,n is a set of right MOPVM for ν = µ/|πn|2, it follows that by using the polynomial

CD relation that KL
n (z, 0) = φR∗

nn(z)/πn(z), and thus, dµL
n = |πn|2[φR∗

nn]∗φ
R∗
nn. Therefore

〈〈

p/πn, k
L
n (·, w)

〉〉

`,µL
n

= I1 − I2 with

I1 =
1

πn(w)

[
∫

p(t)[(φR∗
n,n(t))∗φ

R∗
n,n(t)]−1(φR∗

n,n(t))∗
t

t− w
dλ(t)

]

φR∗
n,n(w) =

p(w)

πn(w)
.

Because the integral is by Cauchy’s theorem equal to p(w)[φR∗
n,n(w)]−1.

I2 =
1

πn(w)

[
∫

p(t)[(φR∗
n,n(t))∗φ

R∗
n,n(t)]−1(φL

n,n(t))∗
1

t− w
dλ(t)

]

φL
n,n(w).

This is zero because (φR∗
n,n)∗φ

R∗
n,n = φL∗

n,n(φL∗
n,n)∗ which reduces the integral to the Hermitian

conjugate of
∫

[φL∗
n,n(t)]−1p∗(t) t

1−wt
dλ(t) and this is zero by Cauchy’s theorem. This concludes

the proof. 2

Theorem 10.2 With Ωµ(z) =
∫

D(t, z)dµ(t) and ΩL
n(z) =

∫

D(t, z)dµL
n(t) we have ΩL

n(z) =
[KL

n (z, 0)]−1LL
n(z, 0) and the left outer spectral factor of µL

n is σL
n (z) = [KL

n (z, 0)]−1. Moreover
we have the interpolation property

Ωµ(z) − ΩL
n(z) = zBn(z)h(z)

with h analytic in D.

Proof. We know that [KL
n (z, 0)]−1LL

n(z, 0) is a Carathéodory function and because 1
2
[ΩL

n(t)+
ΩL

n∗(t)] = [KL
n∗(t, 0)K

L
n (t, 0)]−1, it is the Riesz-Herglotz transform of µL

n . Also, it is obvious
that σL

n is a spectral factor. It is outer in H2 because KL
n (z, 0) is a rational function in H2

and it does not vanish in D ∪ T. For the interpolation property, note that with ν = µ− µL
n

Ωµ(z) − ΩL
n(z)

Bn(z)
=

∫
[

1

Bn(z)
− 1

Bn(t)

]

D(t, z)dν(t) +

∫

1

Bn(t)
D(t, z)dν(t).

The first integral is zero because the term in square brackets is of the form f∗ with f = p/πn

where p is a scalar polynomial in t of degree less than n + 1. Thus it equals 〈〈I, fI〉〉`,ν .
Because fI ∈ Ln, this integral is 0. The integrand for the second term is analytic in D

because
∫

f(t)D(t, z)dµ(t) is analytic in D for any f ∈ L1(ν) and any measure ν. Because
〈〈I, I〉〉`,µ = 〈〈I, I〉〉`,µL

n
we get the interpolation at the origin. 2

Corollary 10.3

ΩL
n(z) = [KL

n (z, 0)]−1LL
n(z, 0) = LR

n (0, z)[KR
n (0, z)]−1 = ΩR

n (z).

Proof. Because [KL
n∗(t, 0)K

L
n (t, 0)]−1 = [KR

n (0, t)KR
n∗(0, t)]

−1, we have by the Riesz-Herglotz
theorem that ΩL

n = ΩR
n in D, but because it are just rational functions, equality also holds

on C. 2
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10.2 The MORF

Similar properties can be derived for the MORF. Recall that P (t, z) = ReD(t, z) is the
Poisson kernel. We have

Theorem 10.4 Consider the measure dµ̂L
n(t) = P (t, αn)[φL

n∗(t)φ
L
n(t)]−1dλ(t), then in Ln,

the inner products 〈〈·, ·〉〉`,µ and 〈〈·, ·〉〉`,µ̂n
are the same.

Proof. A proof will be given if it can be shown that the φL
n , which is a left orthonormal basis

for µ, is also a left orthonormal basis for µ̂L
n . This can be shown by a backward recursion.

Obviously
〈〈

φL
n , φ

L
n

〉〉

`,µ̂L
n

= I. Also for k = 0, . . . , n− 1:

〈〈

φL
n , φ

L
k

〉〉

`,µ̂L
n

=

∫

[φL∗
n (t)]−1φL∗

k (t)P (t, αn)Bn(t)/Bk(t)dλ(t),

which is zero by the Poisson formula. 2

Theorem 10.5 With Ωµ(z) =
∫

D(t, z)dµ(t) and Ω̂L
n(z) =

∫

D(t, z)dµ̂L
n(t) where µ̂L

n is as

in the previous theorem, then Ω̂L
n(z) = ψL∗

n (z)[φL∗
n (z)]−1, and σ̂R

n (z) =

√
1−|αk|2

1−αnz
[φL∗

n (z)]−1 is

a right outer spectral factor of µ̂L
n . Furthermore we have the interpolation property

Ωµ(z) − Ω̂L
n(z) = zBn(z)h(z)

with h analytic in D.

Proof. The proof is complete parallel to the proof of theorem 10.2. 2

Corollary 10.6

Ω̂L
n(z) = ψL∗

n (z)[φL∗
n (z)]−1 = [φR∗

n (z)]−1ψR∗
n (z) = Ω̂R

n (z).

With these results, it is not difficult to derive a Favard type theorem.

Theorem 10.7 Let φL
n and φR

n be generated by the recursion of Theorem 9.4. Then there is
a positive definite measure on T for which they form a left, resp. a right MORF sequence.

Proof. This is along the same lines as the scalar proof of Theorem 2.7. 2

This measure will be unique if A ∈ BD and log detµ′ ∈ L1 which follows from the complete-
ness of the basis of Blaschke products in H2 with respect to the norm | · |`,µ.

11 Minimalisation and Szegő’s problem

If Φ(s) is a function with Hermitian nonnegative definite values, then the problems inf s Φ(s)
and infs tr Φ(s) have the same solutions. By a solution we mean an s such that Φ(s) ≤ Φ(t)
for all t. We have the following.

Theorem 11.1 The minimum of 〈〈f, f〉〉`,µ for all f ∈ Ln with f(w) = I is [kL
n (w.w)]−1

given by and it is obtained for f = [kL
n (w,w)]−1kL

n (·, w), provided that det kL
n (w,w) 6= 0.
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Proof. Similar to the proof of Theorem 6.1. 2

We have formulated this theorem for Ln but it actually holds for any Hilbert module with
reproducing kernel.

Define the left Szegő kernel sL(z, w) = [(1 − wz)σL(z)(σL(w))H ]−1 with σL(0) > 0 with
w ∈ D, then it is left reproducing in H2. We can conclude that, as in the scalar case, some
vector valued stochastic process will be completely predictable if exp{

∫

log detµ′(t)dλ(t)} =
0, i.e. log detµ′ 6∈ L1. If we assume that the Blaschke products diverge (A ∈ BD) and that
log detµ′ ∈ L1 (µ ∈ SZ), then the set {Bn}n≥0 is complete in the Banach space H2(µ) (thus
with respect to the trace norm | · |`,µ). So the analog of Theorem 6.2 is

Theorem 11.2 Let µ ∈ SZ, w ∈ D a fixed number, and let sL
w(z) = sL(z, w) be the left Szegő

kernel. Consider the problem min ‖f − sL
w‖2

`,µ over all f ∈ Ln, then the solution is kL
n (z, w)

and the minimum is sL
w(w) − kL

n (w,w). If A ∈ BD then limn→∞ |kL
n (t, w) − sL

w(t)|`,µ = 0.

Proof. Because

〈〈

sL
w − f, sL

w − f
〉〉

`,µ
=
〈〈

sL
w, s

L
w

〉〉

`,µ
+ 〈〈f, f〉〉`,µ − 2Re

〈〈

f, sL
w

〉〉

`,µ

By Cauchy’s theorem
〈〈

sL
w, s

L
w

〉〉

`,µ
= sL

w(w) and
〈〈

f, sL
w

〉〉

`,µ
= f(w), so that we have to

minimize sL
w(w) + 〈〈f, f〉〉`,µ − 2Re f(w). Like in the scalar case it can be seen that this

minimum is obtained for f as claimed. Because A ∈ BD implies completeness in the
Banach space H2, we have convergence in the norm of this space. 2

This problem is immediately related to the prediction of vector valued stochastic processes,
but it can also be interpreted in the context of inverse scattering theory or network synthesis.
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What we did not discuss

There are many things that were not discussed in this introduction.
First of all there is the scalar case with many things to be explored like further convergence

results, characterization of the properties of the ORF in terms of the recurrence coefficients,
moment problems, Nevanlinna-Pick and other classical interpolation problems. Some of
these are included to some extend in [3].

There is a completely similar theory of ORF on the real line when all the poles are outside
the real line. Interesting special cases are measures whose support is an interval or a half
line. In the latter case results in the vein of what has been developped here can be obtained
[29].

A slightly different theory emerges when poles are allowed to fall inside the support of
the measure (see e.g. [3]).

In all those cases there is practically no result about an operator theoretical approach
that generalizes the Jacobi matrices of classical polynomials.

For the matrix case, there is a huge literature on so-called Schur analysis. This involves
matricial Nevanlinna-Pick interpolation problems and tangential or directional versions. A
lot of energy is also spent on discussing generalizations of the Blaschke factors. Indeed
instead of just using BkI as a basis function, one could consider products of factors of the
form ζjUj where Uj represents a rank one matrix. The recursion, which is in our treatment
connected with J-lossless matrices, can be considerably generalized by replacing J by much
more general matrices with a finer structure. And all this could be extended to the non-
square matrix case. Etc.
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