
A new approa
h to the rational interpolation problem :the ve
tor 
aseMar
 Van Barel and Adhemar BultheelDepartment of 
omputer s
ien
eK.U. LeuvenJanuary 2, 2000Abstra
tWe generalize our earlier results on rational interpolation whi
h were given in [19℄for the s
alar 
ase and in [6℄ for the ve
tor 
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ase. It also generates all the information needed togive all solutions of the problem.Keywords: Rational interpolation, Newton-Pad�e, ve
tor interpolants, simultaneous rationalapproximation1 Introdu
tionIn an earlier paper [19℄, we showed that we 
ould take away several drawba
ks of the 
las-si
al Newton-Pad�e rational interpolation problem by using a new approa
h to the rationalinterpolation problem (R�IP). We also gave a re
ursive algorithm whi
h has the importantadvantage over existing algorithms that we don't need a reordering of the given interpolationdata. Our algorithm basi
ally solves the linearized R�IP and gives a solution that is in some
learly de�ned sense as simple as possible, but as a side produ
t, it also generates all theinformation needed to give all solutions, not only for the linearized R�IP but also for theproper R�IP. When all the interpolation points 
oin
ide, we 
an reformulate the s
alar R�IPas a s
alar minimal partial realization problem. We have generalized the 
ase where all thedata are given at one point to ve
tor data [6℄ and even matrix data [17℄. In [18℄ we alloweddata to be given at two points (zero and in�nity). In this paper, we generalize this solutionmethod to the 
ase of ve
tor interpolation data with possible non-
oin
iding interpolationpoints.The essential observations made in the above mentioned papers is that the R�IP 
an belinearized whereupon it redu
es to the re
ursive solution of nested systems of homogeneouslinear equations. The matri
es of these systems have a spe
ial stru
ture. Thus we have to �ndan element from their null spa
e. Sin
e these systems have one more 
olumn than they haverows, their null spa
e is at least one dimensional. In the 
ase of Pad�e approximation, these1



systems are (blo
k) Toeplitz or (blo
k) Hankel. These matri
es appear in many di�erentseemingly unrelated mathemati
al topi
s and engineering appli
ations, whi
h might explaintheir popularity during the last de
ades. You will �nd them for example in the theoryand appli
ations of orthogonal polynomials, integral equations, digital �ltering and signalpro
essing, time series analysis, sto
hasti
 pro
esses, inverse s
attering, BCH-de
oding et
.,to name just a few.The basi
 algorithms to solve these problems are the Levinson/S
hur/Szeg}o algorithms(for the Toeplitz 
ase) and the Eu
lidean/Berlekamp-Massey/Krone
ker algorithms (for theHankel 
ase). A basi
 element in these algorithms, and also in our approa
h, is the des
riptionof all elements in the null spa
e of matri
es with a spe
ial stru
ture. This is done by
onstru
ting a basis. The nesting of the matri
es and their spe
ial stru
ture make it possibleto �nd su
h a basis rather eÆ
iently if you know the bases of the previous null spa
es.During the last de
ade mu
h attention has been paid to a multitude of generalizations ofthese algorithms to all sorts of \spe
ial" or \stru
tured" matri
es. People have 
onsideredmatri
es 
lose-to-Toeplitz or Hankel, Hilbert matri
es and Vandermonde matri
es [7℄ andmany others.Re
ently, there is a revived interest in the rational interpolation 
ase [15, 14, 16, 2, 3,1, 19℄. The matri
es involved here are L�owner matri
es or generalized L�owner matri
esdepending on whether the interpolation points 
an 
oin
ide or not (see [2℄). The basi
 thingto be studied remains, just like in the 
lassi
al problems, to des
ribe a basis for the nullspa
es of su
h matri
es and to �nd an eÆ
ient way to generate them. In this paper, you will�nd a solution to this problem.Ve
tor rational interpolants have been 
onsidered before. The papers by Peter Graves-Morris are the most re
ent ones. [10, 11, 13℄. We refer to his introdu
tion (espe
ially these
ond one) to �nd out about the history of the problem and the relation to related problemsin the literature like the so 
alled Latin and German polynomial problems. Our algorithmwill be able to re
over the dire
tional ve
tor interpolants 
onsidered in [11℄ (see se
tion 2).In this paper we 
ombine the new approa
h to rational interpolation of [19℄, and theidea of minimal ve
tor Pad�e approximation of [6℄ to the 
ase where ve
tor interpolation dataare given. All the results we obtained for the s
alar problem are generalized to the ve
tor
ase. The basi
 results being the 
onstru
tive way of de�ning the basis of the null spa
e,whi
h results in an eÆ
ient re
ursive algorithm (se
tion 3). A \minimal" solution of theoriginal interpolation problem (se
tion 2) 
an then be readily given (se
tion 4) as well as aparameterization of all solutions, not only for the linearized problem, but also for the properinterpolation problem (se
tion 5).The absen
e in our algorithm of a reordering strategy whi
h is needed to over
ome asingular situation when the algorithm hits a \blo
k" in the Newton-Pad�e table in most ofthe existing s
alar methods [8, 12, 9, 22, 23, 24, 25℄ is a basi
 advantage. For the ve
tor
ase, a normal situation was supposed from the start [10, 11, 13℄. Our algorithm will alsowork in singular situations for the ve
tor 
ase.2 The ve
tor rational interpolation problem (V�RIP)This paper is a 
ontinuation of [19℄ and [6℄. Ample motivation for our approa
h and thede�nitions and methods introdu
ed 
an be found there. It might be an advantage to readthe simpler 
ases of s
alar interpolants [19℄, or 
ompletely 
on
uent points [6℄ �rst. Thepresent paper follows 
losely the outline of [19℄.The �eld, �nite or in�nite, we are working with , is denoted by K. The set of polynomials2



with 
oeÆ
ients of the �eld K, is denoted by K[z℄. The set of polynomial m-ve
tors, i.e., theset of all ve
tors whose m elements belong to K[z℄, is denoted by Km [z℄. Suppose we wantto interpolate the given data fi 2 Km , in the interpolation points zi 2 K; i = 1; 2; : : : ; p, by ave
tor rational fun
tion n(z)=d(z) with n(z) 2 Km [z℄ and d(z) 2 K[z℄. The division by d(z)is taken 
omponentwise, i.e. n(z)=d(z) = 26664 n1(z)=d(z)n2(z)=d(z)...nm(z)=d(z) 37775 :Be
ause we want to keep the exposition here as simple as possible, we don't allow a 
om-ponent of fi to have the value 1. Hen
e, d(zi) 6= 0; i = 1; 2; : : : ; p. For the same simpli
ityreasons, we also do not allow an interpolation point at in�nity (zi 6= 1; i = 1; 2; : : : ; p).These restri
tions are basi
ally made to simplify the notation and to avoid a lot of ex
ep-tional 
ases. However, the same method still works. The extensions for the s
alar 
ase are
overed in [20℄. See also [15℄. For the same reason of ease of exposition, we shall initiallysuppose that all the interpolation points are di�erent (zi 6= zj; i 6= j). The 
on
uent 
ase ispostponed until se
tion 6.Every polynomial (m+1)-tuple (n(z); d(z)) = (n1(z); n2(z); : : : ; nm(z); d(z)) whi
h solvesthe proper interpolation 
onditionsfi = n(zi)=d(zi); i = 1; 2; : : : ; p (1)shall also satisfy the linearized 
onditionsfid(zi) = n(zi); i = 1; 2; : : : ; p: (2)However, the 
onverse is only guaranteed if d(zi) 6= 0; i = 1; 2; : : : ; p. Note that we don't
onsider n(z)p(z)d(z)p(z) with p(z) 2 K[z℄ n f0gas a solution satisfying the proper interpolation 
onditions as soon as p(zi) = 0 for someinterpolation point zi; i = 1; 2; : : : ; p, even if n(z)=d(z) satis�es the proper interpolation
onditions with d(zi) 6= 0; i = 1; 2; : : : ; p. Be
ause by assumption none of the 
omponentsof fi is 1, d(zi) = 0 implies n(zi) = 0. In other words, n(zi) 6= 0 implies d(zi) 6= 0. Thismeans that if any of the 
omponents of the polynomial m-tuple n(z) is nonzero in zi thend(zi) 6= 0. Thus, for a solution of (2), d(zi) 6= 0, under the given restri
tions, is equivalentwith (n(zi); d(zi)) 6= 0. This 
an be expressed by saying that (n(z); d(z)) is not divisible byz � zi. Therefore we 
an reformulate the proper problem (1) as the linearized problem (2)with the extra 
ondition that (n(z); d(z)) is not divisible by z�zi; i = 1; 2; : : : ; p. This latter
ondition is simpler to work with in the proofs.Example 1 Suppose we are given the following interpolation dataz1 = 0; f1 = [1 0℄T ; z2 = 1; f2 = [2 1℄T ; z3 = 2; f3 = [2 1℄T :Of 
ourse, there are many solutions of the proper problem, for examplen1(z) = 1 + 32z � 12z2; n2(z) = 32z � 12z2; d(z) = 1 (3)3



is a solution, but alson1(z) = 1 + 72z � 12z2; n2(z) = 52z � 12z2; d(z) = 1 + z (4)and n1(z) = 1 + 72z � 12z2; n2(z) = 92z � 72z2 + z3; d(z) = 1 + z (5)are solutions. On the other handn1(z) = 2z; n2(z) = 12z2(3 � z); d(z) = z (6)satis�es the linearized 
onditions (2) but not the proper 
onditions (1). We note that indeed(n(z); d(z)) is divisible by z � z1 = z.As we have seen in this example, there are many possible solutions to a set of interpolationdata. The set of solutions is never empty sin
e we 
an always 
hoose d(z) = 1 and forn(z) the interpolating polynomials. Similar to the s
alar 
ase [19℄ and the ve
tor Pad�e 
ase[6℄, we want to sele
t the simplest possible solution in a well de�ned sense. We 
ould forexample minimize the maximal degree of the 
omponents of the polynomial (m+ 1)-
ouple(n(z); d(z)). Thus 
hoose the solution for whi
hmaxfdeg n1(z);deg n2(z); : : : ;deg nm(z);deg d(z)gis minimal (we de�ne deg 0 = �1). This will not 
ompletely order the solutions, sin
e inexample 1 (3) and (4) are di�erent solutions with the same maximal degree. In any 
ase,su
h a 
riterion will tend to distribute the degrees of freedom as uniformly as possible over allthe 
omponents of (n(z); d(z)), i.e. make the degrees of all these 
omponents nearly equal.For m = 1, the s
alar 
ase, this 
orresponds to solutions near the main diagonal of theNewton-Pad�e interpolation table. In order to get other entries of the interpolation table asminimal solutions, we 
an play with an integer shift parameter s and require maxfdeg n(z)�s;deg d(z)g to be minimal. Analogously, we de�ne for the ve
tor 
ase the shift parameterss = (s1; s2; : : : ; sm) 2Zm and minimize� = max(deg n1(z)� s1;deg n2(z)� s2; : : : ;deg nm(z)� sm;deg d(z)g:� is 
alled the s-degree of the (m + 1)-tuple (n(z); d(z)). When all si = 0; i = 1; 2; : : : ;m,then we are ba
k in the \main" diagonal 
ase we proposed �rst. For a �rst reading of thispaper, it might be simplest to think of the si as being zero. The shift parameters de�ne thestru
ture of the polynomial 
ouple (n(z); d(z)). More pre
isely, (n(z); d(z)) has s-degree � �i� deg nj(z) � � + sj; j = 1; : : : ;m and deg d(z) � �. Given the shift parameters s 2 Zm,we take the s-degree as the 
omplexity of the polynomial (m+1)-tuple (n(z); d(z)). We 
annow de�ne the following two ve
tor rational interpolation problems (V�RIPs).De�nition 1 (Linearized Ve
tor Rational Interpolation Problem (L�VRIP)) The in-terpolation points zi 2 K and data fi 2 Km ; i = 1; 2; : : : ; p and the shift parameters s 2 Zmare given. We look for a polynomial (m+1)-tuple (n(z); d(z)) of minimal s-degree, satisfyingthe linearized rational interpolation 
onditionsfid(zi) = n(zi); i = 1; 2; : : : ; p: (7)A solution of the L�VRIP 
ould be divisible by z�zi for a 
ertain i 2 f1; 2; : : : ; pg. Therefore,we 
onsider also the following problem. 4



De�nition 2 (Proper Ve
tor Rational Interpolation Problem (P�VRIP)) This is thelinearized rational interpolation problem with the additional 
ondition that (n(z); d(z)) is notdivisible by z � zi; i = 1; 2; : : : ; p.To illustrate the previous notions and 
on
epts, we introdu
e the following example.Example 1 (
ontinued) The interpolation data of example 1 are given. Suppose wewant to derive a ve
tor rational interpolant [n1(z) n2(z)℄T=d(z) with the following degree-stru
ture. We allow the degree of n2(z) to be one higher than the degrees of n1(z) and d(z).In other words, we look for a rational interpolant with deg n1(z) � �, deg n2(z) � �+1 anddeg d(z) � �. It is 
lear that without limiting the value of � we get an in�nity of solutions,not only for the L�VRIP but also for the P�VRIP where all these solutions have the pres
ribeddegree stru
ture. Therefore, from all these solutions, we are going to take those with � assmall as possible. Thus we look for those solutions with smallest s-degree with s = (0; 1).We give now the relation between our L�VRIP and the dire
tional ve
tor-valued inter-polants (DIRIs) of [11℄. For the DIRI problem, we also have to 
onsider N+1 interpolationpoints zi, i = 0; 1; : : : ; N with 
orresponding fun
tion values f(zi) = vi 2 Cm. Besides these,there are given kl independent dire
tions wk 2 Cm, k = 1; : : : ; kl and asso
iated multipli
i-tiesmk, su
h thatPklk=1mk = M � N . Along the dire
tion wk, the numerator degree shouldbe redu
ed to N �mk while the denominator degree 
an in
rease up to M . This means thefollowing. Let P (z) be the polynomial m-tuple, representing the numerator of the DIRIand let Q(z) be the 
orresponding denominator. Then P (z) � wk should have a degree atmost N �mk, where a � b denotes the usual Eu
lidean inner produ
t of the two m-ve
tors aand b. This 
ondition we 
an rewrite as follows. Let W 2 Cm�m be a matrix whose �rst kl
olumns are the dire
tional ve
tors wk and the remaining 
olumns are added to make W aregular square matrix. Thendegree [P1(z); : : : ; Pm(z)℄W � [N �m1; : : : ; N �mkl; N; : : : ;N ℄:The trailing m � kl bounds impose no extra 
onditions so that we 
an 
onsider them asredundant. We only need them as a tri
k to de�ne the invertible matrix W . Now theinterpolation 
onditions P (zi)=Q(zi) = vi 
an be rewritten as the equivalent 
onditions(
onsider P (z) and vi as row-ve
tors) P (zi)W=Q(zi) = viW , i = 0; 1; : : : ; N . Rename N + 1as p, P (z)W as n(z), Q(z) as d(z) and viW as fi+1 and you will re
ognize our L�VRIP withshift parameters sj = N�M�mj, M =Pkl1 mk. Thus it turns out that one of the solutionsthat our algorithm will produ
e with appropriate shift parameters, will be a DIRI.In [11℄, the link between the German polynomial problem and the 
onstru
tion of DIRIsis explained. Thus our method is also able to �nd solutions of the German polynomialproblem.3 The solution of the L�VRIPIn this and the subsequent se
tions we shall work 
onstantly with polynomial (m+1)-tuples.These will be split into an m-tuple of numerator polynomials and one s
alar denominatorpolynomial. If the (m+1)-tuple is denoted by e.g., v(z), then the 
orresponding numeratorm-tuple is denoted by nv(z) and the asso
iated denominator polynomial as dv(z). Thusv(z) = (nv(z); dv(z)). It will happen that we have a sequen
e of polynomial (m + 1)-tuples : vj(z). In order not to 
ompli
ate the notation, we shall indi
ate the numerator anddenominator also with that index : vj(z) = (nj(z); dj(z)) instead of (nvj (z); dvj(z)).We 
an write (7) as a set of linear homogeneous equations:Riv(z) = 0; i = 1; 2; : : : ; p (8)5



where Riv(z) is the ith residual of the polynomial (m+1)-tuple v(z) = (nv(z); dv(z)) de�nedas Riv(z) = fidv(zi) � nv(zi). We denote by Sp;� the set of all polynomial (m + 1)-tuples(n(z); d(z)) having s-degree � � and satisfying (7) or, what is the same, solving (8).Theorem 1 The set Sp;� forms a ve
tor spa
e over the �eld K.Proof. Take v(z); w(z) 2 Sp;�, i.e. Riv(z) = 0 and Riw(z) = 0; i = 1; 2; : : : ; p. Then, alsoav(z) + bw(z) 2 Sp;� with a; b 2 K be
ause Ri(av(z) + bw(z)) = aRiv(z) + bRiw(z) = 0. �An (m + 1)-tuple v(z) whi
h solves (8) is said to be a solution of level p. We shall makethis expli
it by writing vp(z) instead of v(z). Note that the (m + 1)-tuple vp(z) of levelp shall satisfy (8) and hen
e gives Rivp(z) = 0 for i = 1; 2; : : : ; p, but if there are moreinterpolation points zi; i = p + 1; p + 2; : : :, then the residuals need not be zero anymore.Thus, in general, Rivp(z) 6= 0 for i > p. We show next that a basis BSp;� for the ve
torspa
e Sp;�;�1 < � < +1, 
an be 
onstru
ted from (m + 1) polynomial (m + 1)-tuplesvjp(z) = (njp(z); djp(z)), j = 1; 2; : : : ;m + 1, of level p. The m + 1 polynomial (m + 1)-tuples of level p are numbered with a supers
ript j. Thus vjp(z) is the jth (m+ 1)-tuple oflevel p. Without loss of generality, we 
an assume that the vjp(z) are ordered with respe
tto in
reasing s-degree. The ordering of the vjp(z) having equal s-degree is arbitrary. Theordering is not essential but it simpli�es the notation. In our proof, the residuals Rivjp(z)for i > p will be important, be
ause if Rp+1vjp(z) = 0, then vjp(z) is not only a solution forlevel p but also for level p + 1. Therefore, we introdu
e the notion of residual spa
e Rji;p forall i > 0 and 1 � j � m+ 1 as Rji;p = span jk=1Rivkp(z):In other words, Rji;p is the ve
tor spa
e spanned by the ith residuals (those at zi) of the �rstj (the ones with smallest s-degree) (m+ 1)-tuples vkp(z) of level p. Of 
ourse, for i � p thisspa
e 
ontains just the zero ve
tor. However, it will turn out that for i > p, the residuals ofall the (m+1)-tuples vjp(z); j = 1; 2; : : : ;m+1 will span the whole spa
e Km , i.e.Rm+1i;p = Kmfor i > p.The basis BSp;� will in general have a dimension larger than m + 1. Thus the (m + 1)solutions vjp(z); j = 1; : : : ;m+ 1 will not be suÆ
ient to give the whole basis. We shall alsoneed shifted versions of them. Therefore, we introdu
e the following short hand notation.Given an integer number � and a polynomial (m + 1)-tuple x(z) having s-degree �x, wede�ne the set of polynomial (m+ 1)-tuples fx(z)g� as follows:fx(z)g� = ? ; if � < �xfx(z)g� = fx(z); zx(z); : : : ; z���xx(z)g ; if � � �x:In other words, the set fx(z)g� is empty if � < �x, and if � � �x it 
ontains the polynomial(m+ 1)-tuple x(z) and shifted versions of x(z) having s-degrees ranging from � to �x. Weshall prove the following theorem:Theorem 2 For ea
h p � 0, there exist (m + 1) polynomial (m + 1)-tuples vjp(z); j =1; 2; : : : ;m+ 1 (from level p) su
h that for ea
h �; j�j � 1, a basis BSp;� for Sp;�, is givenby BSp;� = [m+1j=1 fvjp(z)g�:The residual spa
e Rm+1i;p is equal to Km for i > p.6



Note that the basis BSp;� 
ontains all the polynomial (m + 1)-tuples vjp(z) of level p withs-degree at most �. If some vjp(z) has an s-degree less than �, we add also its shifted versionszkvjp(z) that have an s-degree not raising above �.Proof. We shall prove the theorem by indu
tion on p. First we prove that the theorem istrue for p = 0 if we 
hoose e.g., vj0(z) = ej, j = 1; 2; : : : ;m+1, with ej the (m+1)-tuple withall the 
omponents equal to zero ex
ept the jth one whi
h is equal to one. At level 0, there areno interpolation 
onditions. Therefore, the elements of S0;� are all polynomial (m+1)-tuplesof s-degree � �, i.e. they 
an be parametrized as (a10 + a11z + � � � + a1�+s1z�+s1 ; : : : ; am+10 +am+11 z + � � � + a�+sm+1z�+sm+1) with sm+1 = 0. The (m + 1)-tuple vj0(z) has s-degree �sj.Hen
e, vj0(z) 
an be shifted �� (�sj) = �+ sj times before its s-degree is be
oming greaterthan �. The residual spa
e Rm+1i;0 = spanm+1k=1 Rivk0(z) = span f�e01;�e02; : : : ;�e0m; fig = Kmfor i > 0 with e0i the ith identity ve
tor 2 Km . Note that the vj0 are not ne
essarily orderedby in
reasing s-degree, but knowing that vj0 has s-degree �sj, this ordering 
an be easilyobtained if this were desired.To prove the indu
tion step, we assume now that the theorem is true for a 
ertain valuefor p. Without loss of generality we 
an assume that the polynomial (m + 1)-tuples vjp(z)are ordered su
h that the s-degrees �jp of vjp(z) satisfy �jp � �j+1p for j = 1; 2; : : : ;m.The proof is 
onstru
tive be
ause an algorithm is given to 
ompute a possible 
hoi
e forthe set of all the polynomial (m+1)-tuples vjp+1(z) for level p+ 1, given all the vjp(z) of theprevious level. First of all we shall des
ribe how to 
ompute a nonzero polynomial (m+ 1)-tuple ap+1(z) 2 Sp+1;�, not divisible by z�zp+1 (whi
h always exists) having minimal s-degree�. This polynomial (m+1)-tuple ap+1(z) together with m other polynomial (m+1)-tuples,whi
h are then readily found, will give us vjp+1(z); j = 1; 2; : : : ;m + 1 (up to reordering).Be
ause ap+1(z) has to be in Sp+1;� � Sp;� (one interpolation 
ondition more), we 
an writeap+1(z) as a linear polynomial 
ombination of the polynomial (m+1)-tuples vjp(z). Be
auseSp;� = f(0; 0; : : : ; 0)g for � < �1p (v1p(z) has smallest possible s-degree at level p), the problemis trivial for � < �1p. Therefore, suppose � � �1p. By indu
tion hypothesis, we know thatRm+1p+1;p = Km . Consequently, m of the (m + 1) residuals Rp+1vjp(z); j = 1; 2; : : : ;m + 1, arelinearly independent. We show that ap+1(z) 
an not be a linear polynomial 
ombinationof only those vjp(z) having linearly independent residuals. Suppose ap+1(z) is su
h a linearpolynomial 
ombination: ap+1(z) =Xj2J pj(z)vjp(z)with J 6= ? and all the residuals Rp+1vjp; j 2 J linearly independent. Be
ause ap+1(z) hasto satisfy the (p + 1)th interpolation 
ondition, the residual Rp+1ap+1(z) has to be equal tothe zero m-ve
tor, i.e., Rp+1ap+1(z) =Xj2J pj(zp+1)Rp+1vjp(z) = 0:Be
ause the residuals in play are linearly independent, this means that pj(zp+1) = 0 for j 2 J .Hen
e, z�zp+1 divides ap+1(z). Therefore, to 
ompute a possible 
hoi
e for ap+1(z), we haveto 
onsider a linear polynomial 
ombination of vjp(z) where the 
orresponding residuals arelinearly dependent. To keep the s-degree � as small as possible, we 
ompute the smallestj for whi
h Rp+1vip(z); i = 1; 2; : : : ; j are linearly dependent, thus the smallest j su
h thatdimRjp+1;p < j. Then we know that the residual 
orresponding to vjp(z) 
an be written asRp+1vjp(z) = j�1Xk=1 
kRp+1vkp(z); or Rp+1(vjp(z)� j�1Xk=1 
kvkp(z)) = 0:7



Therefore, vjp�Pj�1k=1 
kvkp is a possible 
hoi
e for ap+1(z) if we 
an prove that ap+1(z) is thennot divisible by z� zp+1. If ap+1(z) would be divisible by z� zp+1, then a0(z) = ap+1(z)=(z�zp+1) 2 Sp;��1 sin
e indeed, the s-degree is de
reased by 1 and all the interpolation 
onditions,ex
ept possibly the one for zp+1 are still satis�ed. If a0(z) 2 Sp;��1, then it 
an be written ina unique way as a linear polynomial 
ombination of the vkp(z) having s-degree less than �.Hen
e, vjp(z) is not involved. Be
ause ap+1(z) = (z � zp+1)a0(z), ap+1(z) 
an be written as aunique linear polynomial 
ombination not involving vjp(z). However, this is in 
ontradi
tionto the fa
t that vjp(z) is a 
omponent of ap+1(z) sin
e there is only one way to write ap+1(z) 2Sp;� in terms of the basis ve
tors [m+1j=1 fvjp(z)g�.We shall prove now that ap+1(z) together with the m polynomial (m + 1)-tuples (z �zp+1)vkp(z); k 6= j are a possible 
hoi
e for vjp+1(z); j = 1; 2; : : : ;m+1 by proving that for ea
h� a basis for Sp+1;� is given by BSp+1;� = [k 6=jf(z� zp+1)vkp(z)g� [ fap+1(z)g�. Take a(z) 2Sp+1;�, then we �rst show that a(z) 
an be written in a unique way as a(z) = 
ap+1(z)+a0(z)with a0(z) divisible by z � zp+1 and 
 2 K 
onstant. If a(z) has s-degree smaller than thes-degree of ap+1(z), then a(z) is divisible by z � zp+1 sin
e by 
onstru
tion ap+1(z) is asolution of level p + 1, not divisible by z � zp+1 with the smallest possible s-degree. So,if a(z) 2 Sp+1;�, it 
an only have an s-degree smaller than the s-degree of ap+1(z) if it isdivisible by z � zp+1. Hen
e, in this 
ase 
 = 0. When the s-degree of a(z) is greaterthan or equal to the s-degree of ap+1(z), we 
an always 
hoose a unique 
 2 K su
h thata(z)� 
ap+1(z) = (na(z); da(z))� 
(np+1(z); dp+1(z)) is divisible by z � zp+1, i.e. su
h thatda(zp+1)� 
dp+1(zp+1) = 0 2 K (9)and na(zp+1)� 
np+1(zp+1) = 0 2 Km : (10)Be
ause ap+1(z) is not divisible by z � zp+1, either the s
alar dp+1(zp+1) 6= 0 or the m-ve
tor np+1(zp+1) 6= 0. Suppose dp+1(zp+1) 6= 0, the other 
ase is similar. We 
an determine
 as 
 = da(zp+1)=dp+1(zp+1). Be
ause Rp+1a(z) and Rp+1ap+1(z) are equal, Rp+1a(z) =Rp+1ap+1(z) = 0 and we obtain:fp+1(da(zp+1)� 
dp+1(zp+1)) = na(zp+1)� 
np+1(zp+1): (11)Assuming (9) is true, (10) follows easily from (11). Thus in all 
ases, 
 in the de
ompositiona(z) = 
ap+1(z) + a0(z) is uniquely de�ned. Hen
e, also a0(z) is uniquely de�ned. Now weprove that a0(z) 
an be written as a 
ombination of the remaining basis ve
tors [k 6=jf(z �zp+1)vkp(z)g�. Sin
e a0(z) = (z � zp+1)a00(z) with a00(z) 2 Sp;��1, we 
an use the indu
tionhypothesis to write a00(z) as a 
ombination of the basis [k 6=jfvkp(z)g��1, or equivalently, a0(z)
an be written as a 
ombination of [k 6=jf(z � zp+1)vkp(z)g�. Thus we have proved that[m+1j=1 fvjp+1(z)g� = [k 6=jf(z � zp+1)vkp(z)g� [ fap+1(z)g�forms a basis for Sp+1;�.It remains to be shown that Rm+1i;p+1 = Km ; i > p+ 1. By de�nition, we have thatRm+1i;p+1 = span k 6=jfRi(z � zp+1)vkp(z); Ri(vjp � j�1Xl=1 
lvlp)g= span k 6=jf(zi � zp+1)Rivkp(z); Rivjp � j�1Xl=1 
lRivlpg:8



Be
ause zi 6= zp+1 and Rm+1i;p = Km for i > p + 1, it is 
lear that Rm+1i;p+1 = Km ; i > p + 1 andthis proves the theorem 
ompletely. �The proof of the theorem 
ontains an algorithm to 
ompute the (m + 1) polynomial(m+ 1)-tuples vjp(z); j = 1; 2; : : : ;m+ 1 at ea
h level p knowing the vjp�1(z) of the previouslevel. The �rst one v1p(z), will have a minimal s-degree and it will be a solution for the L�VRIP.If �1p = �2p = � � � = �lp < �l+1p (with �m+1p = +1), it is 
lear that also v2p(z); v3p(z); : : : ; vlp(z)are solutions of the L�VRIP. These will allow us to give a parameterization of all solutions.We refer to theorem 4. To be able to give a 
ompa
t formulation of the algorithm, weintrodu
e the following notations:� We group the (m+1) polynomial (m+1)-tuples vjp(z) together in an (m+1)� (m+1)polynomial matrix as followsGp(z) = � v1p(z) v2p(z) � � � vm+1p (z) �= � n1p(z) n2p(z) � � � nm+1p (z)d1p(z) d2p(z) � � � dm+1p (z) � :� The elementary polynomial operations, whi
h we shall apply on (m + 1) � (m + 1)polynomial matri
es, are denoted as follows:{ Ei;j denotes the permutation matrix des
ribing a swit
hing of the 
olumns i andj,{ Ei(p(z)) denotes the polynomial matrix des
ribing the multipli
ation of 
olumn iby a polynomial p(z) 2 K[z℄,{ Ei;j(
) denotes the elementary matrix des
ribing the addition to 
olumn i of 
ol-umn j multiplied by the s
alar 
 2 K.� U denotes the (m+ 1) � (m+ 1) identity matrix.We 
an summarize the algorithm as in algorithm VRIP below.It is 
lear that we 
an write:Gp(z) = V0(z)V1(z) � � � Vp(z) withV0(z) = � x0(z) t0(z)y0(z) u0(z) �= P0and for i � 1 Vi(z) = � xi(z) ti(z)yi(z) ui(z) �= ji�1Yk=1 Eji;k(�
ik)Yk 6=ji Ek(z � zi); (12)where ji and 
ik are the j and 
k values needed in the algorithm to go from level i � 1 tolevel i. The partitioning of the Vi(z) matri
es into xi(z); yi(z); ti(z) and ui(z) is su
h thatyi(z) is a s
alar polynomial 
on
entrating our attention on v1i (z). These Vi(z) matri
es 
an9



Algorithm 1: VRIPfve
tor rational interpolationgf Initialization gG0 is initialized as G0(z) = UP0 = V0(z),where P0 is a sequen
e of elementary operationsof the form Ei;j, i.e. des
ribing a permutation matrix,ordering the vj0 with respe
t to in
reasing s-degree.for p = 0; 1; 2; : : :Look for the smallest j su
h that Rp+1vjp(z)
an be written as a linear 
ombination of the previous residuals:Rp+1vjp(z) =Pj�1k=1 
kRp+1vkp(z) .If we set V 0p+1(z) =Qj�1k=1 Ej;k(�
k)Qk 6=j Ek(z � zp+1),then we get Gp+1(z) by permutation of Gp(z)V 0p+1(z)Gp+1(z) = Gp(z)Vp+1(z) withVp+1(z) = V 0p+1(z)Pp+1where Pp+1 is a permutation matrix reordering the polynomialve
tors with respe
t to their s-degree.endforbe seen as generalized M�obius transformations leading to a generalized 
ontinued fra
tionforking not only downwards but also upwards, (see [6℄). This 
ontinued fra
tion has not onlys
alar but also ve
tor and matrix entities involved but all the divisions are by s
alars. Itfollows that n1p(z)=d1p(z), a solution of the L�VRIP, is the pth 
onvergent of the generalized
ontinued fra
tion: x0(z) + t0(z)x1(z) + t1(z) � � �� � �y1(z) + u1(z) � � �� � �y0(z) + u0(z)x1(z) + t1(z) � � �� � �y1(z) + u1(z) � � �� � � : (13)Note that we 
an also write a similar 
ontinued fra
tion whose pth 
onvergent is njp(z)=djp(z);j > 1 by partitioning the Vi(z) matri
es in another way. Remember that the polynomial(m + 1)-tuple ap+1(z) whi
h featured in the proof of the theorem is one of the vjp+1(z).More pre
isely, it is the solution of the L�VRIP with the additional 
ondition that thispolynomial tuple is not divisible by z � zp+1. The above 
ontinued fra
tion redu
es to anordinary 
ontinued fra
tion, at least formally, if all the ti(z) vanish. It still would have ve
torvalued 
onvergents. Sin
e the multipli
ations with the Vi(z) matri
es represent more generaltransformations, we get the more general form of the fra
tions. It is however possible to getordinary 
ontinued fra
tions as well. See e.g., [5, Theorem 2.9℄.The algorithm, des
ribed above, 
an be implemented in several ways. The linearized ra-tional interpolation 
onditions (7) 
an be written in terms of the 
lassi
al basis 1; z; z2; : : : ;involving 
lassi
al blo
k-Vandermonde matri
es. In this 
ase, the multipli
ation of a poly-nomial by z � zp+1, needed in the algorithm, is straightforward. Another possibility isto write the interpolation 
onditions (7) in terms of a basis of orthogonal polynomials�0(z); �1(z); �2(z); : : : ; involving generalized blo
k-Vandermonde matri
es. The multipli-10




ation by z � zp+1 of a polynomial written in terms of this basis of orthogonal polynomials
an be 
arried out using the re
urren
e relation for orthogonal polynomials: �k(z) = �k(z��k)�k�1(z)��k�k�2(z). More generally, we 
an use any basis as long as the shift operation,i.e., the multipli
ation by z of a polynomial written in terms of this basis, 
an be 
arried outin a simple and eÆ
ient way.If we 
onsider Gp(z) = [v1p(z) v2p(z) � � � vm+1p (z)℄ = V0(z)V1(z) � � �Vp(z) as an abstra
tlayered medium, with layers des
ribed by Vi(z), ea
h step of the algorithm, given above,
omputes the residuals Rp+1vjp(z), needed to 
ompute the next layer Vp+1(z), and 
onne
tsthis new layer to the layered medium by 
omputing Gp+1(z) = Gp(z)Vp+1(z). So, in theterminology of Bru
kstein and Kailath [4℄, we 
an 
all this a layer adjoining algorithm.However, it is not ne
essary to obtain the layered medium Gp(z) expli
itly. If we know theseparate layers Vi(z), we 
an represent the layered medium by the 
ontinued fra
tion (13).To 
ompute the layer Vp(z), we need to know the residuals Rpvjp�1(z). Suppose we know allthe residuals Rivjp�1(z) of level p�1, with i � p. It is easy to design an algorithm 
omputingthe next layer Vp(z) and transforming all the residuals of the previous step into the residualsof level p, using the formula�Riv1p(z) Riv2p(z) � � �Rivm+1p (z)� = �Riv1p�1(z) Riv2p�1(z) � � �Rivm+1p�1 (z)�Vp(zi):This algorithm is 
alled a layer peeling one [4℄, be
ause at ea
h step p we peel o� the layerVp(z). Compared to the layer adjoining algorithm, the layer peeling one has the drawba
kthat we have to know all the residuals Rivj0(z) , with i � 1 at the beginning of the algorithm.As an advantage, we mention that the layer peeling algorithm is easier to parallelize thanthe other one. From the previous explanation, it should be 
lear that also a mixture of alayer adjoining and layer peeling algorithm is possible. For more information, we refer to [4℄.4 The solution of the P�VRIPThe algorithmVRIP solved the L�VRIP, but from the m+1 polynomial (m+1)-tuples vjp(z),j = 1; : : : ;m+1, it 
onstru
ts, we 
an now easily �nd a solution of the proper interpolationproblem P�VRIP as des
ribed in the following theorem.Theorem 3 Let vjp(z); j = 1; 2; : : : ;m+ 1 be de�ned by theorem 2 and ordered with respe
tto in
reasing s-degree. Set as before Gp(z) = [v1p(z) � � � vm+1p (z)℄ the matrix 
ontaining these(m + 1)-tuples. If v1p(z) is not a solution of the P� VRIP, then Plk=1 
kvkp(z) is, where l isthe smallest value su
h that [v1p(z) � � � vlp(z)℄ (i.e. the �rst l 
olumns of Gp(z)) evaluated forz = zi; i = 1; 2; : : : ; p, have for ea
h value i rank 1. The l-tuple (
1; 
2; : : : ; 
l) is not allowedto be an element of a spe
i�
 (l� 1) dimensional subspa
e of K l for ea
h interpolation pointzi. The latter 
ondition should prevent the proposed solution to be divisible by z � zi.Proof. When v1p(z) is divisible by z � zi for a 
ertain i; 1 � i � p, then v1p(z) is a solutionof the L�VRIP but not of the P�VRIP. It is 
lear that Vi(z) as de�ned in (12) has fullrank m + 1 if z 6= zi and has rank 1 if z = zi. Indeed, z appears only in the fa
torQk 6=ji Ek(z � zi). Hen
e, Gp(z) = V0(z)V1(z) � � � Vp(z) has full rank m+ 1 if z 6= zi and hasrank 1 if z = zi. Therefore, to get a solution of smallest s-degree, we 
an take the linearpolynomial 
ombination Plk=1 
kvkp(z) as a 
andidate where l is 
hosen as indi
ated above.For a smaller value of l, there is at least one zi for whi
h the �rst l 
olumns of Gp(zi) wouldform a matrix of rank 0. Hen
e, we 
ould not �nd a linear polynomial 
ombination of thevkp(z), k = 1; 2; : : : ; l, not divisible by z � zi. However, with the value of l as 
hosen above,11



Plk=1 
kvkp(z) is not divisible by z � zi, i = 1; 2; : : : as long as the l-tuple (
1; 
2; : : : ; 
l) isn'ta solution of Glp(zi)[
1 : : : 
l℄T = 0 with Glp(z) the �st l 
olumns of Gp(z). We have 
hosen lsu
h that Glp(zi) has rank 1. Hen
e, the null spa
e has dimension (l� 1) and is the spe
i�
subspa
e of K l , we are referring to above. �5 A parameterization of all solutions of the L�VRIP andP�VRIPTo des
ribe all possible solutions of the linearized and proper interpolation problems, we 
anformulate the following theorems.Theorem 4 If the s-degree �1p of v1p(z) is smaller than the s-degree �2p of v2p(z), then thereis only one rational fun
tion n1p(z)=d1p(z) whi
h solves the L� VRIP. Otherwise a parameteri-zation of all solutions is given by:� n
p(z)d
p(z) � = � n1p n2p � � � nlpd1p d2p � � � dlp �26664 
1
2...
l 37775with 
 = (
1; 
2; : : : ; 
l) 6= (0; 0; : : : ; 0) 2 K l and l is su
h that �1p = �2p = � � � = �lp < �l+1p(�m+2p = +1). If 
 6= k
0 with k 2 K, then n
p(z)=d
p(z) and n
0p (z)=d
0p (z) are di�erent ve
torrational fun
tions.Proof. That the rational approximant 
onstru
ted is a solution of the L�VRIP is trivial. Weshall only prove the assertion of the last senten
e. For the parameter l-tuple 
 6= k
0, we set� n
p(z) n
0p (z)d
p(z) d
0p (z) � = � n1p(z) n2p(z) � � � nlp(z)d1p(z) d2p(z) � � � dlp(z) � 26664 
1 
01
2 
02... ...
l 
0l 37775 :Be
ause the right-hand side of the previous equation has rank 2 for z 6= zi; i = 1; 2; : : : ; p,we derive that the left-hand side has rank 2 for an in�nite number of values for z. Hen
e,the two ve
tor rational fun
tions n
p(z)=d
p(z) and n
0p (z)=d
0p (z) are di�erent. �Con
erning a parameterization of all solutions of the P�VRIP, we have the following.Theorem 5 If v1p(z) whi
h solves the L� VRIP is also a solution of the P� VRIP, the two 
asesof the previous theorem also apply here, with the only ex
eption that (
1; 
2; : : : ; 
l) is notallowed to be an element of a spe
i�
 (l � 1)-dimensional subspa
e of K l 
onne
ted to ea
hinterpolation point zi; i = 1; 2; : : : ; p (see theorem 3). If v1p(z) is not a solution of the P� VRIP,a parameterization of all solutions of the problem is given by:� n
p(z)d
p(z) � = � n1p n2p � � � nl0pd1p d2p � � � dl0p � 26664 
1(z)
2(z)...
l0(z) 3777512



with l0 related to the l of theorem 3 by �lp = �l+1p = � � � = �l0p < �l0+1p and deg 
j(z) � �lp ��jp; j = 1; 2; : : : ; l0. Moreover 
 = (
1(zi); 
2(zi); : : : ; 
l0(zi)) is not allowed to be an element ofa spe
i�
 (l0 � 1)-dimensional subspa
e of K l0 for ea
h interpolation point zi; i = 1; 2; : : : ; p.As before we 
an show that, ex
ept for a s
aling fa
tor, for di�erent polynomial l0-tuples(
1(z); 
2(z); : : : ; 
l0(z)), we get di�erent ve
tor rational fun
tions.The proof goes along the same lines as the previous one, making additional use of the resultof the previous se
tion. We leave the details to the reader.6 The 
on
uent 
aseWhen for 
ertain interpolation points zi, not only the fun
tion value fi is given but also thevalues of one or several 
onse
utive derivatives, we get the 
on
uent L�VRIP and P�VRIP.If we 
onsider the interpolation data for the \
on
uent" points in the natural ordering,i.e., fun
tion value, �rst derivative value, se
ond derivative value,. . . , then we 
an prove ina similar way that the same algorithm 
an be used to 
ompute the polynomial (m + 1)-tuples vjp(z) of the 
on
uent problem. The parameterization of all solutions of the L�VRIPand P�VRIP is also valid in this 
ase. The 
ompletely 
on
uent problem was dis
ussedas a minimal ve
tor Pad�e problem in [6℄, where we also developed a more general \ni
e"problem setting, allowing the original data to be known only partially leading to partiallydetermined residuals. It is 
lear that this generalization 
an also be made for the ve
torrational interpolation problem investigated here, leading to similar algorithms. As a spe
ial
ase, we indi
ated in [6℄ that taking the shift parameters equal to ea
h other leads to theve
tor Pad�e approximants de�ned by van Iseghem [21℄. The general 
on
uent problemwhere we 
onsider possible interpolation data around the interpolation point 1 and wherean interpolation point 
an be a pole of the rational fun
tion, requires a mu
h more 
arefulsetting of the problem. This shall be worked out for the ve
tor problem in a future publi
ationon a more formal basis, based on [20℄ handling the s
alar 
ase.7 Example 1 revisitedWe take the following interpolation data: z1 = 0; f1 = [1 0℄T ; z2 = 1; f2 = [2 1℄T ; z3 =2; f3 = [2 1℄T . We use the Chebyshev polynomials Tk(z) as a basis for the set of polynomials:T0(z) = 1; T1(z) = z and Tk+1(z) = 2zTk(z)�Tk�1(z) for k � 1. Hen
e, the multipli
ation ofTk(z) by z�zp+1 
an be written as (z�zp+1)T0(z) = T1(z)�zp+1T0(z) and (z�zp+1)Tk(z) =Tk+1(z)=2 � zp+1Tk(z) + Tk�1(z)=2 for k � 1. The algorithm of se
tion 3 for s = (s1; s2) =(0; 1) generates the following Vi(z)-matri
es:V0 = 24 0 1 01 0 00 0 1 35 ; V1 = 24 z 0 00 1 z0 1 0 35 ; V2 = 24 z � 1 0 10 z � 1 10 0 1 35 ; V3 = 24 0 z � 2 01 0 z � 21 0 0 35 :We deriveG3(z) = V0(z)V1(z)V2(z)V3(z)= � v13(z) v23(z) v33(z) �= 24 2T1(z) 0 12T2(z)� 3T1(z) + 52T0(z)T1(z) 14T3(z)� 32T2(z) + 114 T1(z)� 32T0(z) 0T1(z) 0 12T2(z)� 3T1(z) + 52T0(z) 35 :13



Therefore, the ve
tor rational fun
tion solving the L�VRIP is unique and equal ton13(z)=d13(z) = 24 2T1(z)T1(z)T1(z) 35 :This solution has minimal s-degree 1. However, it is not a solution of the P�VRIP, be
auseT1(z) = z is a 
ommon fa
tor of the numerator and denominator polynomials. Hen
e, 0is an \unattainable point". Theorem 5 gives all solutions of the P�VRIP having a minimals-degree 2, as va3(z) = � v13(z) v23(z) v33(z) �24 a1(z)a2a3 35with deg a1(z) � 1 and G3(zi)[a1(zi) a2 a3℄T 6= 0 (making va3(z) not divisible z � zi) ordeg a1(z) � 1, a1(1) 6= 0, a1(2) 6= 0 and a3 6= 0.8 Con
lusionIn this short paper we have des
ribed how the ideas of rational interpolation without re-ordering the interpolation points 
an be generalized to the 
ase where ve
tor data are given.The approximant is minimal with respe
t to the s-degree 
omplexity measure. An eÆ
ientalgorithm, allowing several possible implementations is given, yet it des
ribes pre
isely whatoperations have to be performed. The algorithm �nds a solution whi
h solves a linearizedinterpolation problem. However, it is shown how the results of the algorithm 
an be used togenerate not only all the possible solutions of this problem but also how all the solutions forthe proper rational interpolation problem 
an be 
onstru
ted.The treatment is kept as simple as reasonably possible to make the ideas 
lear withoutbeing troubled by ex
eptional 
ases and too mu
h notational burden. For this reason wesupposed in the main development that all the interpolation points are di�erent. However,as we mentioned in se
tion 6, the results for the 
on
uent 
ase are basi
ally the same. Inthe 
ase where all the interpolation points 
oin
ide, we re
over the minimal ve
tor Pad�eapproximants of [6℄. For the same reason of simpli
ity, we did not allow the interpolationpoints to be at in�nity or pres
ribed poles at the interpolation points. For the s
alar problem,all these generalizations and more elaborate proofs are given in [20℄. The ve
tor 
ase will besolved along the same lines in a future publi
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