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Abstract

We generalize our earlier results on rational interpolation which were given in [19]
for the scalar case and in [6] for the vector case when all the interpolation points
coincide, to the case of vector data given at arbitrary points that may coincide or not.
This is the vector valued Newton-Padé problem. We give a recursive algorithm which
has the important advantage over other algorithms that we don’t need a reordering of
the given interpolation data to overcome a singularity in the interpolation table, not
even in the non-normal vector case. It also generates all the information needed to
give all solutions of the problem.

Keywords: Rational interpolation, Newton-Padé, vector interpolants, simultaneous rational
approximation

1 Introduction

In an earlier paper [19], we showed that we could take away several drawbacks of the clas-
sical Newton-Padé rational interpolation problem by using a new approach to the rational
interpolation problem (RIP). We also gave a recursive algorithm which has the important
advantage over existing algorithms that we don’t need a reordering of the given interpolation
data. Our algorithm basically solves the linearized RIP and gives a solution that is in some
clearly defined sense as simple as possible, but as a side product, it also generates all the
information needed to give all solutions, not only for the linearized RIP but also for the
proper RIP. When all the interpolation points coincide, we can reformulate the scalar RIP
as a scalar minimal partial realization problem. We have generalized the case where all the
data are given at one point to vector data [6] and even matrix data [17]. In [18] we allowed
data to be given at two points (zero and infinity). In this paper, we generalize this solution
method to the case of vector interpolation data with possible non-coinciding interpolation
points.

The essential observations made in the above mentioned papers is that the RIP can be
linearized whereupon it reduces to the recursive solution of nested systems of homogeneous
linear equations. The matrices of these systems have a special structure. Thus we have to find
an element from their null space. Since these systems have one more column than they have
rows, their null space is at least one dimensional. In the case of Padé approximation, these



systems are (block) Toeplitz or (block) Hankel. These matrices appear in many different
seemingly unrelated mathematical topics and engineering applications, which might explain
their popularity during the last decades. You will find them for example in the theory
and applications of orthogonal polynomials, integral equations, digital filtering and signal
processing, time series analysis, stochastic processes, inverse scattering, BCH-decoding etc.,
to name just a few.

The basic algorithms to solve these problems are the Levinson/Schur/Szego algorithms
(for the Toeplitz case) and the Euclidean/Berlekamp-Massey/Kronecker algorithms (for the
Hankel case). A basic element in these algorithms, and also in our approach, is the description
of all elements in the null space of matrices with a special structure. This is done by
constructing a basis. The nesting of the matrices and their special structure make it possible
to find such a basis rather efficiently if you know the bases of the previous null spaces.
During the last decade much attention has been paid to a multitude of generalizations of
these algorithms to all sorts of “special” or “structured” matrices. People have considered
matrices close-to-Toeplitz or Hankel, Hilbert matrices and Vandermonde matrices [7] and
many others.

Recently, there is a revived interest in the rational interpolation case [15, 14, 16, 2, 3,
1, 19]. The matrices involved here are Lowner matrices or generalized Lowner matrices
depending on whether the interpolation points can coincide or not (see [2]). The basic thing
to be studied remains, just like in the classical problems, to describe a basis for the null
spaces of such matrices and to find an efficient way to generate them. In this paper, you will
find a solution to this problem.

Vector rational interpolants have been considered before. The papers by Peter Graves-
Morris are the most recent ones. [10, 11, 13]. We refer to his introduction (especially the
second one) to find out about the history of the problem and the relation to related problems
in the literature like the so called Latin and German polynomial problems. Our algorithm
will be able to recover the directional vector interpolants considered in [11] (see section 2).

In this paper we combine the new approach to rational interpolation of [19], and the
idea of minimal vector Padé approximation of [6] to the case where vector interpolation data
are given. All the results we obtained for the scalar problem are generalized to the vector
case. The basic results being the constructive way of defining the basis of the null space,
which results in an efficient recursive algorithm (section 3). A “minimal” solution of the
original interpolation problem (section 2) can then be readily given (section 4) as well as a
parameterization of all solutions, not only for the linearized problem, but also for the proper
interpolation problem (section 5).

The absence in our algorithm of a reordering strategy which is needed to overcome a
singular situation when the algorithm hits a “block” in the Newton-Padé table in most of
the existing scalar methods [8, 12, 9, 22, 23, 24, 25| is a basic advantage. For the vector
case, a normal situation was supposed from the start [10, 11, 13]. Our algorithm will also
work in singular situations for the vector case.

2 The vector rational interpolation problem (VRIP)

This paper is a continuation of [19] and [6]. Ample motivation for our approach and the
definitions and methods introduced can be found there. It might be an advantage to read
the simpler cases of scalar interpolants [19], or completely confluent points [6] first. The
present paper follows closely the outline of [19].

The field, finite or infinite, we are working with , is denoted by K. The set of polynomials



with coefficients of the field K, is denoted by K[z]. The set of polynomial m-vectors, i.e., the
set of all vectors whose m elements belong to K|[z], is denoted by K" [z]. Suppose we want
to interpolate the given data f; € K, in the interpolation points z; € K;2 = 1,2,...,p, by a
vector rational function n(z)/d(z) with n(z) € K™[z] and d(z) € K[z]. The division by d(z)
is taken componentwise, i.e.

ni(2)/d(z)
na(2)/d(2)

nm(2)/d(2)

Because we want to keep the exposition here as simple as possible, we don’t allow a com-
ponent of f; to have the value co. Hence, d(z;) # 0,41 = 1,2,...,p. For the same simplicity
reasons, we also do not allow an interpolation point at infinity (z; # oo,i = 1,2,...,p).
These restrictions are basically made to simplify the notation and to avoid a lot of excep-

n(z)/d(z) =

tional cases. However, the same method still works. The extensions for the scalar case are
covered in [20]. See also [15]. For the same reason of ease of exposition, we shall initially
suppose that all the interpolation points are different (z; # z;,7 # j). The confluent case is
postponed until section 6.

Every polynomial (m-+1)-tuple (n(z),d(z)) = (n1(2),n2(2), ..., nm(2),d(2)) which solves
the proper interpolation conditions

shall also satisfy the linearized conditions

However, the converse is only guaranteed if d(z;) # 0,7 = 1,2,...,p. Note that we don’t
consider

n(ap(z) p(z) € K] \ {0}

d(z)p(z)
as a solution satisfying the proper interpolation conditions as soon as p(z;) = 0 for some
interpolation point z;,1 = 1,2,...,p, even if n(z)/d(z) satisfies the proper interpolation
conditions with d(z;) # 0,1 = 1,2,...,p. Because by assumption none of the components

of f;is oo, d(z;) = 0 implies n(z;) = 0. In other words, n(z;) # 0 implies d(z;) # 0. This
means that if any of the components of the polynomial m-tuple n(z) is nonzero in z; then
d(z;) # 0. Thus, for a solution of (2), d(z;) # 0, under the given restrictions, is equivalent
with (n(z;),d(z;)) # 0. This can be expressed by saying that (n(z),d(z)) is not divisible by
z — z;. Therefore we can reformulate the proper problem (1) as the linearized problem (2)
with the extra condition that (n(z),d(z)) is not divisible by z—z;,¢ = 1,2,...,p. This latter
condition is simpler to work with in the proofs.

Example 1 Suppose we are given the following interpolation data
a=0, [=[0" =z=1 f=21" =z=2 /[f=21"

Of course, there are many solutions of the proper problem, for example

1 1
ni(z)=1+ gz — 522, ne(z) = §Z — =22 d(z)=1 (3)



is a solution, but also

ni(z) =1+ ZZ — 122, ne(z) = §Z — —22, diz)=1+=z2 (4)
2 2 2
and 71 9 7
ni(z) =1+ 52 — 522, ne(z) = 52 — 522 + 22, diz)=1+=z2 (5)

satisfies the linearized conditions (2) but not the proper conditions (1). We note that indeed
(n(z),d(z)) is divisible by z — z; = =z.

As we have seen in this example, there are many possible solutions to a set of interpolation
data. The set of solutions is never empty since we can always choose d(z) = 1 and for
n(z) the interpolating polynomials. Similar to the scalar case [19] and the vector Padé case
[6], we want to select the simplest possible solution in a well defined sense. We could for
example minimize the maximal degree of the components of the polynomial (m + 1)-couple

(n(z),d(z)). Thus choose the solution for which
max{degni(z),degny(z),...,degn,(z),degd(2)}

is minimal (we define deg0 = —o0). This will not completely order the solutions, since in
example 1 (3) and (4) are different solutions with the same maximal degree. In any case,
such a criterion will tend to distribute the degrees of freedom as uniformly as possible over all
the components of (n(z),d(z)), i.e. make the degrees of all these components nearly equal.
For m = 1, the scalar case, this corresponds to solutions near the main diagonal of the
Newton-Padé interpolation table. In order to get other entries of the interpolation table as
minimal solutions, we can play with an integer shift parameter s and require max{degn(z)—
s,degd(z)} to be minimal. Analogously, we define for the vector case the shift parameters
s =(81,82,...,8m) € Z™ and minimize

a = max(degng(z) — sy, degng(z) — S2,...,degny,(z) — s, deg d(z)}.

a is called the s-degree of the (m 4 1)-tuple (n(2),d(z)). When all s, = 0,7 = 1,2,...,m,
then we are back in the “main” diagonal case we proposed first. For a first reading of this
paper, it might be simplest to think of the s; as being zero. The shift parameters define the
structure of the polynomial couple (n(z),d(z)). More precisely, (n(z),d(z)) has s-degree < «
iff degn;(z) < a+s;,7=1,...,m and degd(z) < a. Given the shift parameters s € Z",
we take the s-degree as the complexity of the polynomial (m + 1)-tuple (n(z),d(z)). We can
now define the following two vector rational interpolation problems (VRIPs).

Definition 1 (Linearized Vector Rational Interpolation Problem (LVRIP)) The in-
terpolation points z; € K and data f; € K™ ,1 = 1,2,...,p and the shift parameters s € Z™
are given. We look for a polynomial (m+1)-tuple (n(2),d(2)) of minimal s-degree, satisfying
the linearized rational interpolation conditions

fid(zi) =n(z),0=1,2,...,p. (7)

A solution of the LVRIP could be divisible by z — z; for a certain ¢ € {1,2,...,p}. Therefore,
we consider also the following problem.



Definition 2 (Proper Vector Rational Interpolation Problem (PVRIP)) This is the
linearized rational interpolation problem with the additional condition that (n(z),d(z)) is not
divisible by z — z;,1 = 1,2,...,p.

To illustrate the previous notions and concepts, we introduce the following example.

Example 1 (continued) The interpolation data of example 1 are given. Suppose we
want to derive a vector rational interpolant [n;(z) ny(2)]*/d(z) with the following degree-
structure. We allow the degree of ny(z) to be one higher than the degrees of ny(z) and d(z).
In other words, we look for a rational interpolant with degnq(z) < «, degnz(z) < a+ 1 and
degd(z) < a. It is clear that without limiting the value of a we get an infinity of solutions,
not only for the LVRIP but also for the PVRIP where all these solutions have the prescribed
degree structure. Therefore, from all these solutions, we are going to take those with « as
small as possible. Thus we look for those solutions with smallest s-degree with s = (0, 1).

We give now the relation between our LVRIP and the directional vector-valued inter-
polants (DIRIs) of [11]. For the DIRI problem, we also have to consider N +1 interpolation
points z;, ¢ = 0,1,..., N with corresponding function values f(z;) = v; € C™. Besides these,
there are given k; independent directions wy, € C™, k = 1,...,k and associated multiplici-
ties my, such that 211?21 my = M < N. Along the direction wy, the numerator degree should
be reduced to N — m;, while the denominator degree can increase up to M. This means the
following. Let P(z) be the polynomial m-tuple, representing the numerator of the DIRI
and let Q(z) be the corresponding denominator. Then P(z) - wy should have a degree at
most N — my, where a - b denotes the usual Euclidean inner product of the two m-vectors a
and b. This condition we can rewrite as follows. Let W &€ C™*™ be a matrix whose first &
columns are the directional vectors wy and the remaining columns are added to make W a
regular square matrix. Then

degree [Pi(z),..., Pn(2)]W < [N —mq,...,N —my,, N,...,N].

The trailing m — k; bounds impose no extra conditions so that we can consider them as
redundant. We only need them as a trick to define the invertible matrix W. Now the
interpolation conditions P(z;)/Q(z;) = v; can be rewritten as the equivalent conditions
(consider P(z) and v; as row-vectors) P(z;)W/Q(z;) =v,W,i=0,1,...,N. Rename N + 1
as p, P(z)W as n(z), Q(z) as d(z) and v;W as f;;1 and you will recognize our LVRIP with
shift parameters s;, = N—M —m;, M = Efl my. Thus it turns out that one of the solutions
that our algorithm will produce with appropriate shift parameters, will be a DIRI.

In [11], the link between the German polynomial problem and the construction of DIRIs
is explained. Thus our method is also able to find solutions of the German polynomial
problem.

3 The solution of the LVRIP

In this and the subsequent sections we shall work constantly with polynomial (m+ 1)-tuples.
These will be split into an m-tuple of numerator polynomials and one scalar denominator
polynomial. If the (m + 1)-tuple is denoted by e.g., v(z), then the corresponding numerator
m-tuple is denoted by n,(z) and the associated denominator polynomial as d,(z). Thus
v(z) = (ny(2),dy(2)). It will happen that we have a sequence of polynomial (m + 1)-
tuples : v;(z). In order not to complicate the notation, we shall indicate the numerator and
denominator also with that index : v;(z) = (n;(2),d;(2)) instead of (n,,(2),d,,(2)).
We can write (7) as a set of linear homogeneous equations:

Rv(z)=0,i=1,2,....p (8)

5



where R;v(z) is the ith residual of the polynomial (m+1)-tuple v(z) = (n,(2),d,(2)) defined
as Rjv(z) = fid,(z) — ny(z). We denote by S, the set of all polynomial (m + 1)-tuples
(n(z),d(z)) having s-degree < o and satisfying (7) or, what is the same, solving (8).

Theorem 1 The set S, , forms a vector space over the field K.

Proof. Take v(z),w(z) € S,.a, i.e. Riv(z) =0 and Ryw(z) = 0,1 = 1,2,...,p. Then, also
av(z) + bw(z) € S, o with a,b € K because R;(av(z)+ bw(z)) = aRv(z) + bRw(z) =0. O

An (m + 1)-tuple v(z) which solves (8) is said to be a solution of level p. We shall make
this explicit by writing v,(z) instead of v(z). Note that the (m + 1)-tuple v,(z) of level
p shall satisfy (8) and hence gives Ryv,(z) = 0 for ¢ = 1,2,...,p, but if there are more
interpolation points z;,72 = p+ 1,p + 2,..., then the residuals need not be zero anymore.
Thus, in general, R;v,(z) # 0 for i > p. We show next that a basis BS,, for the vector
space S, —00 < a < 400, can be constructed from (m + 1) polynomial (m + 1)-tuples
vg(z) = (n%(z),d%(z)), J=12...,m+1, of level p. The m + 1 polynomial (m + 1)-
tuples of level p are numbered with a superscript j. Thus v](2) is the jth (m 4 1)-tuple of
level p. Without loss of generality, we can assume that the v/(2) are ordered with respect
to increasing s-degree. The ordering of the v/(z) having equal s-degree is arbitrary. The
ordering is not essential but it simplifies the notation. In our proof, the residuals R;v](2)
for 7+ > p will be important, because if R,y;v](2) = 0, then v/(2) is not only a solution for
level p but also for level p + 1. Therefore, we introduce the notion of residual space Rip for
alltz>0and 1 <j<m+1 as

Rip = span ileiv;f(z).

In other words, Rip is the vector space spanned by the ith residuals (those at z;) of the first
J (the ones with smallest s-degree) (m + 1)-tuples v;f(z) of level p. Of course, for ¢ < p this
space contains just the zero vector. However, it will turn out that for ¢ > p, the residuals of
all the (m+1)-tuples vzf;(z),j =1,2,...,m~+1 will span the whole space K", i.e. R?fp"'l = K"
for © > p.

The basis BS,, will in general have a dimension larger than m + 1. Thus the (m + 1)
solutions vzf;(z),j =1,...,m 4+ 1 will not be sufficient to give the whole basis. We shall also
need shifted versions of them. Therefore, we introduce the following short hand notation.
Given an integer number o and a polynomial (m 4+ 1)-tuple x(z) having s-degree a,, we
define the set of polynomial (m + 1)-tuples {x(2)}* as follows:

{z(z)}*=2 , fa<a,
{z(2)} =A{x(2),za(2),..., 2" %2 (z)} , ifa>a,.

In other words, the set {x(2)}* is empty if o < a,, and if @ > a, it contains the polynomial
(m + 1)-tuple x(z) and shifted versions of x(z) having s-degrees ranging from « to a,. We
shall prove the following theorem:

Theorem 2 For each p > 0, there exist (m + 1) polynomial (m + 1)-tuples vzf;(z),j =
L2,....m+1 (from level p) such that for each a,|a| < oo, a basis BS,, for S, ., is given
by

BS, . = Um“{v;(z)}a.

J=1

. m_l_l . m .
The residual space R is equal to K™ fori > p.



Note that the basis BS,, contains all the polynomial (m -+ 1)-tuples vg(z) of level p with
s-degree at most a. If some v(2) has an s-degree less than o, we add also its shifted versions
zFvJ(z) that have an s-degree not raising above a.

Proof. We shall prove the theorem by induction on p. First we prove that the theorem is
true for p = 0 if we choose e.g., v}(2) = ¢, 7 = 1,2,...,m+1, with ¢; the (m+1)-tuple with
all the components equal to zero except the jth one which is equal to one. At level 0, there are
no interpolation conditions. Therefore, the elements of Sy , are all polynomial (m+ 1)-tuples
of s-degree < a, i.e. they can be parametrized as (af + ajz + -+ + a;_l_Slza"'sl, o altt g
a2 4 ot sy, 2°TH) with s, = 0. The (m + 1)-tuple v)(2) has s-degree —s;.
Hence, v)(z) can be shifted o — (—s;) = a + s, times before its s-degree is becoming greater
than . The residual space R?fo"'l = span ' Rivb(2) = span {—¢), —¢€), ..., —¢  fi} = K"
for + > 0 with € the ith identity vector € K”. Note that the vé are not necessarily ordered
by increasing s-degree, but knowing that vé has s-degree —s;, this ordering can be easily
obtained if this were desired.

To prove the induction step, we assume now that the theorem is true for a certain value
for p. Without loss of generality we can assume that the polynomial (m 4 1)-tuples vg(z)
are ordered such that the s-degrees ozg; of vz(z) satisfy ozg; < ozé"’l fory=1,2,....m.

The proof is constructive because an algorithm is given to compute a possible choice for
the set of all the polynomial (m + 1)-tuples v}, ,(2) for level p + 1, given all the vg(z) of the
previous level. First of all we shall describe how to compute a nonzero polynomial (m + 1)-
tuple a,41(2) € Sp41,a, not divisible by z—z,,; (which always exists) having minimal s-degree
a. This polynomial (m + 1)-tuple a,41(2) together with m other polynomial (m + 1)-tuples,
which are then readily found, will give us v;_l_l(z),j =1,2,...,m+ 1 (up to reordering).
Because a,41(2) has to be in Sp41.4 C S, (one interpolation condition more), we can write
a,+1(z) as a linear polynomial combination of the polynomial (m + 1)-tuples vi(z). Because
Spa =1(0,0,...,0)} for a < a, (v)(z) has smallest possible s-degree at level p), the problem
is trivial for a < ozzlj. Therefore, suppose o > ozzlj. By induction hypothesis, we know that
R;”_I_‘"l%p = K. Consequently, m of the (m + 1) residuals RPHUZZ(Z),]' =1,2,...,m+ 1, are
linearly independent. We show that a,;1(z) can not be a linear polynomial combination
of only those vz(z) having linearly independent residuals. Suppose a,41(z) is such a linear
polynomial combination:

i (z) = Y pi(2)vh(2)
jed
with J # @ and all the residuals Rp+1v§,j € J linearly independent. Because a,41(2) has
to satisfy the (p + 1)th interpolation condition, the residual R,;1a,41(2) has to be equal to

the zero m-vector, i.e.,

Ryppiapia(2) = Y pilzp0n) Roav(2) = 0.
jed
Because the residuals in play are linearly independent, this means that p;(z,11) = 0 for j € J.
Hence, z — z,11 divides a,41(2). Therefore, to compute a possible choice for a,11(z), we have
to consider a linear polynomial combination of vg(z) where the corresponding residuals are
linearly dependent. To keep the s-degree « as small as possible, we compute the smallest
j for which Rp_HU;(Z),i =1,2,...,7 are linearly dependent, thus the smallest j such that

dim R;-I—l,p < j. Then we know that the residual corresponding to vg(z) can be written as

Jj—1 j—1
Rood(5) = 3 euRpentl(2). o Bpa(v(5) — 3 exeh(z)) = 0.
k=1 k=1



. 1 . . . . .
Therefore, v — 371~} ¢xvk is a possible choice for a,4.1(z) if we can prove that a,41(2) is then

not divisible by z — z,41. If ap11(2) would be divisible by z — z,41, then a/(2) = a,41(2)/(z —
Zpt1) € Spa-1 since indeed, the s-degree is decreased by 1 and all the interpolation conditions,
except possibly the one for z,,1 are still satisfied. If a/(z) € S, ,—1, then it can be written in
a unique way as a linear polynomial combination of the v;f(z) having s-degree less than «.
Hence, v/(z) is not involved. Because a,41(2) = (2 — zp41)a’(2), @py1(2) can be written as a
unique linear polynomial combination not involving v/(z). However, this is in contradiction
to the fact that v/(2) is a component of a,,1(2) since there is only one way to write a,41(2) €
Sp. in terms of the basis vectors U4 {v/ ()},

We shall prove now that a,4i(z) together with the m polynomial (m + 1)-tuples (» —
Zp+1)v;f(z), k # j are a possible choice for v}, (2),5 = 1,2,...,m+1 by proving that for each
« a basis for S,q1, Is given by BS,11,0 = Upz{(z — Zp+1)v;f(z)}a U{ap41(z)}*. Take a(z) €
Sp+1.a, then we first show that a(z) can be written in a unique way as a(z) = cap1(2)+d'(2)
with «'(z) divisible by z — z,41 and ¢ € K constant. If a(z) has s-degree smaller than the
s-degree of a,41(2), then a(z) is divisible by z — z,4; since by construction a,41(z) is a
solution of level p 4+ 1, not divisible by z — z,4; with the smallest possible s-degree. So,
if a(z) € Spt1.4, it can only have an s-degree smaller than the s-degree of a,41(z) if it is
divisible by z — z,41. Hence, in this case ¢ = 0. When the s-degree of a(z) is greater
than or equal to the s-degree of a,41(z), we can always choose a unique ¢ € K such that
a(z) — cap1(z) = (na(2),do(2)) — c(nps1(2), dpp1(2)) is divisible by z — z,11, i.e. such that

da(zpt1) = edpy1(zp1) =0 € K (9)

and
a(Zp41) = cnpy1(zp41) = 0 € K™ (10)

Because a,41(z) is not divisible by z — z,41, either the scalar dpi1(zp41) # 0 or the m-
vector ny41(zp41) # 0. Suppose dpi1(2p41) # 0, the other case is similar. We can determine
cas ¢ = do(zp41)/dpr1(2p41). Because R,i1a(z) and R,y1a,41(2) are equal, Ryiia(z) =
R,11a,41(2) = 0 and we obtain:

Sor1(da(zps1) = edpia(Zp41)) = nal(zp41) = nppa(zp4)- (11)

Assuming (9) is true, (10) follows easily from (11). Thus in all cases, ¢ in the decomposition
a(z) = cap1(2) + da'(z) is uniquely defined. Hence, also a/(z) is uniquely defined. Now we
prove that a'(z) can be written as a combination of the remaining basis vectors Uy;{(z —
Zp+1)v;f(z)}a. Since a'(z) = (2 — zp41)a"(z) with a”(z) € S, a-1, We can use the induction
hypothesis to write a”(z) as a combination of the basis Uk#{v;f(z)}a_l, or equivalently, a'(2)
can be written as a combination of Upz;{(z — zp41)vE(2)}?. Thus we have proved that

Ui v (2} = Ui {2 = 2pe0) 0 ()} U {apea(2)}°

forms a basis for 5,41 4.
It remains to be shown that pr"_'l_ll =K",7 > p+ 1. By definition, we have that

-1
pr"_'l_ll = span k#{RZ»(Z — Zp+1)v;f(z), Ri(v]]) — Z clv;)}

=1

-1

= span ;4 {(z — Zp+1)RZ'U£(Z), Rivz — Z clRiv;}.

=1



Because z; # 2,41 and R?fp"'l = K" for 1 > p+ 1, it is clear that pr‘:}l =K",i>p+1and

this proves the theorem completely. O

The proof of the theorem contains an algorithm to compute the (m + 1) polynomial
(m 4+ 1)-tuples vzf;(z),j =1,2,...,m+ 1 at each level p knowing the v;_l(z) of the previous
level. The first one v;(z), will have a minimal s-degree and it will be a solution for the LVRIP.
Ifo,=0a’=---= ozé < ozé"’l (with of"*! = +00), it is clear that also v2(z),v}(2), .. .,v]l?(z)
are solutions of the LVRIP. These will allow us to give a parameterization of all solutions.
We refer to theorem 4. To be able to give a compact formulation of the algorithm, we

introduce the following notations:

e We group the (m+1) polynomial (m+1)-tuples vg(z) together in an (m+1) x (m—+1)
polynomial matrix as follows

Go(z) = [v(2) vp(z) -+ v*(z) ]
_ [ =) m(z) ny (2)
dy(2) d3(2) dyti(z)

e The elementary polynomial operations, which we shall apply on (m + 1) x (m + 1)
polynomial matrices, are denoted as follows:

— FE; ; denotes the permutation matrix describing a switching of the columns ¢ and
Js

— FEi(p(z)) denotes the polynomial matrix describing the multiplication of column ¢
by a polynomial p(z) € K[z],

— F; j(c) denotes the elementary matrix describing the addition to column ¢ of col-
umn j multiplied by the scalar ¢ € K.

e U/ denotes the (m + 1) x (m + 1) identity matrix.

We can summarize the algorithm as in algorithm VRIP below.
It is clear that we can write:

Gp(2) = Vo(2)Vi(2) - - - Vp(z) with

Vole) = {:1;0(2) to(z)]

and forz > 1

=
N
I
S’
Il
—
&
> ;
I
S’
£
N
I
S’
1

Ji—1
= H Ej p(—ck) H Ey(z — z), (12)
k=1 k#3i

where j; and ¢, are the j and ¢, values needed in the algorithm to go from level 7 — 1 to
level i. The partitioning of the V;(z) matrices into x;(2), y;(2),%:(2) and w;(2) is such that
yi(2) is a scalar polynomial concentrating our attention on v}(z). These V;(z) matrices can
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Algorithm 1: VRIP{vector rational interpolation}

{ Initialization }
Gy is initialized as Go(z) = UFPy = Vo(2),
where Fy is a sequence of elementary operations
of the form F; ;, i.e. describing a permutation matrix,
ordering the vé with respect to increasing s-degree.
for p=0,1,2,...
Look for the smallest j such that R, v](z)
can be written as a linear combination of the previous residuals:
RP+1U£(Z) = Z?g;i ckRp-I—IU;(Z) .
If we set Vp/-|-1(2) = £;11 Ej,k(_ck) Hk;éj Ek(Z - Zp-l'l)v
then we get Gpyi(2) by permutation of G (2)V),(2)
G (2) = G2 Vypoa (2) with
Vo1 (2) = V1 (2) B
where P, is a permutation matrix reordering the polynomial
vectors with respect to their s-degree.
endfor

be seen as generalized Mobius transformations leading to a generalized continued fraction
forking not only downwards but also upwards, (see [6]). This continued fraction has not only
scalar but also vector and matrix entities involved but all the divisions are by scalars. It
follows that n(z)/d}(z), a solution of the LVRIP, is the pth convergent of the generalized
continued fraction:

r1(z)+ 4

xo(z) + to(2)

(2)
yi(z) + ul(Z)% (13)
(2)

r1(z) + 4

o(#) + uo(z)
’ n(2) + ()=

Note that we can also write a similar continued fraction whose pth convergent is n%(z)/d%(z),
J > 1 by partitioning the V(z) matrices in another way. Remember that the polynomial
(m + 1)-tuple a,41(2) which featured in the proof of the theorem is one of the v), (2).
More precisely, it is the solution of the LVRIP with the additional condition that this
polynomial tuple is not divisible by z — 2z,41. The above continued fraction reduces to an
ordinary continued fraction, at least formally, if all the ¢;(z) vanish. It still would have vector
valued convergents. Since the multiplications with the V;(z) matrices represent more general
transformations, we get the more general form of the fractions. It is however possible to get
ordinary continued fractions as well. See e.g., [5, Theorem 2.9].

The algorithm, described above, can be implemented in several ways. The linearized ra-
tional interpolation conditions (7) can be written in terms of the classical basis 1, z, 2%, ...,
involving classical block-Vandermonde matrices. In this case, the multiplication of a poly-
nomial by 2z — 2,41, needed in the algorithm, is straightforward. Another possibility is
to write the interpolation conditions (7) in terms of a basis of orthogonal polynomials
do(2), P1(2), P2(2), ..., involving generalized block-Vandermonde matrices. The multipli-
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cation by z — 2,41 of a polynomial written in terms of this basis of orthogonal polynomials
can be carried out using the recurrence relation for orthogonal polynomials: ¢x(z) = Ag(z—
k) bk—1(2) — Pror—2(z). More generally, we can use any basis as long as the shift operation,
i.e., the multiplication by z of a polynomial written in terms of this basis, can be carried out
in a simple and efficient way.

If we consider Gp(z) = [v)(2) vi(z) - vt (2)] = Vo(2)Vi(z) - V,(2) as an abstract
layered medium, with layers described by Vi(z), each step of the algorithm, given above,
computes the residuals RPHUZZ(Z), needed to compute the next layer V,11(z), and connects
this new layer to the layered medium by computing G,1(z) = G,(2)V,41(2). So, in the
terminology of Bruckstein and Kailath [4], we can call this a layer adjoining algorithm.
However, it is not necessary to obtain the layered medium G, (z) explicitly. If we know the
separate layers V;(z), we can represent the layered medium by the continued fraction (13).
To compute the layer V,(z), we need to know the residuals va;_l(z). Suppose we know all
the residuals Rivz_l(z) of level p—1, with ¢ > p. It is easy to design an algorithm computing
the next layer V,(z) and transforming all the residuals of the previous step into the residuals
of level p, using the formula
[Rw;(z) RZ'U;(Z) e Riv;”"'l(z)] = [Riv;_l(z) Rivz_l(z) e Riv;”_"il(z)] Vi(z).

This algorithm is called a layer peeling one [4], because at each step p we peel off the layer
V,(z). Compared to the layer adjoining algorithm, the layer peeling one has the drawback
that we have to know all the residuals Rivé(z) , with ¢ > 1 at the beginning of the algorithm.
As an advantage, we mention that the layer peeling algorithm is easier to parallelize than
the other one. From the previous explanation, it should be clear that also a mixture of a
layer adjoining and layer peeling algorithm is possible. For more information, we refer to [4].

4 The solution of the PVRIP

The algorithm VRIP solved the LVRIP, but from the m+1 polynomial (m+1)-tuples vi(z),
7 =1,...,m+1, it constructs, we can now easily find a solution of the proper interpolation
problem PVRIP as described in the following theorem.

Theorem 3 Let vzf;(z),j =1,2,...,m+ 1 be defined by theorem 2 and ordered with respect

to increasing s-degree. Set as before Gp(z) = [v)(2) - v (2)] the matriz containing these

(m + 1)-tuples. If v (2) is not a solution of the PVRIP, then 22:1 ckv;f(z) is, where [ is
the smallest value such that [v)(z)- v]l)(z)] (i.e. the first | columns of G,(2)) evaluated for
z=2z,1=1,2,...,p, have for each value i rank 1. The l-tuple (¢1,ca,...,c) is not allowed
to be an element of a specific (I — 1) dimensional subspace of K' for each interpolation point
z;. The latter condition should prevent the proposed solution to be divisible by z — z;.

Proof. When v)(z) is divisible by 2 — 2; for a certain i,1 < ¢ < p, then v)(z) is a solution
of the LVRIP but not of the PVRIP. It is clear that V;(z) as defined in (12) has full
rank m + 1 if z # 2z and has rank 1 if z = z,. Indeed, z appears only in the factor
Hk#i Er(z — z). Hence, G,(2) = Vo(2)Vi(z) - - V,(2) has full rank m + 1 if z # z; and has
rank 1 if z = z;. Therefore, to get a solution of smallest s-degree, we can take the linear
polynomial combination 22:1 ckv;f(z) as a candidate where [ is chosen as indicated above.
For a smaller value of [, there is at least one z; for which the first [ columns of G,(z;) would
form a matrix of rank 0. Hence, we could not find a linear polynomial combination of the
v;f(z), k=1,2,...,0, not divisible by z — z;. However, with the value of [ as chosen above,
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22:1 ckv;f(z) is not divisible by z — z;, © = 1,2, ... as long as the [-tuple (¢1, ¢2,...,¢) isn’t
a solution of Gé(zi)[cl ... ¢)F = 0 with Gé(z) the fist [ columns of G,(z). We have chosen [
such that Gé(zi) has rank 1. Hence, the null space has dimension (I — 1) and is the specific
subspace of K', we are referring to above. O

5 A parameterization of all solutions of the LVRIP and
PVRIP

To describe all possible solutions of the linearized and proper interpolation problems, we can
formulate the following theorems.

Theorem 4 If the s-degree a) of v)(2) is smaller than the s-degree o’ of v2(z), then there
is only one rational function n)(z)/d}(z) which solves the LVRIP. Otherwise a parameleri-
zation of all solutions is given by:

]
[ ne(z) ] B [ n, n’ né €2
c - { .
ds(2) dy d d, :
¢
with ¢ = (c1,¢0,...,¢) # (0,0,...,0) € K and [ is such that ap =0 == ozé < ozé"'l

(ar*? = yoo). If ¢ # ke with k € K, then n%(2)/d5() and n;/(z)/d;/(z) are different vector

rational functions.

Proof. That the rational approximant constructed is a solution of the LVRIP is trivial. We
shall only prove the assertion of the last sentence. For the parameter [-tuple ¢ # k¢, we set

EER IR e o) |

Because the right-hand side of the previous equation has rank 2 for z # z;,,1 = 1,2,...,p,
we derive that the left-hand side has rank 2 for an infinite number of values for z. Hence,
the two vector rational functions ng(2)/d5(2) and n;/(z)/d;/(z) are different. O

Concerning a parameterization of all solutions of the PVRIP, we have the following.

Theorem 5 [f v;(z) which solves the LVRIP is also a solution of the PVRIP, the two cases
of the previous theorem also apply here, with the only exception that (ci,ca,...,¢) is not
allowed to be an element of a specific (I — 1)-dimensional subspace of K connected to each
interpolation point z;,1 = 1,2,...,p (see theorem 3). If v)(z) is not a solution of the PVRIP,
a parameterization of all solutions of the problem is given by:

ci1()

[n;(z) ] B [ ]17 nZ n;/ ca(2)
d;(z) dzlj d; dé :

CV(Z)

12



with I' related to the | of theorem 3 by ozé = ozé"’l == ozg < ozg"'l and deg¢;(z) < ozé —
al,j=1,2,...,1'. Moreover c = (ci1(2),ca(2), ..., cr(z:)) is not allowed to be an element of
a specific (I' — 1)-dimensional subspace of K" for each interpolation point z,i =1,2,...,p.
As before we can show that, except for a scaling factor, for different polynomial I'-tuples
(c1(2),ca(2), ..., cu(z)), we get different vector rational functions.

The proof goes along the same lines as the previous one, making additional use of the result
of the previous section. We leave the details to the reader.

6 The confluent case

When for certain interpolation points z;, not only the function value f; is given but also the
values of one or several consecutive derivatives, we get the confluent LVRIP and PVRIP.
If we consider the interpolation data for the “confluent” points in the natural ordering,
i.e., function value, first derivative value, second derivative value,..., then we can prove in
a similar way that the same algorithm can be used to compute the polynomial (m + 1)-
tuples vz(z) of the confluent problem. The parameterization of all solutions of the LVRIP
and PVRIP is also valid in this case. The completely confluent problem was discussed
as a minimal vector Padé problem in [6], where we also developed a more general “nice”
problem setting, allowing the original data to be known only partially leading to partially
determined residuals. It is clear that this generalization can also be made for the vector
rational interpolation problem investigated here, leading to similar algorithms. As a special
case, we indicated in [6] that taking the shift parameters equal to each other leads to the
vector Padé approximants defined by van Iseghem [21]. The general confluent problem
where we consider possible interpolation data around the interpolation point oo and where
an interpolation point can be a pole of the rational function, requires a much more careful
setting of the problem. This shall be worked out for the vector problem in a future publication
on a more formal basis, based on [20] handling the scalar case.

7 Example 1 revisited

We take the following interpolation data: 2, = 0,f; = [1 0], 20 = 1,f, = [2 1]T, 23 =
2, f3 = [2 1]T. We use the Chebyshev polynomials T} (z) as a basis for the set of polynomials:
To(z) = 1,T1(2) = z and Ty41(2) = 22T (2) — Ti—1(z) for k > 1. Hence, the multiplication of

o(2)
Ti(2) by z—zp41 can be written as (z —z,11)To(2) = Th(2) — zp41T0(2) and (z — zp41)Ti(2) =
Tis1(2)/2 — zp41Tk(2) + Th—1(2)/2 for k > 1. The algorithm of section 3 for s = (s1,82) =
(0,1) generates the following V;(z)-matrices:
01 0 z 00 z—1 0 1 0 z—2 0
Vo=l 100 Vi=|lo 1 = Va=| 0 =2=11|.v5=]1 0 =2-2
0 0 1 010 0 0 1 1 0 0
We derive
Gs(z) = Vo(2)Vi(2)Va(z)Va(2)
= ) wd) ee) ]
= Tl(Z) iTg(Z) — %TQ(Z) + %Tl(Z) — %To(Z) . 0 .
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Therefore, the vector rational function solving the LVRIP is unique and equal to

2T1(Z)
ng(2)/ds(z) = | Ti(2)
Ti(z)
This solution has minimal s-degree 1. However, it is not a solution of the PVRIP, because
Ti(z) = z is a common factor of the numerator and denominator polynomials. Hence, 0
is an “unattainable point”. Theorem 5 gives all solutions of the PVRIP having a minimal
s-degree 2, as

ai(z)

vi(e) = [vh(z) od(=) oie) ]|

a3

with dega(2) < 1 and Ga(z)[ai(2z) ag as]” # 0 (making v4(z) not divisible 2 — 2;) or
degai(z) <1, a1(l) # 0, a1(2) # 0 and a3 # 0.

8 Conclusion

In this short paper we have described how the ideas of rational interpolation without re-
ordering the interpolation points can be generalized to the case where vector data are given.
The approximant is minimal with respect to the s-degree complexity measure. An efficient
algorithm, allowing several possible implementations is given, yet it describes precisely what
operations have to be performed. The algorithm finds a solution which solves a linearized
interpolation problem. However, it is shown how the results of the algorithm can be used to
generate not only all the possible solutions of this problem but also how all the solutions for
the proper rational interpolation problem can be constructed.

The treatment is kept as simple as reasonably possible to make the ideas clear without
being troubled by exceptional cases and too much notational burden. For this reason we
supposed in the main development that all the interpolation points are different. However,
as we mentioned in section 6, the results for the confluent case are basically the same. In
the case where all the interpolation points coincide, we recover the minimal vector Padé
approximants of [6]. For the same reason of simplicity, we did not allow the interpolation
points to be at infinity or prescribed poles at the interpolation points. For the scalar problem,
all these generalizations and more elaborate proofs are given in [20]. The vector case will be
solved along the same lines in a future publication.
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