
A new approah to the rational interpolation problem :the vetor aseMar Van Barel and Adhemar BultheelDepartment of omputer sieneK.U. LeuvenJanuary 2, 2000AbstratWe generalize our earlier results on rational interpolation whih were given in [19℄for the salar ase and in [6℄ for the vetor ase when all the interpolation pointsoinide, to the ase of vetor data given at arbitrary points that may oinide or not.This is the vetor valued Newton-Pad�e problem. We give a reursive algorithm whihhas the important advantage over other algorithms that we don't need a reordering ofthe given interpolation data to overome a singularity in the interpolation table, noteven in the non-normal vetor ase. It also generates all the information needed togive all solutions of the problem.Keywords: Rational interpolation, Newton-Pad�e, vetor interpolants, simultaneous rationalapproximation1 IntrodutionIn an earlier paper [19℄, we showed that we ould take away several drawbaks of the las-sial Newton-Pad�e rational interpolation problem by using a new approah to the rationalinterpolation problem (R�IP). We also gave a reursive algorithm whih has the importantadvantage over existing algorithms that we don't need a reordering of the given interpolationdata. Our algorithm basially solves the linearized R�IP and gives a solution that is in somelearly de�ned sense as simple as possible, but as a side produt, it also generates all theinformation needed to give all solutions, not only for the linearized R�IP but also for theproper R�IP. When all the interpolation points oinide, we an reformulate the salar R�IPas a salar minimal partial realization problem. We have generalized the ase where all thedata are given at one point to vetor data [6℄ and even matrix data [17℄. In [18℄ we alloweddata to be given at two points (zero and in�nity). In this paper, we generalize this solutionmethod to the ase of vetor interpolation data with possible non-oiniding interpolationpoints.The essential observations made in the above mentioned papers is that the R�IP an belinearized whereupon it redues to the reursive solution of nested systems of homogeneouslinear equations. The matries of these systems have a speial struture. Thus we have to �ndan element from their null spae. Sine these systems have one more olumn than they haverows, their null spae is at least one dimensional. In the ase of Pad�e approximation, these1



systems are (blok) Toeplitz or (blok) Hankel. These matries appear in many di�erentseemingly unrelated mathematial topis and engineering appliations, whih might explaintheir popularity during the last deades. You will �nd them for example in the theoryand appliations of orthogonal polynomials, integral equations, digital �ltering and signalproessing, time series analysis, stohasti proesses, inverse sattering, BCH-deoding et.,to name just a few.The basi algorithms to solve these problems are the Levinson/Shur/Szeg}o algorithms(for the Toeplitz ase) and the Eulidean/Berlekamp-Massey/Kroneker algorithms (for theHankel ase). A basi element in these algorithms, and also in our approah, is the desriptionof all elements in the null spae of matries with a speial struture. This is done byonstruting a basis. The nesting of the matries and their speial struture make it possibleto �nd suh a basis rather eÆiently if you know the bases of the previous null spaes.During the last deade muh attention has been paid to a multitude of generalizations ofthese algorithms to all sorts of \speial" or \strutured" matries. People have onsideredmatries lose-to-Toeplitz or Hankel, Hilbert matries and Vandermonde matries [7℄ andmany others.Reently, there is a revived interest in the rational interpolation ase [15, 14, 16, 2, 3,1, 19℄. The matries involved here are L�owner matries or generalized L�owner matriesdepending on whether the interpolation points an oinide or not (see [2℄). The basi thingto be studied remains, just like in the lassial problems, to desribe a basis for the nullspaes of suh matries and to �nd an eÆient way to generate them. In this paper, you will�nd a solution to this problem.Vetor rational interpolants have been onsidered before. The papers by Peter Graves-Morris are the most reent ones. [10, 11, 13℄. We refer to his introdution (espeially theseond one) to �nd out about the history of the problem and the relation to related problemsin the literature like the so alled Latin and German polynomial problems. Our algorithmwill be able to reover the diretional vetor interpolants onsidered in [11℄ (see setion 2).In this paper we ombine the new approah to rational interpolation of [19℄, and theidea of minimal vetor Pad�e approximation of [6℄ to the ase where vetor interpolation dataare given. All the results we obtained for the salar problem are generalized to the vetorase. The basi results being the onstrutive way of de�ning the basis of the null spae,whih results in an eÆient reursive algorithm (setion 3). A \minimal" solution of theoriginal interpolation problem (setion 2) an then be readily given (setion 4) as well as aparameterization of all solutions, not only for the linearized problem, but also for the properinterpolation problem (setion 5).The absene in our algorithm of a reordering strategy whih is needed to overome asingular situation when the algorithm hits a \blok" in the Newton-Pad�e table in most ofthe existing salar methods [8, 12, 9, 22, 23, 24, 25℄ is a basi advantage. For the vetorase, a normal situation was supposed from the start [10, 11, 13℄. Our algorithm will alsowork in singular situations for the vetor ase.2 The vetor rational interpolation problem (V�RIP)This paper is a ontinuation of [19℄ and [6℄. Ample motivation for our approah and thede�nitions and methods introdued an be found there. It might be an advantage to readthe simpler ases of salar interpolants [19℄, or ompletely onuent points [6℄ �rst. Thepresent paper follows losely the outline of [19℄.The �eld, �nite or in�nite, we are working with , is denoted by K. The set of polynomials2



with oeÆients of the �eld K, is denoted by K[z℄. The set of polynomial m-vetors, i.e., theset of all vetors whose m elements belong to K[z℄, is denoted by Km [z℄. Suppose we wantto interpolate the given data fi 2 Km , in the interpolation points zi 2 K; i = 1; 2; : : : ; p, by avetor rational funtion n(z)=d(z) with n(z) 2 Km [z℄ and d(z) 2 K[z℄. The division by d(z)is taken omponentwise, i.e. n(z)=d(z) = 26664 n1(z)=d(z)n2(z)=d(z)...nm(z)=d(z) 37775 :Beause we want to keep the exposition here as simple as possible, we don't allow a om-ponent of fi to have the value 1. Hene, d(zi) 6= 0; i = 1; 2; : : : ; p. For the same simpliityreasons, we also do not allow an interpolation point at in�nity (zi 6= 1; i = 1; 2; : : : ; p).These restritions are basially made to simplify the notation and to avoid a lot of exep-tional ases. However, the same method still works. The extensions for the salar ase areovered in [20℄. See also [15℄. For the same reason of ease of exposition, we shall initiallysuppose that all the interpolation points are di�erent (zi 6= zj; i 6= j). The onuent ase ispostponed until setion 6.Every polynomial (m+1)-tuple (n(z); d(z)) = (n1(z); n2(z); : : : ; nm(z); d(z)) whih solvesthe proper interpolation onditionsfi = n(zi)=d(zi); i = 1; 2; : : : ; p (1)shall also satisfy the linearized onditionsfid(zi) = n(zi); i = 1; 2; : : : ; p: (2)However, the onverse is only guaranteed if d(zi) 6= 0; i = 1; 2; : : : ; p. Note that we don'tonsider n(z)p(z)d(z)p(z) with p(z) 2 K[z℄ n f0gas a solution satisfying the proper interpolation onditions as soon as p(zi) = 0 for someinterpolation point zi; i = 1; 2; : : : ; p, even if n(z)=d(z) satis�es the proper interpolationonditions with d(zi) 6= 0; i = 1; 2; : : : ; p. Beause by assumption none of the omponentsof fi is 1, d(zi) = 0 implies n(zi) = 0. In other words, n(zi) 6= 0 implies d(zi) 6= 0. Thismeans that if any of the omponents of the polynomial m-tuple n(z) is nonzero in zi thend(zi) 6= 0. Thus, for a solution of (2), d(zi) 6= 0, under the given restritions, is equivalentwith (n(zi); d(zi)) 6= 0. This an be expressed by saying that (n(z); d(z)) is not divisible byz � zi. Therefore we an reformulate the proper problem (1) as the linearized problem (2)with the extra ondition that (n(z); d(z)) is not divisible by z�zi; i = 1; 2; : : : ; p. This latterondition is simpler to work with in the proofs.Example 1 Suppose we are given the following interpolation dataz1 = 0; f1 = [1 0℄T ; z2 = 1; f2 = [2 1℄T ; z3 = 2; f3 = [2 1℄T :Of ourse, there are many solutions of the proper problem, for examplen1(z) = 1 + 32z � 12z2; n2(z) = 32z � 12z2; d(z) = 1 (3)3



is a solution, but alson1(z) = 1 + 72z � 12z2; n2(z) = 52z � 12z2; d(z) = 1 + z (4)and n1(z) = 1 + 72z � 12z2; n2(z) = 92z � 72z2 + z3; d(z) = 1 + z (5)are solutions. On the other handn1(z) = 2z; n2(z) = 12z2(3 � z); d(z) = z (6)satis�es the linearized onditions (2) but not the proper onditions (1). We note that indeed(n(z); d(z)) is divisible by z � z1 = z.As we have seen in this example, there are many possible solutions to a set of interpolationdata. The set of solutions is never empty sine we an always hoose d(z) = 1 and forn(z) the interpolating polynomials. Similar to the salar ase [19℄ and the vetor Pad�e ase[6℄, we want to selet the simplest possible solution in a well de�ned sense. We ould forexample minimize the maximal degree of the omponents of the polynomial (m+ 1)-ouple(n(z); d(z)). Thus hoose the solution for whihmaxfdeg n1(z);deg n2(z); : : : ;deg nm(z);deg d(z)gis minimal (we de�ne deg 0 = �1). This will not ompletely order the solutions, sine inexample 1 (3) and (4) are di�erent solutions with the same maximal degree. In any ase,suh a riterion will tend to distribute the degrees of freedom as uniformly as possible over allthe omponents of (n(z); d(z)), i.e. make the degrees of all these omponents nearly equal.For m = 1, the salar ase, this orresponds to solutions near the main diagonal of theNewton-Pad�e interpolation table. In order to get other entries of the interpolation table asminimal solutions, we an play with an integer shift parameter s and require maxfdeg n(z)�s;deg d(z)g to be minimal. Analogously, we de�ne for the vetor ase the shift parameterss = (s1; s2; : : : ; sm) 2Zm and minimize� = max(deg n1(z)� s1;deg n2(z)� s2; : : : ;deg nm(z)� sm;deg d(z)g:� is alled the s-degree of the (m + 1)-tuple (n(z); d(z)). When all si = 0; i = 1; 2; : : : ;m,then we are bak in the \main" diagonal ase we proposed �rst. For a �rst reading of thispaper, it might be simplest to think of the si as being zero. The shift parameters de�ne thestruture of the polynomial ouple (n(z); d(z)). More preisely, (n(z); d(z)) has s-degree � �i� deg nj(z) � � + sj; j = 1; : : : ;m and deg d(z) � �. Given the shift parameters s 2 Zm,we take the s-degree as the omplexity of the polynomial (m+1)-tuple (n(z); d(z)). We annow de�ne the following two vetor rational interpolation problems (V�RIPs).De�nition 1 (Linearized Vetor Rational Interpolation Problem (L�VRIP)) The in-terpolation points zi 2 K and data fi 2 Km ; i = 1; 2; : : : ; p and the shift parameters s 2 Zmare given. We look for a polynomial (m+1)-tuple (n(z); d(z)) of minimal s-degree, satisfyingthe linearized rational interpolation onditionsfid(zi) = n(zi); i = 1; 2; : : : ; p: (7)A solution of the L�VRIP ould be divisible by z�zi for a ertain i 2 f1; 2; : : : ; pg. Therefore,we onsider also the following problem. 4



De�nition 2 (Proper Vetor Rational Interpolation Problem (P�VRIP)) This is thelinearized rational interpolation problem with the additional ondition that (n(z); d(z)) is notdivisible by z � zi; i = 1; 2; : : : ; p.To illustrate the previous notions and onepts, we introdue the following example.Example 1 (ontinued) The interpolation data of example 1 are given. Suppose wewant to derive a vetor rational interpolant [n1(z) n2(z)℄T=d(z) with the following degree-struture. We allow the degree of n2(z) to be one higher than the degrees of n1(z) and d(z).In other words, we look for a rational interpolant with deg n1(z) � �, deg n2(z) � �+1 anddeg d(z) � �. It is lear that without limiting the value of � we get an in�nity of solutions,not only for the L�VRIP but also for the P�VRIP where all these solutions have the presribeddegree struture. Therefore, from all these solutions, we are going to take those with � assmall as possible. Thus we look for those solutions with smallest s-degree with s = (0; 1).We give now the relation between our L�VRIP and the diretional vetor-valued inter-polants (DIRIs) of [11℄. For the DIRI problem, we also have to onsider N+1 interpolationpoints zi, i = 0; 1; : : : ; N with orresponding funtion values f(zi) = vi 2 Cm. Besides these,there are given kl independent diretions wk 2 Cm, k = 1; : : : ; kl and assoiated multiplii-tiesmk, suh thatPklk=1mk = M � N . Along the diretion wk, the numerator degree shouldbe redued to N �mk while the denominator degree an inrease up to M . This means thefollowing. Let P (z) be the polynomial m-tuple, representing the numerator of the DIRIand let Q(z) be the orresponding denominator. Then P (z) � wk should have a degree atmost N �mk, where a � b denotes the usual Eulidean inner produt of the two m-vetors aand b. This ondition we an rewrite as follows. Let W 2 Cm�m be a matrix whose �rst klolumns are the diretional vetors wk and the remaining olumns are added to make W aregular square matrix. Thendegree [P1(z); : : : ; Pm(z)℄W � [N �m1; : : : ; N �mkl; N; : : : ;N ℄:The trailing m � kl bounds impose no extra onditions so that we an onsider them asredundant. We only need them as a trik to de�ne the invertible matrix W . Now theinterpolation onditions P (zi)=Q(zi) = vi an be rewritten as the equivalent onditions(onsider P (z) and vi as row-vetors) P (zi)W=Q(zi) = viW , i = 0; 1; : : : ; N . Rename N + 1as p, P (z)W as n(z), Q(z) as d(z) and viW as fi+1 and you will reognize our L�VRIP withshift parameters sj = N�M�mj, M =Pkl1 mk. Thus it turns out that one of the solutionsthat our algorithm will produe with appropriate shift parameters, will be a DIRI.In [11℄, the link between the German polynomial problem and the onstrution of DIRIsis explained. Thus our method is also able to �nd solutions of the German polynomialproblem.3 The solution of the L�VRIPIn this and the subsequent setions we shall work onstantly with polynomial (m+1)-tuples.These will be split into an m-tuple of numerator polynomials and one salar denominatorpolynomial. If the (m+1)-tuple is denoted by e.g., v(z), then the orresponding numeratorm-tuple is denoted by nv(z) and the assoiated denominator polynomial as dv(z). Thusv(z) = (nv(z); dv(z)). It will happen that we have a sequene of polynomial (m + 1)-tuples : vj(z). In order not to ompliate the notation, we shall indiate the numerator anddenominator also with that index : vj(z) = (nj(z); dj(z)) instead of (nvj (z); dvj(z)).We an write (7) as a set of linear homogeneous equations:Riv(z) = 0; i = 1; 2; : : : ; p (8)5



where Riv(z) is the ith residual of the polynomial (m+1)-tuple v(z) = (nv(z); dv(z)) de�nedas Riv(z) = fidv(zi) � nv(zi). We denote by Sp;� the set of all polynomial (m + 1)-tuples(n(z); d(z)) having s-degree � � and satisfying (7) or, what is the same, solving (8).Theorem 1 The set Sp;� forms a vetor spae over the �eld K.Proof. Take v(z); w(z) 2 Sp;�, i.e. Riv(z) = 0 and Riw(z) = 0; i = 1; 2; : : : ; p. Then, alsoav(z) + bw(z) 2 Sp;� with a; b 2 K beause Ri(av(z) + bw(z)) = aRiv(z) + bRiw(z) = 0. �An (m + 1)-tuple v(z) whih solves (8) is said to be a solution of level p. We shall makethis expliit by writing vp(z) instead of v(z). Note that the (m + 1)-tuple vp(z) of levelp shall satisfy (8) and hene gives Rivp(z) = 0 for i = 1; 2; : : : ; p, but if there are moreinterpolation points zi; i = p + 1; p + 2; : : :, then the residuals need not be zero anymore.Thus, in general, Rivp(z) 6= 0 for i > p. We show next that a basis BSp;� for the vetorspae Sp;�;�1 < � < +1, an be onstruted from (m + 1) polynomial (m + 1)-tuplesvjp(z) = (njp(z); djp(z)), j = 1; 2; : : : ;m + 1, of level p. The m + 1 polynomial (m + 1)-tuples of level p are numbered with a supersript j. Thus vjp(z) is the jth (m+ 1)-tuple oflevel p. Without loss of generality, we an assume that the vjp(z) are ordered with respetto inreasing s-degree. The ordering of the vjp(z) having equal s-degree is arbitrary. Theordering is not essential but it simpli�es the notation. In our proof, the residuals Rivjp(z)for i > p will be important, beause if Rp+1vjp(z) = 0, then vjp(z) is not only a solution forlevel p but also for level p + 1. Therefore, we introdue the notion of residual spae Rji;p forall i > 0 and 1 � j � m+ 1 as Rji;p = span jk=1Rivkp(z):In other words, Rji;p is the vetor spae spanned by the ith residuals (those at zi) of the �rstj (the ones with smallest s-degree) (m+ 1)-tuples vkp(z) of level p. Of ourse, for i � p thisspae ontains just the zero vetor. However, it will turn out that for i > p, the residuals ofall the (m+1)-tuples vjp(z); j = 1; 2; : : : ;m+1 will span the whole spae Km , i.e.Rm+1i;p = Kmfor i > p.The basis BSp;� will in general have a dimension larger than m + 1. Thus the (m + 1)solutions vjp(z); j = 1; : : : ;m+ 1 will not be suÆient to give the whole basis. We shall alsoneed shifted versions of them. Therefore, we introdue the following short hand notation.Given an integer number � and a polynomial (m + 1)-tuple x(z) having s-degree �x, wede�ne the set of polynomial (m+ 1)-tuples fx(z)g� as follows:fx(z)g� = ? ; if � < �xfx(z)g� = fx(z); zx(z); : : : ; z���xx(z)g ; if � � �x:In other words, the set fx(z)g� is empty if � < �x, and if � � �x it ontains the polynomial(m+ 1)-tuple x(z) and shifted versions of x(z) having s-degrees ranging from � to �x. Weshall prove the following theorem:Theorem 2 For eah p � 0, there exist (m + 1) polynomial (m + 1)-tuples vjp(z); j =1; 2; : : : ;m+ 1 (from level p) suh that for eah �; j�j � 1, a basis BSp;� for Sp;�, is givenby BSp;� = [m+1j=1 fvjp(z)g�:The residual spae Rm+1i;p is equal to Km for i > p.6



Note that the basis BSp;� ontains all the polynomial (m + 1)-tuples vjp(z) of level p withs-degree at most �. If some vjp(z) has an s-degree less than �, we add also its shifted versionszkvjp(z) that have an s-degree not raising above �.Proof. We shall prove the theorem by indution on p. First we prove that the theorem istrue for p = 0 if we hoose e.g., vj0(z) = ej, j = 1; 2; : : : ;m+1, with ej the (m+1)-tuple withall the omponents equal to zero exept the jth one whih is equal to one. At level 0, there areno interpolation onditions. Therefore, the elements of S0;� are all polynomial (m+1)-tuplesof s-degree � �, i.e. they an be parametrized as (a10 + a11z + � � � + a1�+s1z�+s1 ; : : : ; am+10 +am+11 z + � � � + a�+sm+1z�+sm+1) with sm+1 = 0. The (m + 1)-tuple vj0(z) has s-degree �sj.Hene, vj0(z) an be shifted �� (�sj) = �+ sj times before its s-degree is beoming greaterthan �. The residual spae Rm+1i;0 = spanm+1k=1 Rivk0(z) = span f�e01;�e02; : : : ;�e0m; fig = Kmfor i > 0 with e0i the ith identity vetor 2 Km . Note that the vj0 are not neessarily orderedby inreasing s-degree, but knowing that vj0 has s-degree �sj, this ordering an be easilyobtained if this were desired.To prove the indution step, we assume now that the theorem is true for a ertain valuefor p. Without loss of generality we an assume that the polynomial (m + 1)-tuples vjp(z)are ordered suh that the s-degrees �jp of vjp(z) satisfy �jp � �j+1p for j = 1; 2; : : : ;m.The proof is onstrutive beause an algorithm is given to ompute a possible hoie forthe set of all the polynomial (m+1)-tuples vjp+1(z) for level p+ 1, given all the vjp(z) of theprevious level. First of all we shall desribe how to ompute a nonzero polynomial (m+ 1)-tuple ap+1(z) 2 Sp+1;�, not divisible by z�zp+1 (whih always exists) having minimal s-degree�. This polynomial (m+1)-tuple ap+1(z) together with m other polynomial (m+1)-tuples,whih are then readily found, will give us vjp+1(z); j = 1; 2; : : : ;m + 1 (up to reordering).Beause ap+1(z) has to be in Sp+1;� � Sp;� (one interpolation ondition more), we an writeap+1(z) as a linear polynomial ombination of the polynomial (m+1)-tuples vjp(z). BeauseSp;� = f(0; 0; : : : ; 0)g for � < �1p (v1p(z) has smallest possible s-degree at level p), the problemis trivial for � < �1p. Therefore, suppose � � �1p. By indution hypothesis, we know thatRm+1p+1;p = Km . Consequently, m of the (m + 1) residuals Rp+1vjp(z); j = 1; 2; : : : ;m + 1, arelinearly independent. We show that ap+1(z) an not be a linear polynomial ombinationof only those vjp(z) having linearly independent residuals. Suppose ap+1(z) is suh a linearpolynomial ombination: ap+1(z) =Xj2J pj(z)vjp(z)with J 6= ? and all the residuals Rp+1vjp; j 2 J linearly independent. Beause ap+1(z) hasto satisfy the (p + 1)th interpolation ondition, the residual Rp+1ap+1(z) has to be equal tothe zero m-vetor, i.e., Rp+1ap+1(z) =Xj2J pj(zp+1)Rp+1vjp(z) = 0:Beause the residuals in play are linearly independent, this means that pj(zp+1) = 0 for j 2 J .Hene, z�zp+1 divides ap+1(z). Therefore, to ompute a possible hoie for ap+1(z), we haveto onsider a linear polynomial ombination of vjp(z) where the orresponding residuals arelinearly dependent. To keep the s-degree � as small as possible, we ompute the smallestj for whih Rp+1vip(z); i = 1; 2; : : : ; j are linearly dependent, thus the smallest j suh thatdimRjp+1;p < j. Then we know that the residual orresponding to vjp(z) an be written asRp+1vjp(z) = j�1Xk=1 kRp+1vkp(z); or Rp+1(vjp(z)� j�1Xk=1 kvkp(z)) = 0:7



Therefore, vjp�Pj�1k=1 kvkp is a possible hoie for ap+1(z) if we an prove that ap+1(z) is thennot divisible by z� zp+1. If ap+1(z) would be divisible by z� zp+1, then a0(z) = ap+1(z)=(z�zp+1) 2 Sp;��1 sine indeed, the s-degree is dereased by 1 and all the interpolation onditions,exept possibly the one for zp+1 are still satis�ed. If a0(z) 2 Sp;��1, then it an be written ina unique way as a linear polynomial ombination of the vkp(z) having s-degree less than �.Hene, vjp(z) is not involved. Beause ap+1(z) = (z � zp+1)a0(z), ap+1(z) an be written as aunique linear polynomial ombination not involving vjp(z). However, this is in ontraditionto the fat that vjp(z) is a omponent of ap+1(z) sine there is only one way to write ap+1(z) 2Sp;� in terms of the basis vetors [m+1j=1 fvjp(z)g�.We shall prove now that ap+1(z) together with the m polynomial (m + 1)-tuples (z �zp+1)vkp(z); k 6= j are a possible hoie for vjp+1(z); j = 1; 2; : : : ;m+1 by proving that for eah� a basis for Sp+1;� is given by BSp+1;� = [k 6=jf(z� zp+1)vkp(z)g� [ fap+1(z)g�. Take a(z) 2Sp+1;�, then we �rst show that a(z) an be written in a unique way as a(z) = ap+1(z)+a0(z)with a0(z) divisible by z � zp+1 and  2 K onstant. If a(z) has s-degree smaller than thes-degree of ap+1(z), then a(z) is divisible by z � zp+1 sine by onstrution ap+1(z) is asolution of level p + 1, not divisible by z � zp+1 with the smallest possible s-degree. So,if a(z) 2 Sp+1;�, it an only have an s-degree smaller than the s-degree of ap+1(z) if it isdivisible by z � zp+1. Hene, in this ase  = 0. When the s-degree of a(z) is greaterthan or equal to the s-degree of ap+1(z), we an always hoose a unique  2 K suh thata(z)� ap+1(z) = (na(z); da(z))� (np+1(z); dp+1(z)) is divisible by z � zp+1, i.e. suh thatda(zp+1)� dp+1(zp+1) = 0 2 K (9)and na(zp+1)� np+1(zp+1) = 0 2 Km : (10)Beause ap+1(z) is not divisible by z � zp+1, either the salar dp+1(zp+1) 6= 0 or the m-vetor np+1(zp+1) 6= 0. Suppose dp+1(zp+1) 6= 0, the other ase is similar. We an determine as  = da(zp+1)=dp+1(zp+1). Beause Rp+1a(z) and Rp+1ap+1(z) are equal, Rp+1a(z) =Rp+1ap+1(z) = 0 and we obtain:fp+1(da(zp+1)� dp+1(zp+1)) = na(zp+1)� np+1(zp+1): (11)Assuming (9) is true, (10) follows easily from (11). Thus in all ases,  in the deompositiona(z) = ap+1(z) + a0(z) is uniquely de�ned. Hene, also a0(z) is uniquely de�ned. Now weprove that a0(z) an be written as a ombination of the remaining basis vetors [k 6=jf(z �zp+1)vkp(z)g�. Sine a0(z) = (z � zp+1)a00(z) with a00(z) 2 Sp;��1, we an use the indutionhypothesis to write a00(z) as a ombination of the basis [k 6=jfvkp(z)g��1, or equivalently, a0(z)an be written as a ombination of [k 6=jf(z � zp+1)vkp(z)g�. Thus we have proved that[m+1j=1 fvjp+1(z)g� = [k 6=jf(z � zp+1)vkp(z)g� [ fap+1(z)g�forms a basis for Sp+1;�.It remains to be shown that Rm+1i;p+1 = Km ; i > p+ 1. By de�nition, we have thatRm+1i;p+1 = span k 6=jfRi(z � zp+1)vkp(z); Ri(vjp � j�1Xl=1 lvlp)g= span k 6=jf(zi � zp+1)Rivkp(z); Rivjp � j�1Xl=1 lRivlpg:8



Beause zi 6= zp+1 and Rm+1i;p = Km for i > p + 1, it is lear that Rm+1i;p+1 = Km ; i > p + 1 andthis proves the theorem ompletely. �The proof of the theorem ontains an algorithm to ompute the (m + 1) polynomial(m+ 1)-tuples vjp(z); j = 1; 2; : : : ;m+ 1 at eah level p knowing the vjp�1(z) of the previouslevel. The �rst one v1p(z), will have a minimal s-degree and it will be a solution for the L�VRIP.If �1p = �2p = � � � = �lp < �l+1p (with �m+1p = +1), it is lear that also v2p(z); v3p(z); : : : ; vlp(z)are solutions of the L�VRIP. These will allow us to give a parameterization of all solutions.We refer to theorem 4. To be able to give a ompat formulation of the algorithm, weintrodue the following notations:� We group the (m+1) polynomial (m+1)-tuples vjp(z) together in an (m+1)� (m+1)polynomial matrix as followsGp(z) = � v1p(z) v2p(z) � � � vm+1p (z) �= � n1p(z) n2p(z) � � � nm+1p (z)d1p(z) d2p(z) � � � dm+1p (z) � :� The elementary polynomial operations, whih we shall apply on (m + 1) � (m + 1)polynomial matries, are denoted as follows:{ Ei;j denotes the permutation matrix desribing a swithing of the olumns i andj,{ Ei(p(z)) denotes the polynomial matrix desribing the multipliation of olumn iby a polynomial p(z) 2 K[z℄,{ Ei;j() denotes the elementary matrix desribing the addition to olumn i of ol-umn j multiplied by the salar  2 K.� U denotes the (m+ 1) � (m+ 1) identity matrix.We an summarize the algorithm as in algorithm VRIP below.It is lear that we an write:Gp(z) = V0(z)V1(z) � � � Vp(z) withV0(z) = � x0(z) t0(z)y0(z) u0(z) �= P0and for i � 1 Vi(z) = � xi(z) ti(z)yi(z) ui(z) �= ji�1Yk=1 Eji;k(�ik)Yk 6=ji Ek(z � zi); (12)where ji and ik are the j and k values needed in the algorithm to go from level i � 1 tolevel i. The partitioning of the Vi(z) matries into xi(z); yi(z); ti(z) and ui(z) is suh thatyi(z) is a salar polynomial onentrating our attention on v1i (z). These Vi(z) matries an9



Algorithm 1: VRIPfvetor rational interpolationgf Initialization gG0 is initialized as G0(z) = UP0 = V0(z),where P0 is a sequene of elementary operationsof the form Ei;j, i.e. desribing a permutation matrix,ordering the vj0 with respet to inreasing s-degree.for p = 0; 1; 2; : : :Look for the smallest j suh that Rp+1vjp(z)an be written as a linear ombination of the previous residuals:Rp+1vjp(z) =Pj�1k=1 kRp+1vkp(z) .If we set V 0p+1(z) =Qj�1k=1 Ej;k(�k)Qk 6=j Ek(z � zp+1),then we get Gp+1(z) by permutation of Gp(z)V 0p+1(z)Gp+1(z) = Gp(z)Vp+1(z) withVp+1(z) = V 0p+1(z)Pp+1where Pp+1 is a permutation matrix reordering the polynomialvetors with respet to their s-degree.endforbe seen as generalized M�obius transformations leading to a generalized ontinued frationforking not only downwards but also upwards, (see [6℄). This ontinued fration has not onlysalar but also vetor and matrix entities involved but all the divisions are by salars. Itfollows that n1p(z)=d1p(z), a solution of the L�VRIP, is the pth onvergent of the generalizedontinued fration: x0(z) + t0(z)x1(z) + t1(z) � � �� � �y1(z) + u1(z) � � �� � �y0(z) + u0(z)x1(z) + t1(z) � � �� � �y1(z) + u1(z) � � �� � � : (13)Note that we an also write a similar ontinued fration whose pth onvergent is njp(z)=djp(z);j > 1 by partitioning the Vi(z) matries in another way. Remember that the polynomial(m + 1)-tuple ap+1(z) whih featured in the proof of the theorem is one of the vjp+1(z).More preisely, it is the solution of the L�VRIP with the additional ondition that thispolynomial tuple is not divisible by z � zp+1. The above ontinued fration redues to anordinary ontinued fration, at least formally, if all the ti(z) vanish. It still would have vetorvalued onvergents. Sine the multipliations with the Vi(z) matries represent more generaltransformations, we get the more general form of the frations. It is however possible to getordinary ontinued frations as well. See e.g., [5, Theorem 2.9℄.The algorithm, desribed above, an be implemented in several ways. The linearized ra-tional interpolation onditions (7) an be written in terms of the lassial basis 1; z; z2; : : : ;involving lassial blok-Vandermonde matries. In this ase, the multipliation of a poly-nomial by z � zp+1, needed in the algorithm, is straightforward. Another possibility isto write the interpolation onditions (7) in terms of a basis of orthogonal polynomials�0(z); �1(z); �2(z); : : : ; involving generalized blok-Vandermonde matries. The multipli-10



ation by z � zp+1 of a polynomial written in terms of this basis of orthogonal polynomialsan be arried out using the reurrene relation for orthogonal polynomials: �k(z) = �k(z��k)�k�1(z)��k�k�2(z). More generally, we an use any basis as long as the shift operation,i.e., the multipliation by z of a polynomial written in terms of this basis, an be arried outin a simple and eÆient way.If we onsider Gp(z) = [v1p(z) v2p(z) � � � vm+1p (z)℄ = V0(z)V1(z) � � �Vp(z) as an abstratlayered medium, with layers desribed by Vi(z), eah step of the algorithm, given above,omputes the residuals Rp+1vjp(z), needed to ompute the next layer Vp+1(z), and onnetsthis new layer to the layered medium by omputing Gp+1(z) = Gp(z)Vp+1(z). So, in theterminology of Brukstein and Kailath [4℄, we an all this a layer adjoining algorithm.However, it is not neessary to obtain the layered medium Gp(z) expliitly. If we know theseparate layers Vi(z), we an represent the layered medium by the ontinued fration (13).To ompute the layer Vp(z), we need to know the residuals Rpvjp�1(z). Suppose we know allthe residuals Rivjp�1(z) of level p�1, with i � p. It is easy to design an algorithm omputingthe next layer Vp(z) and transforming all the residuals of the previous step into the residualsof level p, using the formula�Riv1p(z) Riv2p(z) � � �Rivm+1p (z)� = �Riv1p�1(z) Riv2p�1(z) � � �Rivm+1p�1 (z)�Vp(zi):This algorithm is alled a layer peeling one [4℄, beause at eah step p we peel o� the layerVp(z). Compared to the layer adjoining algorithm, the layer peeling one has the drawbakthat we have to know all the residuals Rivj0(z) , with i � 1 at the beginning of the algorithm.As an advantage, we mention that the layer peeling algorithm is easier to parallelize thanthe other one. From the previous explanation, it should be lear that also a mixture of alayer adjoining and layer peeling algorithm is possible. For more information, we refer to [4℄.4 The solution of the P�VRIPThe algorithmVRIP solved the L�VRIP, but from the m+1 polynomial (m+1)-tuples vjp(z),j = 1; : : : ;m+1, it onstruts, we an now easily �nd a solution of the proper interpolationproblem P�VRIP as desribed in the following theorem.Theorem 3 Let vjp(z); j = 1; 2; : : : ;m+ 1 be de�ned by theorem 2 and ordered with respetto inreasing s-degree. Set as before Gp(z) = [v1p(z) � � � vm+1p (z)℄ the matrix ontaining these(m + 1)-tuples. If v1p(z) is not a solution of the P� VRIP, then Plk=1 kvkp(z) is, where l isthe smallest value suh that [v1p(z) � � � vlp(z)℄ (i.e. the �rst l olumns of Gp(z)) evaluated forz = zi; i = 1; 2; : : : ; p, have for eah value i rank 1. The l-tuple (1; 2; : : : ; l) is not allowedto be an element of a spei� (l� 1) dimensional subspae of K l for eah interpolation pointzi. The latter ondition should prevent the proposed solution to be divisible by z � zi.Proof. When v1p(z) is divisible by z � zi for a ertain i; 1 � i � p, then v1p(z) is a solutionof the L�VRIP but not of the P�VRIP. It is lear that Vi(z) as de�ned in (12) has fullrank m + 1 if z 6= zi and has rank 1 if z = zi. Indeed, z appears only in the fatorQk 6=ji Ek(z � zi). Hene, Gp(z) = V0(z)V1(z) � � � Vp(z) has full rank m+ 1 if z 6= zi and hasrank 1 if z = zi. Therefore, to get a solution of smallest s-degree, we an take the linearpolynomial ombination Plk=1 kvkp(z) as a andidate where l is hosen as indiated above.For a smaller value of l, there is at least one zi for whih the �rst l olumns of Gp(zi) wouldform a matrix of rank 0. Hene, we ould not �nd a linear polynomial ombination of thevkp(z), k = 1; 2; : : : ; l, not divisible by z � zi. However, with the value of l as hosen above,11



Plk=1 kvkp(z) is not divisible by z � zi, i = 1; 2; : : : as long as the l-tuple (1; 2; : : : ; l) isn'ta solution of Glp(zi)[1 : : : l℄T = 0 with Glp(z) the �st l olumns of Gp(z). We have hosen lsuh that Glp(zi) has rank 1. Hene, the null spae has dimension (l� 1) and is the spei�subspae of K l , we are referring to above. �5 A parameterization of all solutions of the L�VRIP andP�VRIPTo desribe all possible solutions of the linearized and proper interpolation problems, we anformulate the following theorems.Theorem 4 If the s-degree �1p of v1p(z) is smaller than the s-degree �2p of v2p(z), then thereis only one rational funtion n1p(z)=d1p(z) whih solves the L� VRIP. Otherwise a parameteri-zation of all solutions is given by:� np(z)dp(z) � = � n1p n2p � � � nlpd1p d2p � � � dlp �26664 12...l 37775with  = (1; 2; : : : ; l) 6= (0; 0; : : : ; 0) 2 K l and l is suh that �1p = �2p = � � � = �lp < �l+1p(�m+2p = +1). If  6= k0 with k 2 K, then np(z)=dp(z) and n0p (z)=d0p (z) are di�erent vetorrational funtions.Proof. That the rational approximant onstruted is a solution of the L�VRIP is trivial. Weshall only prove the assertion of the last sentene. For the parameter l-tuple  6= k0, we set� np(z) n0p (z)dp(z) d0p (z) � = � n1p(z) n2p(z) � � � nlp(z)d1p(z) d2p(z) � � � dlp(z) � 26664 1 012 02... ...l 0l 37775 :Beause the right-hand side of the previous equation has rank 2 for z 6= zi; i = 1; 2; : : : ; p,we derive that the left-hand side has rank 2 for an in�nite number of values for z. Hene,the two vetor rational funtions np(z)=dp(z) and n0p (z)=d0p (z) are di�erent. �Conerning a parameterization of all solutions of the P�VRIP, we have the following.Theorem 5 If v1p(z) whih solves the L� VRIP is also a solution of the P� VRIP, the two asesof the previous theorem also apply here, with the only exeption that (1; 2; : : : ; l) is notallowed to be an element of a spei� (l � 1)-dimensional subspae of K l onneted to eahinterpolation point zi; i = 1; 2; : : : ; p (see theorem 3). If v1p(z) is not a solution of the P� VRIP,a parameterization of all solutions of the problem is given by:� np(z)dp(z) � = � n1p n2p � � � nl0pd1p d2p � � � dl0p � 26664 1(z)2(z)...l0(z) 3777512



with l0 related to the l of theorem 3 by �lp = �l+1p = � � � = �l0p < �l0+1p and deg j(z) � �lp ��jp; j = 1; 2; : : : ; l0. Moreover  = (1(zi); 2(zi); : : : ; l0(zi)) is not allowed to be an element ofa spei� (l0 � 1)-dimensional subspae of K l0 for eah interpolation point zi; i = 1; 2; : : : ; p.As before we an show that, exept for a saling fator, for di�erent polynomial l0-tuples(1(z); 2(z); : : : ; l0(z)), we get di�erent vetor rational funtions.The proof goes along the same lines as the previous one, making additional use of the resultof the previous setion. We leave the details to the reader.6 The onuent aseWhen for ertain interpolation points zi, not only the funtion value fi is given but also thevalues of one or several onseutive derivatives, we get the onuent L�VRIP and P�VRIP.If we onsider the interpolation data for the \onuent" points in the natural ordering,i.e., funtion value, �rst derivative value, seond derivative value,. . . , then we an prove ina similar way that the same algorithm an be used to ompute the polynomial (m + 1)-tuples vjp(z) of the onuent problem. The parameterization of all solutions of the L�VRIPand P�VRIP is also valid in this ase. The ompletely onuent problem was disussedas a minimal vetor Pad�e problem in [6℄, where we also developed a more general \nie"problem setting, allowing the original data to be known only partially leading to partiallydetermined residuals. It is lear that this generalization an also be made for the vetorrational interpolation problem investigated here, leading to similar algorithms. As a speialase, we indiated in [6℄ that taking the shift parameters equal to eah other leads to thevetor Pad�e approximants de�ned by van Iseghem [21℄. The general onuent problemwhere we onsider possible interpolation data around the interpolation point 1 and wherean interpolation point an be a pole of the rational funtion, requires a muh more arefulsetting of the problem. This shall be worked out for the vetor problem in a future publiationon a more formal basis, based on [20℄ handling the salar ase.7 Example 1 revisitedWe take the following interpolation data: z1 = 0; f1 = [1 0℄T ; z2 = 1; f2 = [2 1℄T ; z3 =2; f3 = [2 1℄T . We use the Chebyshev polynomials Tk(z) as a basis for the set of polynomials:T0(z) = 1; T1(z) = z and Tk+1(z) = 2zTk(z)�Tk�1(z) for k � 1. Hene, the multipliation ofTk(z) by z�zp+1 an be written as (z�zp+1)T0(z) = T1(z)�zp+1T0(z) and (z�zp+1)Tk(z) =Tk+1(z)=2 � zp+1Tk(z) + Tk�1(z)=2 for k � 1. The algorithm of setion 3 for s = (s1; s2) =(0; 1) generates the following Vi(z)-matries:V0 = 24 0 1 01 0 00 0 1 35 ; V1 = 24 z 0 00 1 z0 1 0 35 ; V2 = 24 z � 1 0 10 z � 1 10 0 1 35 ; V3 = 24 0 z � 2 01 0 z � 21 0 0 35 :We deriveG3(z) = V0(z)V1(z)V2(z)V3(z)= � v13(z) v23(z) v33(z) �= 24 2T1(z) 0 12T2(z)� 3T1(z) + 52T0(z)T1(z) 14T3(z)� 32T2(z) + 114 T1(z)� 32T0(z) 0T1(z) 0 12T2(z)� 3T1(z) + 52T0(z) 35 :13



Therefore, the vetor rational funtion solving the L�VRIP is unique and equal ton13(z)=d13(z) = 24 2T1(z)T1(z)T1(z) 35 :This solution has minimal s-degree 1. However, it is not a solution of the P�VRIP, beauseT1(z) = z is a ommon fator of the numerator and denominator polynomials. Hene, 0is an \unattainable point". Theorem 5 gives all solutions of the P�VRIP having a minimals-degree 2, as va3(z) = � v13(z) v23(z) v33(z) �24 a1(z)a2a3 35with deg a1(z) � 1 and G3(zi)[a1(zi) a2 a3℄T 6= 0 (making va3(z) not divisible z � zi) ordeg a1(z) � 1, a1(1) 6= 0, a1(2) 6= 0 and a3 6= 0.8 ConlusionIn this short paper we have desribed how the ideas of rational interpolation without re-ordering the interpolation points an be generalized to the ase where vetor data are given.The approximant is minimal with respet to the s-degree omplexity measure. An eÆientalgorithm, allowing several possible implementations is given, yet it desribes preisely whatoperations have to be performed. The algorithm �nds a solution whih solves a linearizedinterpolation problem. However, it is shown how the results of the algorithm an be used togenerate not only all the possible solutions of this problem but also how all the solutions forthe proper rational interpolation problem an be onstruted.The treatment is kept as simple as reasonably possible to make the ideas lear withoutbeing troubled by exeptional ases and too muh notational burden. For this reason wesupposed in the main development that all the interpolation points are di�erent. However,as we mentioned in setion 6, the results for the onuent ase are basially the same. Inthe ase where all the interpolation points oinide, we reover the minimal vetor Pad�eapproximants of [6℄. For the same reason of simpliity, we did not allow the interpolationpoints to be at in�nity or presribed poles at the interpolation points. For the salar problem,all these generalizations and more elaborate proofs are given in [20℄. The vetor ase will besolved along the same lines in a future publiation.Referenes[1℄ A.C. Antoulas. Rational interpolation and the Eulidean algorithm. Lin. Alg. Appl.,108:157{171, 1988.[2℄ A.C. Antoulas and B.D.O. Anderson. On the salar rational interpolation problem.IMA J. Math. Control and Information, 3:61{88, 1986.[3℄ A.C. Antoulas and B.D.O. Anderson. On the problem of stable rational interpolation.Lin. Alg. Appl., 122/123/124:301{329, 1989.[4℄ A. Brukstein and T. Kailath. An inverse sattering framework for several problems insignal proessing. IEEE Aoust. Speeh Signal Proess. magazine, pages 6{20, 1987.14
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