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Abstract

Quadrature fonnulas on the unit circle were introduced by Jones et also

m 1989. On the other hand, Bultheel et a\' also considered such quadratures
by giving results concerning ~ error and convergence. In other recent

papers, a more general situation was studied by the above four authors

involving orthogonal rational functions on the unit circle which generalize

the well known Szeg6 polynomials. In this paper, these quadratures are again

analyzed and results about convergence given. Furthennore, an application to

the Poisson integral is also made.

1. Preliminaries

In this paper we shall use the notation T = Iz : Iz I = 1}, D = Iz : Iz I < 1},

and E = Iz : Iz I > 1} for the unit circle, the open unit disc and the exterior

of the unit circle. Let Il be be a finite Borel measure on [-1t,1t]. In order to

estimate the integral,

IIIIf} = I1t f(ei8)dll(8) = I f(z)dll(Z) = If(z)dll(Z)-1t T
(we have taken the freedom to write the previous integral in different

fonns but having in mind that integration will always be over the unit circle

in one fonn or another), the so-called Szeg6 quadrature fonnulas were

introduced in [1]. (See, also [2] for a different approach). Such quadratures
are of the fonn,

n

I If} = \' A~n)f(x~n)),x~n):;a!:x~n),X~n)ET and A~n» 0, j = 1,...,n (1.1)n ,L J J 1 J J J
J=l

so that, II, If} = I If} for all fE A .(For every pair (p,q) oft'" n -(n-l).(n-l)
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integers, p ~ q, A will denote the linear space of all Laurent polynomials
p,q

of the form,
n

L c,z}, C, E [;
, 1 J JJ=

and A the space of all Laurent polynomials ([3], [4]). It is known that such

quadrature formulas (1.1) are of great interest to solve the trigonometric

moment problem or equivalently the Schur coefficient problem (see, [1]). On

the other hand, Waadelandl [5] recently studied such quadratures for the /
Poisson integral, that is, when the measure /-I. is given by,

1 I - r2
d/-l.(e)= 21t 2' r E (0,1)1-2rcose + r

or more generally,

d/-l.(e)= ~2 ~, rED, z = eie (1.2)2 ~n
Iz-rl

Observe that by taking r=0, we have the normalized Lebesgue measure dA(e)=

de/2n. Szego quadratures for such situation were also studied by Camacho and

Gonzalez-Vera in [6]. Finally, in [7] aspects concerning .....wjtIr error and(

convergence were analyzed.

In this paper, formulas (1.1) will be again considered, but instead of

Laurent polynomilas, more general rational functions with prescribed poles not

on T will be used, giving lnse to the Rational Szego formulas which were
0\

earlier introduced by ourselves in [8] and [9] and wher,fue so-called Rational
Szego functions play a fundamental role.

For completeness, let {aj} 7 c D be a given sequence and consider for n =
0,1, .. the nested spaces ~ of rational functions of degree n at most whichn

are spanned by the basis of Partial Blaschke products {B }n where B = 1, B =k 0 0 n

~ B for n = 1, 2, ... and the Blaschke factors are defmed asn n-l

a a-z

~/z) = ~ ---=la I l-az
n n

By convention, we set a / I a I = -1 for a = O. Sometimes, we shall also writen n n
n n n

n - -
B (z) = 11 W (z)/Tt(z); 11 = (-1) n aJ Ia.l, w = n(z-a) and Tt =n(1-a,z)

n nn n n . J J n J n, J
J = 1 1 J

Note that if all the a. are equal to zero, the spaces ~ collapse to the space1 n
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n of polynomials of degree n.o

We also introduce the following transformation f*(z) = f(I/i), which allows to

define for f E $ the superstar conjugate aso 0
*

f (z) = B (z)f (z)
o 0 0*

Let now the sequence (4) : n = O,l, ... } be obtained by orthonormalizationo

of the sequence (B : n = O,l, ... ) with respect to the inner product inducedo

by the measure /J., namely

J1t 'S --:iB<f,g>/J. = f(e1 )g(e1 )d/J.(S)-1t

These functions are uniquely determined by the requirement that the leading

coefficient k in
o

o

4>(z) = ~ k.B.(z)
o j=l J J

*
is positive. We then have k = 4> (a).o 0 0

Finally, in order to summarize the main result given in [9] for the Rational

Szego formulas, let us introduce the function spaces of the form

f1l =..t: + $ = ( P/ro 1t ; PEn }, p and q being nonnegative integers
p.q p* q p q p+q

Observe that ..t: = span (1, B ,... ,B } = span (1, lIB ,... , lIB}.0* 1* 0* 1 0

Therefore,

f1l = span (lIB, lIB ,... ,11B, 1, B, ... , B }.
p.q P p-l 1 1 q

(f1l = -t). When all the a. are equal to zero, then B (z) = l and one has0.0 0 1 k

f1l = span ( l: k = -p, -p+l, ... ,q) = A . Furthermore, for WET, set
p,q -p,q

*
X (z,w) = 4>(z) + w4>(z), so that the following holds (see, [9]),o 0 0

Theorem 1

i) X (z,w) has n simple zeros which lie on the unit circle.o

ii) Let x , ... , x be the zeros of f (z,w). Then, there exist positive1 0 0
o

numbers A, ... , A such that the formula I (f} = \' A.f(x.) is exact, that IS,1 0 0 ,L J J
J = 1

I (f} = III(f} for all f E f1l .o /""" 0-1.0-1

In this case, f1l is said to be a maximal domain of validity.0-1.0-1

Moreover, it was also proved in [9] that the only quadrature formulas with

such a maximal domain of validity are just those ones given in Theorem 1,

where the weights A.'s are given by
J
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A = JL,(z)dJl(z) (1.3)J J

L,(z) E $ = f7l defmed by the interpolation conditions L,(x,) = 0...
J n-I 0,11-1 J 1 1J

(Actually, a more general interpolating function space f7l , p and q being
p,q

nonnegative integers such that p+q = n-I, can be considered, so that the

resulting quadrature formula does not depend on p and q. See [9]).

2. An alternative approach
In this section we shall give an alternative approach to get the above

quadrature formulas using Hermite interpolation in the space f7l (comparen-I,n-I
with the approach given by Markov for the classical Gauss formulas [10] and

with the one given in [7] for the Szego formulas on the unit circle in the
1\

polynomial case). Writing A = {a,} 00 and A= {I / a,: a,E A}, it is easily
1 I 1 1 1\

seen that f7l represents a Chebyshev system on any set X c a::- (AuA), so that.M 1\

given the distinct nodes {x,: j= 1.,... ,n} c a:: - (AuA), there exists a unique
J

function Q E f7l holding, ~ t.w\rn-I,n-I

Q(x,) = f(x,), i = 1,2, ... ,n; Q'(x,) = f'(x,), i = 1,2,. ..,n-11 1 1 1

These are 2n-1 constraints, which corresponds to the dimension of f7l Inn-I,n-I
order to determine such Hermite rational interpolant, we can write

where H
j,O

conditions

H. (x,) = 0.., 1 ~ i,j ~ n; H: (x,) = 0, 1~i~, 1~j~-1 (2.1)
1,0 J 1J 1,0 J

H. (x,) = 0, 1~~-1, 1~j~; H: (x,) = 0.., I ~ i,j ~ n-1 (2.2)
1,1 J 1,1 J 1J

Denoting N (z) = nn(z-x,), we set for i = 1,2, ... ,nn I J

2

IN (Z)I1t (x.)
L~(z) = n 2n-2 1 E $

1 Z-Xi 1t (Z)[N'(X,)]2 2n-22n-2 n 1

and

n n-I

Q(z) = L H. (z)f(x,) + L H. I(Z)f' (x,)
, I J,o J 'I J, JJ = J=

H belong to f7l and satisfy
j,l n-I,n-I

the interpolation

which satisfies L~(x,) = 0, 1 ~ i '* j ~ n. Define L (z) = L\z) and
1 J n,O n

Z - x

L. (z) = L~(z) + A, i L~(z) E $ ,for i = 1,2, ... ,n-1
1,0 1 1 Z - X 1 n-I,n-I

n

with A, E a:: chosen such that V (x,) = 1. Furthermore we set
1 1,0 1

z-x
L. (Z) = (x, -x ) _i L~(z) E $ ,i = 1,2, ... ,n-1

1,1 1 n z-x 1 2n-2
n
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It is simple to check that

L. o(x,) = 0.., Ig,j~; L: ~(x,)= 0, I:::;j~-I, I:::;i~I. J 1J I,] J

'b

L, (x,) = 0, I:::;i~-I, I:::;j~; L: (x,) = 0.., I:::;i,j~-I (2.4)1,1 J 1,1 J IJ

From (2.3) and (2.4), we can set for i = I,2, ... ,n-I

2n-2(1_a.,z) CO (x)
H (z) = TIn J n-l n [L (z) + j.lL (z)] E a

i,O 2n-2(1 - ) co (Z) i,O i i,1 n-l,n-lTI -a.x. n-ln J I

where j.l, is uniquely determined by the condition H: (x.) = 0 and) 1,0 1

2n-2( -) ()TI I-a,z CO x
H (z) = n J n-l n L (z) E a

1.0 2n-2(I a. ) CO (z) n,O n-l,n-l. I TI -.X. n-lNV n J I
satisfies the requirements (2.1). Similarly, the functions

TI2n-2(1_a.,z) co (x)
n J n-l n L (z) E a
2n-2(1 - ) co (z) i,},\ n-l,n-lTI -a,x, n-l ''\
n J I "

satisfy the conditions (2.2) . .-

Once the interpolating function Q(z) E a has been characterized,n-l,n-l

and

H. (z) =
1.1

(2.3)

(2.5)

one gets
/\ n n-l

I {f} = J Q(z)dj.l(z) = L A~n)f(x,)+ L ~~n)f'(x,)
n j =1 J J j=1 J J

where A~n)= J H. (z)dj.l and. ~~n) = J H. (z)dj.l. ThereforeJ J,O J J,1

/\I If)n

(2.6)

can be

considered as a quadrature formula which makes use of values of the function f
/\

and its derivative. Clearly I {f} has a domain of validity a . However,n n-l,n-l
an adequate choice of the nodes {x,} can greatly simplify formulas (2.6).

J *
Indeed, when {x,} are the zeros of (j> + w(j> (I w I = 1), one has

J n n

Theorem 2
/\

The quadrature formula I {f} given by (2.6) reduces to an n-point Rationaln

Szego (or an R-Szego, for short) fom:ula when the nodes are the zerc~of
(j> + w<j>( I wi = 1) """-oJn n ""'-

Proof. We write X = (j>+ wf = N (z)in (z), N E n and N (x.) = 0, j =
n n n n n n n nJ

I, ... ,n. Note that N is not necessarily monic. By the characterizationn

theorem for R-Szego formulas (Theorem 1), it suffices to show that ~~n)= 0,I

for i = 1, ... , n-l. But ~~n) = JH, (z)dj.l, where H, is given by (2.5).I 1,1 1,1
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Hence, we have to prove

2n-2(1 - )IT -a,z z-x,

J n .J __ 1 L2(z)dJl = 000 (z) z-x jn-I n
,

From the defmition of L~, this integral can be written as (up to a constant1

factor)

N (z) N (z) N (z

J n n- 1 d - J n1t (z) (z- X .)co (z) Jl - 1t (z)n-I 1 n-I n

(1-& z) N (z)
n n-; d

( ,)00 (7:) Jl =
1 n -I

= J X (z)h (z)dJl = <X ,h>Jln * n

(1-x z) ... (I-x z)(z-a)
where h(z) = 1 n-1 n E % and h( a ) = O. Thus, h belongs

(l-x,z)1t (z) n-I n1 n - 1

to % (\ -t(a) (-t(a)= I f E ~ f(a) = 0 D. Now, by the orthogonality
n-I n n n n n, n

L'"' ~

properties for Xn, it follows that <Xn,h>Jl = 0.0

Remark 1

Note that the same result can be obtained if the following interpolation

problem is considered. Find Q. E q(, (i = 1,2,... ,n) such that
1 n-I,n-I

Q.(X.) = f(x.), j = 1,2, ... ,n; Q:(x.) = f'(x.), 1~j~ (i:r!:j) (2.7)
1 J J 1 J J

We can conclude that an n-point R-Szego formula I If} is given by I If} =n n

= J Q,(z)dJl, where Q. is the unique solution to the interpolation problem (2.7) .1 1 *
and Ix,} are the zeros of X (z) = 4> + w4> (I wi = 1). Certainly, the given

J n n n
approach could be useful in order to give an expression for the error Elf} =n

= IJl If} - InIf} = IJl If - Qj}'

3. An application to the Poisson integral

We shall now characterize the n-point R-Szego formulas for the measure Jl

induced by the Poisson integral kernel given by (1.2). In this sense, the

first step is obtaining the orthonormal system 14>}, n = 0,1, ... We know 4>= 1n 0

and for n = 1,2, ... , 4> has to verify the conditions (i) 4> E % - %;n n n n-l

<4>,4>>Jl = 1 and (ii) <4>,B >Jl = 0, k = 0,1 ,... ,n-1.n n n k

From (i) one fmds
2

4> (z)(1-lrl )

<4>,B >Jl = J4>(z) BSZ) dJl = J n dA-
n k n k B (z)( z-r)( 1- fZ)k
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(3.1)

= ~ J __ <I>_n(_z_)__ dz
1tl T B (z)( z-r)(1-rz)k

The denominator B (z)(z-r)(I-rz) vanishes at z = ex..,i = 1,2, ... ,k and z = r,k 1

which are all inside the unit disc D and the other zero 1!r is in E. If this

integral has to vanish, <I>should be zero at z = ex.., i = 1,2, ... ,k and z = r.n 1

This gives in combination with condition (i) that <I>should have the followingn •
form

(z-r)B (z)

<I>(z) = k ~ E % and k =1= °n n z- n n
n

For ° :5:; k :5:; n-l, it is easily seen that
2

k (1- 1 r 1 ) B (z)
<<I>,B > = n J n/k ~ = ° (k =1= 0)

n k I..l 2n 1 T z - ex. I - nn -rz
where B = B / B , and thus B (ex.) = 0. The constant k is determined byn/k n k n/kn n

2 [ 1-1 ex. 12] 1/2

1 = <<I>,<1>> = Ik 12.!.::.l!..L so that 1k 1 = n
n n I..l n I-lex. 12 n l-lrl2n

The leading coefficient is found as follows

<I>(z)=k1-rz 1 (3.2)
n* n 1 - B(Z)-ex. z n

n

* l-rz
So that <I>(z) = k --and thus

n n I-a z
n

coefficient has to be positive,

I-a r
<I>* (ex.) = k n. Since the leading

n n n I-lex. 12n

[I-lex. 12]1/2

k = n exp(iy), y = -arg(1 - a r)
n 1-1 r 12 n n n

We can check some particular cases.

(1) r = 0, which delivers the Lebesgue measure. Then

zB (z)
y =-arg(l-ar)=-arg(I)=Oand<l>(z)=Vl-lex. 12 nn n n n z-ex.

n

This corresponds with the result in [11]. When all the ex.,are equal to zero,1

we recover the well known result that <I>(z) = zn.n

(2) r = ex.. One then hasn

2
Y = -arg(1 - I ex.I ) = ° and <I>(z) = B (z)n n n n

(3) r =1= 0, ex. = 0, k = 1,2, .... Thenk
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(z-r)B (z)
4>(z) = 0 _ = (z_r)zo-l = ZO + rzo-1

o Z r, "
This was obtained by Waadelandt'in a recent paper [5].

,/ 1\ *
The equation X (z) = 4>(z) + w4>(z) which provides the nodes takes theo 0 0

fonn

X (z) = k [(z-r)B (z)/(z-ex)] + ~K (1 - rz)/(1 - a z) = 0o 0 0 0 0 0

or equivalently
1\

[(z-r)B (z)/(z-ex )] + w (1- rz)/(1 - a z) = 0, with w = w K /k E T.o n 0 0 0

Using B (z) = 11 n (z)/w (z), we geto 0 0 0

X (z) = [(z-r)T1ro (z) + wn (z)(1-rz)]ln (z) = N (z)/n (z), N E n (3.3)o 0 0-1 0-1 0 0 0 0 0

The nodes x. satisfy N (x) = O. When r = 0, one obtains
J 0 J

zB (z) = I ex I w I a (3.4)0-1 0 0

Note that when ex. = 0, this reduces to ZO = -wand the nodes x. are
J J

uniformly distributed on T, see [6]. Let us suppose that n = 2, ex = ex = 1/2,1 2

then (3.4) gives
2

2z - (1+w)z + 2w = 0

and the interpolation nodes x , x will be:1 2

For w = -1: x = 1 x =-1
1 ' 2

For w = 1: x = (1+v3i)/2, x = (1-v3i)/21 2

For w = -i: x = [(I+v7) - (1-v'7)i]/4, x = [(1-v7) - (1+v7)i]/41 2

For w = i: x = [(1-v7) + (1+v7)i]/4, x = [(1+v7) + (1-v7)i]/41 2

For the weights, one has in the general case

1 Xo(z) 1- ex 0 z 1 _ I r I 2
A. = IL.(z)dll(z) = 2m I -- --- ~ dz

J J 1tl T Z-Xj I-a x. X'(x.)(z-r)(l-rz)
o J 0 J

= 1 _Xo_( _r) _1-_a_or

X'(X} r-x. 1 iVo J J - v.. x.
o J

where X (z) = N (z)/n (z) is given by (3.3). Since X (r) = w(1-lrI2)/(1-a r),o 0 0 0 0
we find

_ w(1-l£j 2) . _ 2A - ---- ----, J - 1, , ... ,n
X'(x.) (r-x.)(I-a x.)

OJ J OJ
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On the other hand, since X (x.) = 0, we get X'(x.) = N'(x.)I1t (x.) where
nJ nJ nJnJ

N (z) = (z-r)ll (0 (z) + w1t (z)(1-rz) (3.5)n n n-1 n-1

Use N (x.) = 0, to fmd from (3.5) that
n J

1t (x.) = - (I-a x.) (x,-r)ll (0 (x.)Iw(l-rx.)
n J n J J n n-1 J J

which implies

(3.6)

Now use

k 1
and (O'(x.) = (Ok(x.) L x,_a,

k J J j=l J J

a,I
k

1t~(x.) = - 1tk(x.) L _
J J j =1 1- a,x,

I J

to obtain from (3.5) and (3.6)

[ n-1[ 1
A = (1-lrI2) / (I-Ix.) 1 + (x,-r) L x -a -

J J J k=1 j k

so that for j=I,2, ... ,n

(3.7)

2

[ n-1 l-Ia I ]

2 2 2 k

A = (1-lrl ) / 1 - Irl + IX,-rl L 2

J J k=l I\-akl
where the positivity of the weights is clearly exposed. Again, when all the a,I
are equal to zero one gets

2

A- 1-~1 '-12
, - 2 ~ , J - , , ... ,n
J l-Irl + (n-l)lx,-rl

J

If we set x, = exp(i8.) and r E (0,1), then
J J

Ix. - rl2 = lexp(i8.) - rl2 = 1 + r2 -2rcos8,J J J

Therefore
2

A_I - L!:J . - 1 2 (3 8), - 2 2' J - , , •.• ,n .
J l-Irl + (n-1)(1 + r -2rcos8,)

The same expression was obtained by Waadeland([5] for the polynomial case /

If r = 0 (Lebesgue measure), it follows from (3.8) that A = n-1 for j =
J

1,... ,n. That means that the corresponding Szego formula for the polynomial

case has all its nodes equally spaced on the unit circle and all its weights

are equal to n-1• (Compare with the results given in [6]).

In the special case r = a , (3.8) yieldsn

9



(3.9)

/

2

[ n l-Ia I ]A = (1-1 a 12) / I x. _ a 12 \' k

J n J n k~1 IX j _ak 12

Some concluding example: assume that a = a for k = 1,2, ... ,n and takek
also r = a. Then

* *
<I>(z) = B (z), <I>(z) = 1 and X = <I>+ w<l>= B (z) + wn n n n n n n

Because now B = t;,n with t;,(z) = (a/ I a I )( a - z)/( 1 - az), the nodes x. aren J

solutions of

[a - z ]n n -n 1\
--_- = - wlal / a = wET
1 - az

Setting r. = (~)I/n, j = 1,2, ... ,n, we get x. = (a - r)!(1 - (ir). As for the
J J J J

weights, one gets from (3.9)

Aj = +, j = 1, 2, ... , n.

4. Convergence

Let I If} , n = 1,2, ... , be a sequence of R-Szego formulas (take inton

account that for each n I If) represents an one-parameter family of quadrature

formulas), that is // n
n

I {f} = \' A~n)f(x~n\ x~n);;/:x~n)(i;;/:j),X~n)ET and A~n)> 0, j=I,2, ... ,nn .1... J J I J J J
J =1

where the weights A~n)are given by (1.3). In this section, we shall study the
J

convergence of such quadratures for any function f in the class R~(T) of the
integrable functions on T with respect to the measure ~. For this purpose a

first result we shall need is

Lemma 1

Let us defIne f1l = f1l = $ + -t: and f1l = f1l , then f1l is dense in the
n n~ n ~ ~

class C(T) of continuous functions on T, iff L (1-1 an I) = ~.

Proof. This is a direct consequence of the "closure criterion" discussed

in Addendum A.2 of [12 p. 244].0

Wew are now ready to prove a first result asserting the convergence in

the class C(T). Indeed, one has

Theorem 3

Let f be a continuous function on T, then

lim I If} = III If} = Jf(z)d~(z)n-7~ n t'"

10



Proof. Let e be a given real positive number. Take

e' = e / 2Jl where Jl = JdJl(z)o 0

By Lemma 1, there exists RN E ~ such that

I fez) - RN(z) I < E', V Z E T
n

Assume n > N and write I (f) = L A~n)f(x~n»),then
n . 1 J JJ=

I,. If} - I (f) = III {f-R } + I {R -f}.I"'" n I"'" N n N

Hence,
n

I I {f} - I {f} I ~ J I f(z)-R (z) I dJl(z) + \ A~n)I f(x~n»)- R (x~n»)I ~ 2Jl e' = eJ.l n N .f.. J J N J 0
J =1
n

(Recall that A~n» 0 , j = 1,2, ...n and L A~n)= Jlo)'o
J j =1 J

Assume now f a complex function defined on the unit circle T which is

integrable with respect to the measure Jl. We can write

fez) = f (8) + if (8), z = exp(i8) (4.1)1 2

where f.(8), j =1,2 are real valued functions defmed on the interval [-n,n].
J .

Let us fIrst suppose f is a continuous function, or equivalently f. (j = 1,2)
J

are continuous functions. From Theorem 3, we can write

lim I {f.} = III {f.}, j = 1,2 (4.2)n-7OOnJ I""'J

Now parallelling rather closely the arguments given in [13 pp.127-129] it can

be seen that (4.2) is also valid for integrable functions because of the fact

that any sequence of integra~~4 rules with positive weights which converges

for all continuous functions/ convergves for all integrable functions with
respect to a fmite Borel measure Jl on [-n,n].

Let now \r E RJl(T~ From (4.1), one can write

I'I(f} = III{f } + illI{f } and I (f} = I {f } + iI {f } (4.3)I"'" 1""'1 1""'2 n nl n2

Thus, by (4.2) and (4.3) the next corollay immediately follows

Corollary 1

Under the same hypothesis as Theorem 1, one has

lim I If} = I" (f) for any fER (T)n-7OO n I"'" Jl
Remark 2

When all the a.are equal to zero,then the Blaschke condition \(1-1 a 1)=001 f.. n

holds trivally, and the convergence of the Szego quadrature formulas

introduced in [1] is guaranteed in the class RJl(T) (see also [7] for a direct

11



proof). On the other hand, the special case when the sequence {ex, } consists ofn

a finite number p of points cyclically repeated (see, e.g. [14]) the Blaschke

condition also holds and therefore the convergence of the corresponding

quadrature process is assured.
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