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Abstract

Let a sequence {an} of numbers in the extended complex plane of one of the following four kinds be given:

1) All an are interior to or exterior to the unit circle. 2) All an are on the unit circle. 3) All an are above

or below the real line. 4) All an are on the real line. In each case the sequence {an} gives rise to a space of

rational functions and an orthogonal base in this space with respect to a given functional. Various kinds

of recurrence relations satisfied by the elements of this orthogonal base are discussed.
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1 Introduction

In this paper we shall use the following notations: D = {= E C : 1=1 < I}, E = {= E C :
Izl>l}, T={zEC:lzl=l}, H+={zEC:/mz>O}, H_={zEC:/mz<

OJ, R = {z E C : 1m z = OJ.

The Cayley transform T shall here be defined by the formulas

.1+ z -1) Z - i
Z=T(Z)=Z--,Z=T (Z =z--:' zED, ZEH+1-z +z

The transform Z ---t Z maps D onto H +, E onto H _ and Tonto R.

The substar conjugate f. of a function f is defined as

f.(z) = f(1;-z).

When f is a rational function, this may be written as

f.(z) = 7(1/ z),

(1.1)

(1.2)

(1.3)

where the bar denotes complex conjugates of the coefficients. Similarly the subtilde con­

jugate f- is defined by

f_(z) = fez).

When f is a rational function, this may be written as

f_(z) = 7(z).

(1.4)

(1.5)

The setting of this paper will be certain spaces of rational functions with a functional M
defined on them. The functional M gives rise to an inner product < > (not necessarily

definite) though the formula

or

< f,g >= ~M(J(z). g.(z))

< f,g >= M(J(z). g_(z)).

(1.6)

(1.7)

When < f, f >:f. 0 for all f in the space under consideration, we shall call .M and <, >
quasi-definite, and when < f, f » 0 for these f we call lvf and <, > positive definite.
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When <, > is defined by (1.6) we shall talk abaout the circle-disk situation, and when

<, > is defined by (1.7) we shall talk about the line-plane situation.

\Vhen J.l is a finite (positive) Borel measure with infinite support on T or R, positive

definite functionals }.;f (an thereby positive definite inner products) are defined through

in the circle-disk situation,

in the line-plane situation.

Af(J) = 1:f(t)dJ.l(t)

(1.8)

(1.9)

The spaces of rational functions that will be treated arise in connection with Nevanlinna­

Pick interpolation theory. The aim of this paper is to study certain properties of orthogonal

bases for these spaces, more specifically recurrence relations connecting elements of these
bases.

The theory of orthogonal sequences in these spaces (for the case that all interpolation

points are in D) was initiated by Djrbashian in 1969 (see [14]), and independently by

Bultheel, Dewilde and Dym (see [3,5,13]). For a general introduction to recent work on

this theory, see [6]. Other papers discussing these and related spaces are [9,10,25,29]. For

earlier work on recurrence relations in these spaces, see [6,7,8,10,16,17,27,28].

When all interpolation points coalesce at one point, the situation is essentially a polynomial

situation, and when the interpolation points consist of two points cyclically repeated, the

situation is to a large extent a Laurent polynomial situation. In particular when the one

point is the origin in the circle-disk situation, orthogonal polynoIllials on T are obtained, see

[15,21,22,34], while when the one point is the point at infinity in the line-plane situation,

orthogonal polynomials on R are obtained (see [1,2,11]). When the two points are the

origin and the point at infinity in the line-plane situation, orthogonal Laurent polynomials

on R are obtained (see [18,19,20,24,32]).

2 Interpolation in the unit disk

Let {an: n = 1,2, ... } be an arbitrary sequence of (not necessarily distinct) points (inter­

polation points) in DUE. We shall always assume that aj =/l/ak for j, k = 1,2, .... Note
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that l/aj E E if and only if aj E D, hence aj f. l/ak is always satisfied if an E D for all

n or an E E for all n.

We define the Blaschke factor (n as the function

() a;;-(an - z)
(nz =, I( -)' n=1,2, ....an 1- anz

(By convention we set I~:I= -1 if an = 0.)

The Blaschke products En are defined by
n

Bo(z) = 1, Bn(z) = II(/;(z), n = 1,2, ....
1.=1

'vVedefine the spaces Ln, L by

Ln = Span{Bk: k = 0, 1, ... ,n}, L = U~=oLn.

The functions in Ln are exactly the functions that may be written in the form

where
n

7rn(z) = II(1 - akz), n = 1,2, ...
1.=1

(2.1 )

(2.2)

(2.3)

(2.4)

(2.5)

and Pn E IIn (the space of polynomials of degree at most n). This follows by partial fraction

decomposition. In particular the situation reduces to the polynomial case Ln = I1n when

Qn = 0 for all n.

For f E Ln we define its superstar conjugate r by

P*(z) = Bn(z)!.(z). (2.6)

Note that this transformation depends on n. It must be clear from the context what n is.

Also note that 1* E Ln when f E Ln.

Let M be a quasi-definite functional on Ln +Ln., and let <, > be defined by (1.6). Let the

sequence {q>n : n = 0, 1,2, ... } be obtained by orthogonalization of the sequence {Bn} with

respect to <, >. We shall assume that all <Pn are monic, which means that the leading

coefficient Kn = K~n) in the decomposition
n

<Pn(z) = L K~n)Bk(Z)
1.=0

4
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I . in) 1equa s one, I.e. "'n = .

The follO\ving orthogonalitty properties are valid:

< f, <Pn >= 0 for f E Ln-l

Recall that we may write

(2.8)

(2.9)

(2.10)

By substituting an for z in the expression for <P~(z) obtained from (2.4), we easily verify
that

(2.11)

\Ve shall call the index n and the function <Pn degenerate if <P~(an-d = 0, non­

degenerate otherwise. vVe shall call the index n and the function <Pn exceptional if

<pn(an-d = 0, non-exceptional otherwise. Note that in the polynomial case (an = 0 for

all n), <P~(an-d = <P~(an) = <p~(0) =J 0, so that the degenerate case can not occur.

The following Christoffel-Darboux formula can be shown to be valid (see [6], where only

/, the case an E D for all n is explicitely treated) when the inner product < , > is positive
definite:

n-l
[<I>~(an)]2[<I>~(z)<I>~(w) - <I>n(Z)<I>n(w)] = [1 - (n(z)(n(w)] L:[<I>k(ak)]2<I>k(Z)<I>k(W). (2.12)

k=o

Proposition 2.1 Assume that the functional M is positive definite, and that an E D for

all n or an E E for all n. Then all <I>n are non-degenerate.

Proof:

By setting w = z in (2.12) we obtain

(2.13)

From this it easily follows that <I>~(z) =J 0 for zED if an ED, <I>n(z) =J 0 for z E E if

an E E. Thus <I>~(an-d =J 0 for all n if an E D for all n or an E E for all n. 0
Cf. the discussion above of the special case an = 0 for all n, i.e. the polynomial situation.
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3 Recurrence in the disk situation

For the sake of completeness we state a version of the fundamental result on Szego type

recurrence for the orthogonal rational functions.

Theorem 3.1 The sequence {<I>n} satisfies the following recurrence relation:

if.. ( ) Z - O'n-l if.. () L 1 - O'n-lZ if.. * ()
'¥n Z = Cn _ '¥n-l Z + On 1 _ '¥n-l Z , n = 1,2, ...1 - anz - O'nZ

(3.1 )

0'0 = 0, <I>o= 1, <I>~= 1.

The coefficients hn, Cn are given by

bn = (1 - O'n-la;;-)<I>n(an-d

(1 -IO'n_lj2)<I>~(an_d

C/

~a;:(1 - ~an)<I>~ (O'n-d
" -jO'nl(1 - IO'n-d2)

Proo I
The results follows from [7, Theorem 4.1].

n = 1,2, ... (3.2)

(3.3)

(3.4)

(3.5)

o
Corrollary 3.2 A function <I>n (or an index n) can not be both degenerate and exceptional

at the same time.

Proof:

Follows from (3.1)-(3.4) since <I>n(z) i= O. o
We note that in the polynomial case we have <I>~(O)= 1 for all n, hence hn = <I>n(O), en = 1

(recall that (~:) = -1 in this case), and (3.1)-(3.2) reduces to the classical Szego formulas

(3.6)

(3.7)

Since in this case En = 1, <I>ncan never be degenerate.
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(3.8)

Proposition 3.3 If the functional A! is positive definite, and all an E D or all an E E,

then Ibnl < It:nl for all n.

Proo r
We recall that in this situation En =I- 0 (see Proposition 2). From (3.4)-(3.5) we get

bn = _( an tl ¢>n(an-l).
En lanl ~~(an-d

The proof of Proposition 2.1 shows that 14>~(am)1 > l4>n(am)1 for all m, n when all am E D

and when all am E E. It follows from (3.8) that I~I < 1, hence Ibnl < It:nl· 0
Theorem 3.4 Assume that ¢>n is non-degenerate. Then the following recurrence relation

is satisfied:

(3.9)

In particular, this is the case when the functional AI is positive definite and all an E D or

all an E E.

Proof:

This formula is obtained by substitution for 4>~_1 (z) from (3.2) into (3.1), En being different

from zero. 0
We note that in the polynomial case (3.9) reduces to the well-known formula (see e.g. [22])

(3.10)

We shall call the sequence {¢>n} non-degenerate if all ¢>n are non-degenerate. We observe

that if {~n} is non-degenerate then (3.2) and (3.9) together define a three-term recurrence

relation in the sequence {¢>o, ¢>i, ¢>J, ~2' 4>2, ... , 4>~, ~n, ...}, and thus the elements of this

sequence are denominators of a continued fraction. (For basic information on continued

fractions, see [23].) We state this property formally in a theorem.

Theorem 3.5 Let {¢>n} be a non-degenerate sequence, and define

Q2m(Z) = ¢>:n(z), m = 1,2, ...

Q2m+l(Z) = ¢>m(z), m = 0,1,2, ....

7
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Then the sequence {Qn} form the denominators of a continued fraction J('::l an(z), where
bn ( = )

the elements an(z), bn(z) are given by

(3.13 )

The recurrence relation satisfied by the denominators {Qn} are thus

Q ) -z - am-l _1 - am-l=
Zm(z =8m, _ QZm-l(Z)+Em 1 _ Q2m-Z(Z)" m= 1,2, ...- amz - amz

ao = 0, Qo = 1, Ql = 1.

(3.14)

(3.15)

(3.16)

(3.17)

In particular the above results hold when the functional M is positive definite and all

an E D or all an E E.

In the polynomial case (all an = 0) the con tinued fractions above reduce to the well- known

PC-fractions (Perron-Caratheodory fractions), see [21,22]. The PC-fractions are closely

related to the Caratheodory Coefficient Problem. The continued fractions described in

Theorem 3.5 shall be called NP-fractions (Nevanlinna-Pick fractions). These continued

fractions are related to the Nevanlinna- Pick Interpolation Problem (d. [1,26,33]) in a

way that directly generalizes the relationship between PC-fractions and the Caratheodory

Coefficient Problem. For connections between the Nevanlinna-Pick Problem and general

system theory, see e.g. [12].

We shall call the sequence {<I>n}non-exceptional if all <I>nare non-exceptional.

Theorem 3.6 Assume that <I>n-l is non-exceptional. Then the following recurrence rela­
tion is valid:

(3.18)
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Proof'

Immediately from (3.1)-(3.2) with n replaced by n - 1 we obtain

A'. * () = _1_ . 1 - ~z A'. () _ Cn-l Z - On-2 A'. ()'i'n-2 Z {" __ 'i'n-l Z {" __ 'i'n-2 ZUn-l 1 - 0n-2Z un-II - On-2Z

(3.19)

(3.20)

(3.21 )

(3.22)

By substituting from (3.21) for 4>~_1 and 4>~_2 in (3.2) \;'t'ith n replaced by n -1, we obtain

(3.18). Similarly by substituting from (3.22) for 4>n-l and 4>n-2 in (3.1) with n replaced

by n - 1, we obtain (3.19). D

Theorem 3.7 Let {4>n} be a non-exceptional sequence. Then {4>n} form the denominators

of a continued fraction K::1 ~:i;?,where the elements an(z), bn(z) are given by

(3.23)

(3.24)

and {4>~} form the denominators of a contin1fed fraction K::1 ~~:~, where the elements
Cn(z), dn(z) are given by

(3.25 )

The recurrence relations have the form (3.18)-(3.20).
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Proo J:

Immediate from Theorem 3.6. D

(3.27)

In the polynomial case (on = 0 for all n), the formulas (3.18)-(3.19) reduce to the formulas

cI>n(z) = (z + 8~:1 )cI>n-l(Z) - (1 -18n_d2) 8~:1 zcI>n_2(Z)

(3.28)

These are M-fractions and general T-fractions, respectively. (See [23].) Continued fractions

of the form (3.18) or (3.19) are instances of ~1P-fractions (Multipoint Pade continued

fractions), see Section 5 (d. [17,30]). They bear the same relationship to multipoint Pade

approximation as general T-fractions and M-fractions to two-point Pade approximation.

For a short treatment of continued fractions obtained from the basic recurrence formulas

(3.1)-(3.2), see also [6], with reference to [4].

4 Interpolation on the unit circle

Let {on: n = 1,2, ... } be an arbitrary sequence of (not necessarily distinct) points on T.
Note that liOn = On. We introduce functions Wn by

n

Wo = 1, wn(z) = II(z - Ok), n = 1,2, ... ,
k=l

and define the spaces Ln and L by

Ln = Span{~, ~, ... , ~}, L = U~=oLn'
Wo WI Wn

We may also write

and

where

(4.1 )

(4.2)

(4.3)

(4.4)

0"0 = 1,

10
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(We have for convenience assumed that z = -1 is not among the points On. If On = -1
for some n, a slightly different definition can be used.)

The functions in .en are exactly the functions that may be written in the form

Pn(z)

L(z) = -(-)' pn E I1n.Wn Z

(This follows by partial fraction decomposition).

(4.6)

We shall have occasion to work also with the spaces .en . .en and .e . .e. Note that

.en . Ln C .en, .e . .e c .e, since 1 E .en for all n.

Let M be a linear functional on .e . .e, and assume that !v! has real values for all functions

in .e that are real on T. As before we define the inner product < , > by (1.6), and assume

that this inner product is quasi definite.

Let {~n} be the monic orthogonal system obtained by the Gram-Schmidt process from the

sequence {an} (or equivalently from the sequence {..L }). That ~n is monic means that theWn

coefficient of an in the expansion of ~n is one. Thus

We may write

We easily verify that

n

~ (z) = ~ b(n)a (z) b(n) = 1 b(n) E Rn ~mm'n 'm .
m=O

Pn (z)

~n(z) = -(-)' Pn E I1n.Wn Z

~n.(z) = ~n(z), n = 0,1,2, ..

(4.7)

(4.8)

(4.9)

Note that Pn(on) =I 0 for all n. We shall call the function ~n and the index n singular
if Pn(on-d = O. (Note that the properties of being degenerate and of being exceptional

coincide in the circle situation, because of (4.9), and we use the word singular for these

coinciding phenomena in this case.) We shall call 4>n and n regular if Pn(on-d =I O.

5 Recurrence in the circle situation

We shall in this section state without proof a general result on three-term recursion in the

circle situation, and briefly discuss two special cases with one interpolation point repeated

and with two interpolation points cyclically repeated.
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(.5.1)

Theorem 5.1 Assume that the system {cpn} is regular. Then a recurrence relation of the

following form holds:

An Z - O'n-2 Z - O'n-2 ()cpn(Z) = ( u + Bn---)CPn-I(Z) + Cn---CPn-2 Z, n = 2,3, ...
Z - O'n Z - O'n Z - O'n

with the initial condition

0'0 = O.

The constants An, Bn' Cn satisfy the inequalities

Cn =1= 0, n = 2,3, ....

(5.2)

(5.3)

(5.4 )

Proo I
See [10]. Cf. also [16], which treats the cyclic situation in the line case (discussed in Section

6). 0
It follows that the orthogonal functions {cpn} are denominators of a continued fraction
Koo ~ 'th I t

n=1 bn(z) , WI e emen s

an(z) = Cn(z - O'n-2)
Z - O'n

bn( z) = ( An + En Z - O'n-2 ).
Z - O'n Z - an

(5.5)

(5.6)

Continued fractions of this form have been called MP-fractions (Multipoint Pade continued

fractions). See [17] for further discussion in the cyclic case. Note that if O'n = 1 for all n,
then CPnis of the form

(5.7)

Corrollary 5.2 Let O'n= 1 for n = 1,2, .... Then the sequence {CPn}satisfies a recurrence

relation of the following form:

An =1= 0 for n = 2,3, ...

Cn =1= 0 for n = 2,3, ...

12
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Proo 1:

Follows directly from Theorem 5.1, when we recall that <I>n is always regular in this case.

(The case n = 2 must be handled separately.) 0
For technical reasons we introduced the assumption an 01 -1 for all n. It can be shown

that a recurrence relation of the form (5.1) is valid also in the case that an = -1 for some
n.

Corrollary 5.3 Let a2m = 1, m = 1,2, ... , a2m+l = -1, m = 0,1,2, .... Assume that the

sequence {<I>n} is regular. Then {<I>n} satisfies a recurrence relation of the following form:

Proof:

Follows directly from Theorem 5.1.

(5.11)

(5.12)

D

6 Orthogonality and recurrence in the plane situa­
tion

Let {An} be an arbitrary sequence of (not necessarily distinct) points in H + U H _, and

assume that Aj 01 Ak for all j, k. Set

(6.1 )

d. (1.1).

Then an E DUE, and OJ 01 l/ak for j 01 k. To the functions (n(z) correspond the

functions f n(Z) defined by

Define ~n by
n

.6.0 = 1, .6.n(Z) = IIfk(Z), n = 1,2, ... ,
k=l

13
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and set

(6.4)

(6.5)

\Ve set Mn"" = {AI- : AI E .A1n}, M"" = U~=oMm"'" Let}';f be a linear functional on

.1\1 + M ....., and let < , > be defined by (1. 7). The functions Fn defined by

Z - i
Fn(Z) = <pn(z) = <pn( z-:)+~

are orthogonal functions corresponding to the bases {A1n}. (Here {<pn} are orthogonal

with respect to the inner product (1.6) corresponding to the bases {.cn}.)

\Ve define

(6.6)

when fn E Mn, and note that f;; E Mn.

\Ve further observe that

Z - i
F;(Z) = <p~(z), Z = Z + i

\Ve call Fn degenerate if F;;(An-d = 0, exceptional if Fn(An-d = O.

Note that if Z = r(z), A = r(a) (cf.(1.1)), then

2i(Z - A)

z-a= (Z+i)(A+i)

2i(Z - A)
1- QZ = (i _ A)( Z + i)

(6.7)

(6.8)

(6.9)

Theorem 6.1 The sequence {Fn} satisfies a recurrence relation of the following form:

(6.10)

..... ) -Z - An-l () -Z - An-l "" ( )Fn (Z = Dn - Fn-l Z + En - Fn-l Z ,
Z - An Z - An

Ao = i, Fo = 1, Fo""= 1.

14
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Proof"

Follows from Theorem 3.1 by the substitutions (6.7), (6.8), (6.9). D

Theorem 6.2 Assume that Fn is non-degenerate. Then Fn satisfies a recurrence relation

of the following form:

(6.13 )

In particular this is the case if the functional Al is positive definite and all An E H + or

all An E H _ .

Proof:

Follows as above from Theorem 3.4. D
It follows by combining (6.11) and (6.13) that if the sequence {Fn} is non-degenerate, then

the elements of the sequence {Fa, F1", Fl, F2"', F2, ••. , F;;, Fn, ... } are the denominators of

a continued fraction, just as in the circle case. We shall call also these continued fractions
NP-fractions.

Theorem 6.3 Assume that {Fn} is non-exceptional. Then {Fn} and {F;;} satisfy recur­

rence relations of the following form:

Proof:

Follows as above from Theorem 3.6.
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It follows that if the sequence {Fn} is non-exceptionaL then the elements of the sequences

{Fn} and {F;} are the denominators of two continued fractions. These are again instances

of MP-fractions. (See Section 4,5.)

In the special case An = i for all n (corresponding to the polynomial case in the circle

situation) these formulas reduce to

7 Orthogonality and recurrence in the line situation

Let {An} be an arbitrary sequence of (not necessarily distinct) points on R. Define the

points an as in Section 6:

(7.1 )

Then an E T. To the functions wn(z) defined in (4.1) correspond the functions nn(Z)

defined by
n

no = 1, nn = II(z - Ak), n = 1,2, ....
k=l

We set .

..A.1n = Span{ ~o' ~n' ... , ~n}' M = U::'=o·'vfn•

Let .en, .e be the spaces defined by (4.2).

(7.2)

(7.3)

Let M be a functional on M . M with <, > defined by (1.7). The functions Fn defined by

(7.4)

are orthogonal functions corresponding to the bases {Mn}. (Here {<I>n} are orthogonal

with respect to the inner product (1.6), corresponding to the bases {.en}')

We may write Fn in the form

(7.5)
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We shall call Fn singular if Pn(An-d = O. (Here as in the circle situation, the properties

of being degenerate and of being exceptional coincide, and we use the word singular for

these coinciding phenomena in this case.) We call Fn regular if Pn(An-d =f O.

Theorem 7.1 Assume that the system {Fn} is regular. Then a recurrence relation of the

following form holds:

with initial condition

Ao = i.

Proof:

Follows from Theorem 5.1 by the substitutions (1.1) and (7.4).

(7.7)

D
Let An = (X) for all n. By (1.1) this corresponds to an = 1 for all n. In this case <pn(z) are
of the form

see (5.7). By substituting for z from (1.1) we get

n

Fn(Z) = L IkZk,
k=O

which is a polynomial. Thus An = (X) for all n represents the polynomial situation.

(7.8)

(7.9)

Corrollary 7.2 Let An = (X) for all n. Then the sequence {Fn} satisfies a recurrence

relation of the form

Proof:

Follows from Corollary 5.2 by the substitutions (1.1) and (7.4).

(7.10)

D
Let A2m = (x), m = 1,2, ..., A2m+l = 0, m = 0,1,2, .... Then the orthogonal functions

cI> n ( z) are of the form

m 13k m Ik

cI>2m(Z) = L (7 -l)k + L -,-,.\L'k=O - k=O

17
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m 13k m+1 Ik

4>2m+1(Z) = E (Z - l)k + E
By substituting in (7.11)-(7.12) from (1.1) and (7.4) we get

m

F2m(Z) = L KkZk
k=-m

m

F2m+1(Z) = L KkZk.
k=-(m+l)

These functions are orthogonal Laurent polynomials.

(7.12)

(7.13)

(7.14)

Corrollary 7.3 Let A2m = 00 for m = 1,2, ... , A2m+l = 0 for m = 0,1,2, .... Assume

that the sequence {Fn} is regular. Then {Fn} satisfies a recurrence relation of the following

form:

Proof:

Follows from Corrollary 5.3 by the substitutions (1.1) and (7.4).

(7.15)

(7.16)

o
The above recurrence relations are essentially the well-known recurrence relations for reg­

ular orthogonal Laurent polynomials. (See [20,32]. Cf. also [31].)
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