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Abstract

We give some introductory notes about wavelets, motivating and deriving the basic relations
that are used in this context. These notes should be considered as in introduction to the
literature. They are far from complete but we hope it can motivate some readers to get involved
with a quite interesting piece of mathematics which is the result of a lucky mariage between the
results of the signal processing community and results in multiresolution analysis. We try to
give answers to the questions: What are wavelets? What is their relation to Fourier analysis?
Where do the scaling function and the wavelet function come from? Why can they be useful?
What is a wavelet transform? Where and how are they applied?
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1 History

Some ideas related to wavelets already existed at the beginning of the century, but the real devel-
opment came only in the mid-eighties.
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Besides a paper by Frazier and Jawerth (1985) [12], wavelets were in the initial stage developed
in France, the so called “French school” lead by J. Morlet, A. Grossmann and Y. Meyer.

Wavelets, or “Ondelettes” as they are called in French were used at the beginning of the eighties
by J. Morlet, a geophysicist, as a tool for signal analysis for seismic data. The numerical success of
this application prompted A. Grossmann (a theoretical physicist) and J. Morlet to make a theoreti-
cal study of the wavelet transforms (1984) [13, 15]. In 1985, Y. Meyer, an harmonic analyst, pointed
out the strong connection with the existing analysis techniques of singular integral operators.

Ingrid Daubechies became involved in 1986 and this started an interaction between signal
analysis and the mathematical aspects of dilations and translations [7, 10].

Also Stephane Mallat became involved when he noticed the connection with multiresolution
analysis [22].

A major breakthrough was provided in 1988 when Daubechies managed to construct a family of
orthonormal wavelets with compact support [8], a result inspired by the work of Meyer and Mallat
in the field of multiresolution analysis. Since then mathematicians, physicists and applied scientists
became more and more excited about the ideas. See for example [6, 17, 5].

2 Motivation

We assume that the reader is familiar with Fourier analysis. For reference, we added some formulas
in appendix A. We use F to denote the Fourier transform and L2 = L2(R) for the space of square
integrable functions on the real axis R.

We shall sometimes refer to a function as being a signal. The norm ‖f‖ will always refer to the
2-norm. It is called the energy of the signal and f being square integrable thus means that it has
finite energy.

Let δ denote the Dirac delta function, then one knows that

f(x) =

∫ ∞

−∞
f(u)δ(x− u)dξ

One could say that f(x) is decomposed with respect to an orthonormal basis {δ(x − u)}u∈R of
L2. The “coordinates” with respect to this basis are just the function values f(u). The basis
functions are extremely local in the x-domain, but in the frequency domain, its Fourier transform
is supported on the whole real axis: Fδ(x − u) = e−iξu/

√
2π, ξ ∈ R. Thus, even though it is as

narrow as possible in the x-domain, each basis function encloses all possible frequencies. This is
an extreme situation.

At the other extreme, we may consider another orthonormal set of basis functions {eixu}u∈R

for L2. These give an “expansion” of f(x) as

f(x) =
1√
2π

∫ ∞

−∞
f̂(u)eiuxdu

where f̂ denotes the Fourier transform of f . These f̂(u) are the coordinates for this basis. Now the
basis functions are each associated with just one frequency since Feiux = δ(ξ − u)/

√
2π, however

in the x-domain, they are supported on the whole of R.
The most interesting wavelets are somewhere in between these two extremes. They are local

in both the x- and the frequency domain. They become really interesting if on top of that they
are still an orthonormal set. We say that a function is local when most of its energy (consider
e.g. its norm as a measure for the energy) is located in a finite interval. Such functions are zero
(compact support) or decay quickly outside this interval. One can imagine such a function as an
oscillation, with significant lobes inside a finite interval and practically zero outside. This should
explain the term wavelet. The property of being local in both x-domain and frequency domain will
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make wavelets very suitable to analyse a signal by decomposing it into components which are local
in both domains. This means that we can look at the signal in a finite time slice (a window moving
over the signal) and at the same time select only the frequencies within a certain frequency band (as
if there is also a window sliding over all possible frequencies). The sliding window in the x-domain
corresponds to translations of the wavelet; the dilations of the wavelet will have a windowing effect
in the frequency domain (see below). In the sequel of this paper we shall usually have wavelets with
a compact support in the x-domain and local, i.e. with almost compact support in the frequency
domain. We can not have compact support in both domains by the Fourier-Heisenberg uncertainty
principle.

The previous analysis for L2 can be repeated for 2π-periodic functions defined on R. The
space of square integrable 2π-periodic functions is denoted by L2

2π and it has the orthonormal basis
{einx}n∈Z. Its Fourier expansion with respect to this basis is (a summation with no boundaries will
always be supposed to range over Z)

f(x) =
∑

n

f̂ne
inx

with Fourier coefficients (the Fourier transform is a function of the discrete variable n)

f̂n =
1

2π

∫ 2π

0
f(x)e−inxdx =:

〈

f(x), einx
〉

.

Again the basis functions {wn(x) = einx : n ∈ Z} form an orthonormal set: 〈wm, wn〉 = δnm. There
is something remarkable about these basis functions. All the functions wn are obtained as (integer)
dilations of the same function w(x) = eix. This means that wn(x) = w(nx). Thus Fourier analysis
tells us that every f ∈ L2

2π can be written as a linear combination of integer dilations of one basic
function w(x) = eix. For large (small) n the function wn corresponds to a high (low) frequency.

This is now another feature we want to have in wavelets: they form a basis which can be
generated by dilations of one “mother” function. For L2 = L2(R), the basis of sinusoidal waves
{einx} is not appropriate since it does not even belong to L2. Instead of waves with an infinite
support, we want “wavelets” which are local, i.e. with an (almost) compact support. So let ψ(x)
be the compactly supported mother function for L2. However, because of the compact support, it
will never be possible to expand every f ∈ L2 by dilations of ψ, since all these will have compact
support too. Therefore dilations are not enough and we need translations as well.

On the other hand, translations alone are not enough. Since ψ has compact support, one could
hope to generate L2 by shifting it (e.g. over all integer values). Thus we consider the functions
ψ0k(x) = ψ(x − k), for k ∈ Z. This is not enough though because also the Fourier transform ψ̂ is
supposed to be local and thus practically all its frequencies are from a fixed frequency band (i.e., it
is practically band limited). Therefore all these ψ0k contain frequencies from practically the same
frequency band and there are of course functions in L2 which are not band limited. Thus we shall
have to consider both dilations and translations of the mother function. Thus, while the translates
of ψ cuts the x-axis into small (i.e. local) pieces, the dilations of ψ correspond to a division of the
frequency range into octaves. For computational efficiency, the scaling factors are often chosen to
be powers of 2. So we shall consider the functions ψ(2jx − k). This is now a 2-parameter set of
functions. In L2, it is easily seen that ‖ψ(2jx− k)‖2 = 2−j‖ψ‖2. Hence, the functions

ψnk(x) = 2n/2ψ(2nx− k)

will have unit length if ‖ψ‖ = 1. An important problem will be to choose ψ such that they also
form an orthonormal set, i.e., such that in L2 with inner product 〈f, g〉 :=

∫

R
f(x)g(x)dx,

〈ψjk, ψlm〉 = δjlδkm.
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In that event f ∈ L2 will have the expansion

f(x) =
∑

j,k

cjkψjk(x) with cjk = 〈f, ψjk〉 .

We mention here that also B-splines or finite elements form a set of basis functions with a
compact support. Thus they are also closely related to wavelet analysis and there exists a florishing
literature where splines and wavelets are integrated. See for example [4]. These basis functions
are not orthogonal to their translates though. However splines are known for their ability to
produce smooth approximations. Wavelets on the other hand will not be so smooth. This can be a
disadvantage, but if the objective is to detect sharp edges (e.g. in image processing) this turns into
an advantage. About this aspect see later in this paper. In the present paper we shall not discuss
spline wavelets, cutting off an important branch of the existing literature on classical wavelets.

3 Discrete versus continuous wavelet transforms

The previous analysis brought us to the basis {ψnk} in two discrete parameters n and k. The set
of corresponding coefficients cnk = 〈f, ψnk〉 is called the wavelet transform of f . The inner product
is 〈f, ψnk〉 =

∫ ∞
−∞ f(x)ψnk(x)dx. Often the function (signal) will be sampled, i.e., it takes the value

f(j) for x = j, j ∈ Z and is zero everywhere else. Then of course f ∈ `2(Z) and the integral has
to be replaced by an infinite sum. For practical computations, one shall not work with infinitely
long vectors (f(j))∞j=−∞ but only with vectors of finite length: (f(j))Nj=0 say. For convenience (like

in discrete Fourier transform (DFT)) N is chosen to be a power of 2: N = 2K and the (discrete)
signal is supposed to be periodically extended beyond this range to all j ∈ Z. This is the practical
application of the discrete wavelet transform (DWT).

In fact, the term DWT is somewhat ambiguous. One could refer by this to the transform where
the signal is considered as a discrete function (a sequence) as we just did, or one could use this to
refer to the case where the signal is continuous but where the two parameters generating the wavelet
basis (n and k in our notation) are discrete, as we did in the previous section. The continuous
variant of the latter signification is the one where the discrete parameters n and k are replaced by
continuous ones (we shall call them a and b). The analysis of the continuous wavelet transforms
can be made in parallel with the discrete version. Somewhat naively we could say that summations
over n and/or k should be replaced by integrals over a and/or b. Which formalism is chosen is
usually depending on the applications one has in mind or the personal taste and background of
the author. In this paper we have chosen for the disrete formalism. One argument being that our
interest goes to applications which should be numerically implemented on a computer in which case
the integrals will be replaced by sums anyway. This need not be restricted though to the dyadic
points we shall consider here. In certain applications we need redundancy and some oversampling
is done (when you want for example an error correcting mechanism for the music signal of a CD
recording).

However, to show that it is perfectly possible to give continuous analogs by replacing the discrete
parameters n, k by continuous parameters a, b, and for the sake of comparison, we briefly mention
some formulas here.

In the continuous case we consider a family of functions, depending on two continuous param-
eters a and b, which are all connected with one single function that is scaled and shifted.

ψa,b(x) =
1

√

|a|
ψ(
x− b

a
), a 6= 0, b ∈ R (3.1)

with ψ ∈ L2 = L2(R).
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As an example, take

ψ(x) = (1 − x2)e−
1

2
x2

(Mexican hat) (3.2)

Note that ψ(x) is the second derivative of exp( 1
2x

2). Hence we know from Fourier analysis that

ψ̂(ξ) = ξ2e−
1

2
ξ2

The function and two of its dilations are plotted in figure 1. Observe that varying b just shifts
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Figure 1: The Mexican hat function and two of its translated dilations

ψa,b(x) along the x-axis while a small shrinks the picture to a narrow one (high frequency) while a
large spreads out the picture (low frequency).

Note that ψ nor ψ̂ really have a compact support but they decay very fast and the supports
are nearly compact.

In analogy with the discrete version, one defines the continuous wavelet transform of f as

F (a, b) =

∫ ∞

−∞
f(x)ψa,b(x)dx = 〈f, ψa,b〉 , f ∈ L2

When setting a = 2−j and b = 2−jk, one is back in the discrete case.
For the inverse transform to exist, one should require that ψ satisfies

Cψ =

∫ ∞

−∞

|ψ̂(ξ)|2
|ξ| dξ <∞ (3.3)

where ψ̂ is the Fourier transform of ψ. The condition (3.3) is necessary for the inverse transformation
to exist (see (3.4) below).
Note that Cψ < ∞ implies ψ̂(0) = 0 =

∫ ∞
−∞ ψ(x)dx. Thus ψ should change sign (to have a mean

value 0). Note that for the Mexican hat function, Cψ = 2π.
The inverse transform is given by

f(x) =
1

Cψ

∫ ∞

−∞

[
∫ ∞

−∞
F (a, b)ψa,b(x)db

]

da

a2
. (3.4)

In what follows, we shall be interested in the case where b ∈ R and a > 0 (only the values
2j > 0 in the discrete version). The restrictive condition (3.3) then has to be replaced by

1

2
Cψ =

∫ ∞

0

|ψ̂(ξ)|2
ξ

dξ <∞

with reconstruction formula

f(x) =
2

Cψ

∫ ∞

0

[
∫ ∞

−∞
F (a, b)ψa,b(x)db

]

da

a2
.

More about continuous wavelet transformations and their relation with short time Fourier trans-
forms can be found in for example [14, 27].
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4 Multiresolution analysis

The Fourier like framework we need to study wavelets is multiresolution analysis. We need
multiresolution because the resolution, i.e., the details of the function that we can see will be
governed by the frequencies, i.e. by our dilations though the parameter n. On the other hand,
for each resolution we have a space of basis functions obtained by translation of a basic function
obtained with the parameter k. Thus we have several spaces at a different resolution: a multires-
olution. For an excellent treatment of multiresolution analysis, see [16]. The subsequent notes are
based on this paper.

This analysis consists in breaking up L2 in a sequence of nested closed subspaces Vj

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

so that
⋃

n∈Z
Vj is dense in L2 and

⋂

n∈Z
Vn = {0}. Moreover one should have

f(x) ∈ Vn ⇔ f(2x) ∈ Vn+1, n ∈ Z

f(x) ∈ V0 ⇔ f(x− k) ∈ V0, k ∈ Z

and there should exist a function φ, such that {φ(x− n)}n∈Z forms an orthonormal basis of V0.
Based on this definition, one can prove the following properties. Suppose Pn is the projection

of L2 onto Vn then
PnPm = PmPn = Pn, m ≥ n
lim

n→−∞
Pnf = 0, lim

n→∞
Pnf = f, f ∈ L2

Pn+1 = D 1

2

PnD2

with Da a dilation operator: (Daf)(x) = |a|−1/2f(x/a).

Example 4.1 (Box functions)
The Vn are the spaces of L2 functions generated by the basis consisting of the functions which are

piecewise constant on the intervals [2−nk, 2−n(k + 1)[. Thus if χnk are the characteristic functions
for these intervals, then

Vn = span{χnk : k ∈ Z}.
It is an easy exercise to prove that these form indeed a multiresolution, where we may choose φ(x)
to be the characteristic function of the unit interval [0, 1[. One may check that the projection Pn
is defined by

(Pnf)(x) = 2n
∫ 2−n(k+1)

2−nk
f(y)dy , x ∈ [2−nk, 2−n(k + 1)[

and the functions φ0k(x) = φ(x− k) form an orthogonal basis for the space V0.

5 The father function or scaling function

The function φ is called the father function or scaling function. Denote its shifted versions as
φ0n = φ(x− n), then any f ∈ V0 can be written as

f =
∑

n

anφ0n, (an) ∈ `2.

Now, since φ ∈ V0, also φ(x2 ) ∈ V−1 ⊂ V0. Thus we may also expand this function in V0:

φ(
x

2
) =

∑

n

cnφ(x− n), x ∈ R

In other words, the father function satisfies the dilation equation
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φ(x) =
∑

n

cnφ(2x− n), x ∈ R, n ∈ Z.

This dilation equation is often called a two-scale relation (TSR). To avoid trivialities we look for a
solution with

∫ ∞
−∞ φ(x)dx 6= 0. Suppose we normalize φ so that

√
2πφ̂(0) =

∫ ∞
−∞ φ(x)dx = 1, then

2

∫ ∞

−∞
φ(x)dx =

∑

n

cn

∫ ∞

−∞
φ(2x− n)d(2x− n),

thus

∑

n

cn = 2

Suppose we can solve the dilation equation for some choice of the coefficients cn, then we may
consider the functions

φnk(x) = 2n/2φ(2nx− k), n, k ∈ Z (5.1)

Note that Vn = span{φnk : k ∈ Z}.

6 Solution of the dilation equation

Let us first look at some example solutions of the equation

φ(x) =
∑

k

ckφ(2x− k),
∑

k

ck = 2.

Example 6.1 Set c0 = 2 and all other ck = 0. Then a solution is φ = δ, the Dirac delta
function, since indeed δ(x) = 2δ(2x). This example shows that a solution is not always a smooth
function. Also φ = 0 is a solution but φ̂(0) = 0! The Dirac function resulting from this example
is pathological, in the sense that it does not have all the usual properties a scaling function for a
wavelet will have. So it is not considered to correspond to a wavelet.

Example 6.2 Set c0 = c1 = 1. The solution is the box function

φ(x) = χ[0,1[(x) =

{

1, 0 ≤ x < 1
0, otherwise

The proof can be checked easily on a picture. See figure 2. This example results in the Haar basis.
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Figure 2: The box function and the dilation equation.
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Example 6.3 For c1 = 1 , c0 = c2 = 1
2 , the solution is the hat function

φ(x) =







x, 0 ≤ x ≤ 1
2 − x, 1 ≤ x ≤ 2
0, otherwise

One can check graphically that the hat function satisfies the dilation equation. See the figure 3
(for the wavelet function ψ see below).
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Figure 3: The hat function and the corresponding wavelet

Of course such a graphical construction can only be done for simple examples. We need a more
systematic approach. There are several general construction methods. We give some examples.

Construction 1: (By iteration)
One way to find φ(x) is by iterating φj(x) =

∑

k ckφj−1(2x− k).

Example 6.4 Take for example with φ0 = the box function χ[0,1[.
For c0 = 2, the box function gets taller and thinner, so it goes to the Dirac function.
For c0 = c1 = 1, the box remains invariant φj = φ0 , j ≥ 0.
For c1 = 1, c0 = c2 = 1

2 , the hat function appears as j → ∞.

Example 6.5 Using a computer program with graphical possibilities, one can try the same with
c0 = c3 = 1

4 , c1 = c2 = 3
4 . The solution is a quadratic spline.

φ(x) =















x2, 0 ≤ x ≤ 1
2 − 2x2 + 6x− 3, 1 ≤ x ≤ 2 (quadratic spline)
(3 − x)2, 2 ≤ x ≤ 3
0 otherwise

Example 6.6 Another example corresponds to the choice c0 = c4 = 1
8 , c1 = c3 = 1

2 , c2 = 3
4 . The

solution is the cubic B-spline.

Example 6.7 An interesting example is obtained by choosing c0 = 1
4(1 +

√
3) , c1 = 1

4(3 +
√

3),

c2 = 1
4(3−

√
3) , c3 = 1

4(1−
√

3). The solution is somewhat surprising. The corresponding wavelet
is called D4 (D for Daubechies and 4 because only 4 coefficients are nonzero). The result is plotted
in the first part of figure 4. For the corresponding wavelet function ψ see below.

Construction 2: (By Fourier analysis).
Defining the Fourier transform

φ̂(ξ) =
1√
2π

∫ ∞

−∞
φ(x)e−ixξdx,
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Figure 4: The Daubechies D4 scaling function and wavelet.
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the dilation equation gives

φ̂(ξ) =
∑

n

cn√
2π

∫ ∞

−∞
φ(2x− n)e−ixξdx =

H(1
2ξ)√
2π

∫ ∞

−∞
φ(y)e−iyξ/2dy

= H(1
2ξ)φ̂(1

2ξ)

where H(ξ) = 1
2

∑

n cne
−inξ. Note that H(0) = 1. Iterating the above result and using φ̂(0) =

1/
√

2π
∫ ∞
−∞ φ(x)dx = 1/

√
2π, we find

φ̂(ξ) =
1√
2π

∞
∏

j=1

H(2−jξ).

It can be shown rigorously that this infinite product makes indeed sense but we shall not do this
here.

Example 6.8 c0 = 2, then H(ξ) = 1, φ̂(ξ) = 1/
√

2π and this is indeed the Fourier transform of
the Dirac function.

Example 6.9 c0 = 1 = c1 (box function). The product of the H-functions (H(ξ) = (1 + e−ξ)/2)
is a geometric series.

H(1
2ξ)H(1

4ξ) =
1

4
(1 + e−iξ/2)(1 + e−iξ/4) =

1 − e−iξ

4(1 − e−iξ/4)
.

The product of N such functions is

N
∏

k=1

H(2−kξ) =
1 − e−iξ

2N (1 − e−iξ/2N )

which for N → ∞ approaches

√
2πφ̂(ξ) =

1 − e−iξ

iξ
=

∫ 1

0
eiξxdx =

√
2πFχ[0,1[

and this identifies φ̂ as the Fourier transform of the box function.

The Fourier analysis approach now gives easily the following examples which you may check.

Example 6.10 The hat function comes from squaring the previousH(ξ), hence squaring
∏∞

1 H(2−jξ).

Example 6.11 The cubic spline comes from squaring again.

Construction 3: (Recursion)
Suppose φ(x) is known at integer values x = k. Then the dilation equation defines φ(x) at half
integers x = k/2. Repeating this process yields φ(x) at all dyadic points x = k/2j . This is a fast
algorithm and it is often used in practice.

Example 6.12 ForD4, we can find starting values at φ(1) and φ(2) as follows. We shall show in the
next Theorem that suppφ(x) ⊂ [0, 3]. It can also be shown that at the boundaries, φ(0) = φ(3) = 0,
so that of all values φ(k), k ∈ Z, only φ(1) and φ(2) are nonzero. Hence, the dilation equation gives

φ(1) = c1φ(1) + c0φ(2)
φ(2) = c3φ(1) + c2φ(2)

≡
[

φ(1)
φ(2)

]

= C

[

φ(1)
φ(2)

]

10



Thus [φ(1) φ(2)]T is an eigenvector for the matrix C =

[

c1 c0
c3 c2

]

. Its eigenvalues are λ = 1 and

λ = 1
2 . For λ = 1, the eigenvector is φ(1) = cc0, φ(2) = cc3. The constant c is chosen to normalize

the vector. As we shall see later in Lemma 9.5, the values of φ(k) should sum up to 1. Hence
c = (c0 + c3)

−1. This eventually gives the required function values to start with. The next values
at 1/2 and 3/2 are given by

φ(
1

2
) = c0φ(1)

φ(
3

2
) = c2φ(1) + c1φ(2)

etcetera.

We saw from the examples that they all had compact support. One can show in general

Theorem 6.1 If φ(x) =
∑

n cnφ(2x − n) with cn = 0 for n < N− and n > N+, then supp(φ) ⊂
[N−, N+]. (The support is the smallest closed interval, outside of which the function is zero.)

Proof. We use construction 1 : Let φ0 = χ[− 1

2
, 1
2
[ and iterate

φj(x) =
∑

n

cnφj−1(2x− n)

Denote supp(φj) = [N−
j , N

+
j ], then

N−
j =

1

2
(N−

j−1 +N−) , N+
j =

1

2
(N+

j−1 +N+)

with

N−
0 = −1

2
, N+

0 =
1

2
.

An easy induction shows that

N−
j = 2−jN−

0 +

(

1

2
+

1

22
+ · · · + 1

2j

)

N−,

which converges for j → ∞ to N−. A similar argument shows that limj→∞N+
0 = N+. This proves

the theorem. �

7 Interpretation of multiresolution

We have seen that a basis for V0 is given by translates of the father function φ. The reciprocal
of the translation distance is called the resolution of this basis. One could say that the resolution
gives the number of basis functions per unit length. Let us set by definition the resolution of V0

to be 1. The projection P0f gives an approximation of f at resolution 1. The projection Pjf of f
onto Vj gives the approximation of f at resolution 2j .

The higher j, the higher the resolution, i.e., the more basis functions per unit length. This
means that we look at the signal in more detail. Compare the continuous expression (3.1) with the
discrete analog (5.1). We could say that by choosing a = 2−j , we choose a certain magnification for
the microscope we use to look at the signal. The smaller a, the larger the magnification is, thus the
more detail we want to catch. Thus if we slide our signal under our microscope it should be with
small steps for a large magnification and with coarser steps for a low magnification. The parameter

11



b in (3.1) which governs the position should therefore be chosen proportional to a: small a ⇒ large
magnification ⇒ small steps ⇒ small b. Thus choosing b = ak is a natural thing to do. If we thus
discretize a and b as a = 2−j and b = ak, then φjk(x) looks like a discretized version of ψa,b. This is
somewhat misleading however because the father function φ does not give the wavelets as we have
introduced them before. Recall that we required that

∫

ψ(x)dx = 0. For the father function, it
holds that

∫

φ(x)dx = 1. What will really give the wavelets is the mother function ψ to be studied
in the next section. Like the father φ generated orthonormal basis functions for the Vj , the mother
function will generate an orthonormal basis for the orthocomplements Wj of the Vj .

When we consider f as a (time) signal, then the approximation at resolution 2j−1 is a blurred
version of the signal approximation at resolution 2j . Its difference Pjf − Pj−1f is the detail signal
and belongs to the orthogonal complement Wj−1 of Vj−1 in Vj . In the next section we shall study
these orthocomplements and construct orthonormal bases for the Wj .

It is possible to construct approximants for f at different scales. Suppose we know fj = Pjf ∈ Vj
at resolution 2j , then it is possible to construct the approximant fj−1 = Pj−1f ∈ Vj−1 from this
because Vj−1 ⊂ Vj . The function fj−1 contains only half the number of coefficients per unit length
as fj (it is a blurred version). This forms the basis of wavelet expansions as given later. For more
details see section 13.

8 The mother function

We know that in multiresolution analysis

Vn ⊂ Vn+1.

Suppose Wn is the orthogonal complement of Vn in Vn+1:

Vn+1 = Vn ⊕Wn.

Thus

V0 ⊕
n

∑

k=0

Wk =
n

⊕

−∞

Wk = Vn+1 and
∞

⊕

−∞

Wk = L2.

Now consider the function

ψ(x) =
∑

n

(−1)nc̄1−nφ(2x− n) ∈ V1. (8.1)

We shall explain in the next section where this definition comes from. In this section we first try
to get a bit familiar with the function ψ. It can be proved that (see section 10 below)

ψ0k(x) = ψ(x− k)

forms an orthonormal basis for W0 and that more generally, the wavelets

ψnk(x) = 2n/2ψ(2nx− k) , n, k ∈ Z

are such that {ψnk : k ∈ Z} forms an orthonormal basis for Wn.
The function ψ(x) is called the mother function or the wavelet (function). The mother functions

for the previous examples can now be considered. One can easily check the following examples (do
it !).

Example 8.1 For the box function (c0 = c1 = 1)

ψ(x) =

{

1, 0 ≤ x < 1/2
−1, 1/2 ≤ x < 1

Figure 5 gives a plot of this wavelet. It is called the Haar wavelet.

12
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Figure 5: The Haar wavelet.

Example 8.2 The hat function (c0 = c2 = 1
2 , c1 = 1) leads to

ψ(x) =















−1/2 − x, −1/2 ≤ x ≤ 0
3x− 1/2, 0 ≤ x ≤ 1/2
5/2 − 3x, 1/2 ≤ x ≤ 1
x− 3/2, 1 ≤ x ≤ 3/2

The wavelet is plotted in figure 3.

Note: Not everyone agrees to call the ψ of example 8.2 a wavelet (the scaling function φ is not
orthogonal to its integer translates. The corresponding function ψ happens to be orthogonal to its
integer translates, but most importantly, the ψ(x− k) are not orthogonal to the φ(x− l).

Example 8.3 For Daubechies D4, ψ(x) is plotted in figure 4.

In general, when
cn = 0 for n < N− and n > N+,

one can show that

supp(ψ) ⊂
[

1

2
(1 −N+ +N−),

1

2
(1 +N+ −N−)

]

.

This follows from
ψ(x) =

∑

n

(−1)nc̄1−nφ(2x− n)

and the fact that supp(φ) ⊂ [N−, N+]. First note that suppφ ⊂ [N−, N+] implies that suppφ(2x−
n) as a function of x is [(N− + n)/2, (N+ + n)/2]. On the other hand c1−n is only nonzero for
n ∈ [1 −N+, 1 −N−]. Therefore suppψ is exactly as stated. We leave the details to the reader.

Let us develop now the analysis for ψ more exactly. It will give answers to questions such as:
Where does the defining relation (8.1) of the ψ come from? Do the ψnk for k ∈ Z form indeed an
orthonormal basis for the Wn? etc. We shall do this in section 10. First we need more properties
of the father function, which we shall derive in the next section.

9 More properties of the scaling function

We know that

φ̂(2ξ) = H(ξ)φ̂(ξ), H(ξ) =
1

2

∑

k

cke
−ikξ ∈ L2

2π.

We shall prove

13



Theorem 9.1 The Fourier transform of the father function satisfies

∞
∑

−∞

|φ̂(ξ + 2kπ)|2 =
1

2π
. (9.1)

Proof. Use the fact that φ(x− k) forms an orthonormal basis in V0, then

1

2π

∫ 2π

0
e−imξdξ = δ0m =

∫

R

φ(x)φ(x−m)dx

=

∫

R

e−imξ|φ̂(ξ)|2dξ

=

∞
∑

k=−∞

∫ (k+1)2π

k2π
e−imξ|φ̂(ξ)|2dξ

=

∫ 2π

0
e−imξ(

∞
∑

k=−∞

|φ̂(ξ + 2kπ)|2)dξ.

The second line is because the Fourier transform defines an isomorphism, the last line because the
Fourier transform is continuous. This proves (9.1). �

This has the following consequence.

Corollary 9.2 The function H(ξ) = 1
2

∑

k cke
−ikξ satisfies

|H(ξ)|2 + |H(ξ + π)|2 = 1 (9.2)

Proof. Recall φ̂(2ξ) = H(ξ)φ̂(ξ) so that

1

2π
=

∑

k

|φ̂(ξ + 2kπ)|2 =
∑

k

|φ̂(2ξ + 2kπ)|2 =
∑

k

|H(ξ + kπ)|2|φ̂(ξ + kπ)|2.

Because H is 2π-periodic,

1

2π
=

∑

k even

+
∑

k odd

= |H(ξ)|2
∑

k

|φ̂(ξ + 2kπ)|2 + |H(ξ + π)|2
∑

k

|φ̂(ξ + (2k + 1)π)|2

= |H(ξ)|2
∑

k

|φ̂(ξ + 2kπ)|2 + |H(ξ + π)|2
∑

k

|φ̂(ξ + π + 2kπ)|2.

Hence (9.2) follows. �

Note that the hat function (c0 = c2 = 1
2 , c1 = 1) does not satisfy this relation (check it).

Corollary 9.3 In terms of the ck (9.2) is transformed into

∑

n

cn−2kcn−2` = 2δk`. (9.3)
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Proof. Note that (9.2) means that

1

4

∑

k,l

ckcle
−i(k−l)ξ +

1

4

∑

k,l

ckcl(−1)k−le−i(k−l)ξ = 1.

Hence the odd terms drop out and we get
∑

k−l even

ckcle
−i(k−l)ξ =

∑

t

Cte
−2itξ = 2

with
Ct =

∑

k−l=2t

ckcl.

This has to be true for all ξ, so that Ct = 2δt0. Thus
∑

n cncn−2t = 2δt0. This is of course equivalent
with the statement to be proved. The complex conjugate drops out if the ck are real. �

Because φ̂(0) = H(0)φ̂(0) and φ̂(0) 6= 0 , H(0) = 1 and because |H(π)|2 = 1 − |H(0)|2 = 0, we get

H(π) = 0. (9.4)

Corollary 9.4 In terms of the ck the previous relation (9.4) becomes

∑

n

(−1)ncn = 0 or 1 =
∑

k

c2k =
∑

k

c2k+1. (9.5)

Proof. This is just by filling in

H(π) =
1

2

∑

n

(−1)ncn = 0.

�

Note: The orthogonality of φ to its integer translates implies (9.2) and (9.4) and hence also (9.3)
and (9.5), but the converse is not true. The conditions (9.2) and (9.4) are necessary for this
orthogonality but not sufficient. For example the choice c0 = c3 = 1, c1 = c2 = 0 defines a φ which
is not orthogonal to its translates, yet these coefficients satisfy (9.3) and (9.5) as can be easily
checked.

We show another interesting property:

Lemma 9.5 We have
∑

k

φ(x− k) =
∑

k

φ(k) = 1.

Proof. Set w(x) =
∑

k φ(x− k) then using the dilation equation we find

w(x) =
∑

k

∑

n

cnφ(2x− 2k − n)

=
∑

k

(
∑

n even

cnφ(2x− (2k + n)) +
∑

n odd

cn(2x− (2k + n)))

=
∑

k

(
∑

`

c2`φ(2x− 2(k + `)) +
∑

`

c2`+1φ(2x− 2(k + `) − 1))

=
∑

t

(
∑

`

c2`φ(2x− 2t) +
∑

`

c2`+1φ(2x− 2t− 1))

=
∑

t

φ(2x− 2t)(
∑

`

c2`) +
∑

t

φ(2x− 2t− 1)(
∑

`

c2`+1)

=
∑

t

φ(2x− t) = w(2x)
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Take the Fourier transform of w(x) = w(2x) to get

ŵ(ξ) = 2ŵ(2ξ).

This is a dilation equation with c0 = 2 and has a solution ŵ = δ the Dirac delta function (and
ŵ = 0, but this is excluded because

∫

φ(x)dx = 1). This means that w has to be constant. Hence
∑

k φ(x − k) = c, a constant and thus independent of x, so it equals
∑

k φ(k). Now integrate
∑

k φ(x− k) = c over [0, 1] then

c =
∑

k

∫ 1

0
φ(x− k)dx =

∑

k

∫ x−k+1

x−k
φ(x)dx =

∫

R

φ(x)dx = 1.

Hence c = 1. �

10 Existence of the wavelet

Now let us prove the existence of the mother (wavelet) function.
We know that any f ∈ V0 can be written as

f(x) =
∑

k

akφ(x− k)

with (ak) ∈ `2 since the series should converge in L2. Taking Fourier transforms, this gives

f̂(ξ) =
∑

k

ake
−ikξφ̂(ξ) = Af (ξ)φ̂(ξ), Af (ξ) =

∑

k

ake
−ikξ.

Clearly Af (ξ) ∈ L2
2π, i.e. Af (ξ) is 2π-periodic and

‖Af (ξ)‖2 =
1

2π

∫ π

−π
|Af (ξ)|2dξ = ‖(ak)‖2 <∞.

Thus f ∈ V0 ⇔ f̂ = Af φ̂ with Af ∈ L2
2π.

Theorem 10.1 There exists a function ψ ∈ W0 such that {ψ(x − k)}k∈Z forms an orthonormal
basis for W0.

Proof. If V is a subspace of L2, then V̂ will denote the subspace of L2 containing all the Fourier
transforms of V .
By the Fourier isomorphism:

V−1 ⊕W−1 = V0 ⇔ V̂−1 ⊕ Ŵ−1 = V̂0.

We know that

V̂0 = {Aφ̂ : A ∈ L2
2π}

V̂−1 = {A(2·)φ̂(2·) : A ∈ L2
2π}.

By φ̂(2ξ) = H(ξ)φ̂(ξ), we get

V̂−1 = {A(2·)H(·)φ̂(·) : A ∈ L2
2π}. (10.1)

Define the operator (we show below that it is unitary)

S : V̂0 → L2
2π : Aφ̂ 7→ A.

Note SV̂0 = L2
2π. Instead of computing Ŵ−1 directly, we compute S(Ŵ−1) first, i.e. the orthogonal

complement of S(V̂−1) in L2
2π.
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Lemma 10.2 S is a unitary operator.

Proof. It holds for any f ∈ V0 that f̂ = Aφ̂ and that

‖f̂‖2 =

∫

R

|f̂(ξ)|2dξ =

∫

R

|Af (ξ)|2|φ̂(ξ)|2dξ =
∑

k

∫ (k+1)2π

k2π
|Af (ξ)|2|φ̂(ξ)|2dξ

=

∫ 2π

0
|Af (ξ)|2(

∑

k

|φ̂(ξ + 2kπ)|2)dξ =
1

2π

∫ 2π

0
|Af (ξ)|2dξ = ‖Af‖2.

�

From (10.1) :
S(V̂−1) = {A(2·)H(·) : A ∈ L2

2π}
Let F ∈ L2

2π be in the orthogonal complement of S(V̂−1), then

∫ 2π

0
A(2ξ)H(ξ)F (ξ)dξ = 0 , ∀A ∈ L2

2π.

Thus
∫ π

0
A(2ξ)[H(ξ)F (ξ) +H(ξ + π)F (ξ + π)]dξ = 0 , ∀A ∈ L2

2π

which implies
H(ξ)F (ξ) +H(ξ + π)F (ξ + π) = 0 , ∀ξ ∈ R.

This means that in C
2 the vector ~h = [H(ξ)H(ξ+π)] is orthogonal to the vector ~f = [F (ξ) F (ξ+π)]:

~h~fH = 0, ~h~hH = 1,

H means complex conjugate transpose. It is clear that

F (ξ) = H(ξ + π)

F (ξ + π) = −H(ξ)

is a solution. More generally any solution is of the form

F (ξ) = −β(ξ)H(ξ + π)

F (ξ + π) = β(ξ)H(ξ).

For convenience, we choose β(ξ) = α(ξ)e−iξ, because then

F (ξ) = −α(ξ)e−iξH(ξ + π)

F (ξ + π) = α(ξ)e−iξH(ξ)

implies that α(ξ) is π-periodic. Such a function can be written in terms of ei2kξ. Thus we may
choose

fk(ξ) = −
√

2e−iξH(ξ + π)e2kiξ , k ∈ Z
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as a set of functions in S(Ŵ−1) that generates the whole space. These functions form an orthonormal
basis because (fk, f`) = (fk−`, f0) and using |H(ξ + π)|2 + |H(ξ)|2 = 1 and noting that e2ikξ is π-
periodic, we get

(fk, f0) =
1

π

∫ 2π

0
e2ikξ|H(ξ + π)|2dξ

=
1

π

∫ π

0
e2ikξ[|H(ξ + π)|2 + |H(ξ)|2]dξ

=
1

π

∫ π

0
e2ikξdξ

=
1

2π

∫ 2π

0
eikηdη

= δk0

Taking the S−1 transform we find that

ψ̂−1,k(ξ) = −
√

2e−iξH(ξ + π)φ̂(ξ)e2kiξ , k ∈ Z

is an orthonormal basis for Ŵ−1.
Choosing a function ψ ∈W0 with Fourier transform ψ̂ satisfying

ψ̂(2ξ) = −e−iξH(ξ + π)φ̂(ξ)

we just found that
√

2ψ̂(2ξ)e2kiξ forms an orthonormal basis for Ŵ−1. Taking the inverse Fourier
transform reveals that ψ−1,k(x) = 1√

2
ψ(x2 − k) forms an orthonormal basis for W−1. Moreover,

after rescaling, we find that ψ0k(x) = ψ(x− k) is an orthonormal basis for W0.
This concludes the proof of Theorem 10.1. �

Because eiξψ̂(2ξ) is the Fourier transform of 1
2ψ(x+1

2 ) and

H(ξ + π)φ̂(ξ) =
1

2

∑

k

(−1)k+1cke
ikξφ̂(ξ)

we get, after taking Fourier transforms

1

2
ψ(
x+ 1

2
) =

1

2

∑

k

(−1)k+1ckφ(x+ k)

or

ψ(x) =
∑

k

(−1)kc1−kφ(2x− k). (10.2)

It is not difficult to accept that

{2n/2ψ(2nx− k) , k ∈ Z}
gives an orthonormal basis for Wn, and after taking the limit L2 =

⊕

nWn, we find that

{ψnk(x) = 2n/2ψ(2nx− k) : k, n ∈ Z}
forms an orthonormal wavelet basis for L2.

As an exercise one can prove the following properties. If H(ξ) = 1
2

∑

n cne
−inξ and G(ξ) =

1
2

∑

n dne
−inξ, dn = (−1)nc̄1−n, then

ψ̂(2ξ) = G(ξ)φ̂(ξ) and G(ξ) = −eiξH(ξ + π).

This implies that

M =

[

H(ξ) H(ξ + π)
G(ξ) G(ξ + π)

]

=

[

H(ξ) −e−iξG(ξ)

G(ξ) −e−iξH(ξ)

]

satisfies MMH = I, thus that |H(ξ)|2 + |G(ξ)|2 = 1 and G(ξ)H(ξ) = H(ξ)G(ξ) = 0.
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11 Interpretation of the condition on the ck

The condition
∑

n cncn−2k = 2δk0 was derived from the orthogonality of the φ(x−k) and it implies
the orthogonality of the ψ(x − k). One may check that for all the simple examples we have seen
whether this condition is satisfied. The box function and D4 are the only ones which satisfy them.

The box function was the first known (orthogonal) scaling father function. Excluding the delta
function, we find that none of the other examples (except D4) satisfies the above condition and
hence none of them is guaranteed to generate wavelets orthogonal to their translates.

The condition
∑

n(−1)ncn = 0 ensured that H(π) = 0. This is a special case of a set of more
general conditions which require H(π) to have a zero of order p− 1. This would give

∑

n

(−1)nnkcn = 0 , k = 0, 1, . . . , p− 1.

One can show that for the box function p = 1, for the hat function p = 2 and for D4, p = 2.
The quadratic spline has p = 3, the cubic spline p = 4.

It can be shown that this condition is related with the degree of the polynomials that can
be represented exactly with the corresponding (wavelet) basis functions. We give the following
theorem without proof (see [29]).

Theorem 11.1 If H(k)(π) = 0, k = 0, 1, . . . , p− 1, then

1. The polynomials 1, x, . . . , xp−1 are linear combinations of the translates φ(x− k).
2. Smooth functions can be approximated with error O(hp) by combinations at scale h = 2−j:

∃C, ∃ak : ‖f −
∑

k

akφ(2jx− k)‖ ≤ C2−jp‖f (p)‖, f smooth

3. The first p moments of ψ(x) are zero:

∫

xmψ(x)dx = 0 , m = 0, . . . , p− 1

4. The wavelet coefficients cj =
∫

f(x)ψ(2jx)dx decay like cj ≤ C2−jp.

The previous observations thus show that the splines are best in approximating, but . . . they are
not orthogonal! The wavelet D4 is as good as the linear spline and it is orthogonal. Of course
a sine/cosine system is also good in approximation and it is orthogonal, but they do not have
compact support as D4 has. Therefore D4 is in some sense the simplest genuine wavelet one can
imagine.

12 Wavelet expansion and filtering

We want to come to algorithms for wavelet decomposition and wavelet reconstruction. What do
we mean by that? Let fn be in Vn. Because Vn = Vn−1 ⊕Wn−1, we can decompose fn uniquely as

fn = fn−1 + gn−1 with fn−1 ∈ Vn−1, gn−1 ∈Wn−1.

If we repeat this, then

fn = gn−1 + gn−2 + · · · + gn−m + fn−m, fj ∈ Vj , gj ∈Wj .

The integer m is large enough when fn−m is sufficiently “blurred”.
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Figure 6: The decomposition scheme.
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Figure 7: The reconstruction scheme.

Now suppose that

fj(x) =
∑

k

pjkφjk(x), pj = (pjk) ∈ `2

gj(x) =
∑

k

qjkψjk(x), qj = (qjk) ∈ `2

The decomposition algorithm will decompose pn into pn−1 and qn−1, then pn−1 again into pn−2

and qn−2 etc. like in figure 6. When we want to reconstruct the pn, the algorithm should perform
operations represented schematically in figure 7. The purpose of this section is to find pn−1 and
qn−1 from pn (decomposition) and to recover pn from pn−1 and qn−1 (reconstruction).

We recall

φ̂(2ξ) = H(ξ)φ̂(ξ), H(ξ) =
1

2

∑

k

cke
−ikξ

ψ̂(2ξ) = G(ξ)φ̂(ξ), G(ξ) = −e−iξH(ξ + π) =
1

2

∑

k

dke
−ikξ

with dk = (−1)kc1−k.

φnk(x) = 2n/2φ(2nx− k), ψnk = 2n/2ψ(2nx− k).

The projection Pn on Vn and Qn on Wn are given by

Pnf =
∑

k

pnk(f)φnk, pnk(f) = 〈f, φnk〉

Qnf =
∑

k

qnk(f)ψnk, qnk(f) = 〈f, ψnk〉 .

We want to relate pnk and qnk to pn+1,k. We first prove

Lemma 12.1 We have

φnk(x) =
1√
2

∑

l

cl−2kφn+1,l(x).

Proof. First note that
φ(
x

2
) =

∑

k

ckφ(x− k).
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Then

φnk(x) = 2n/2φ(2nx− k)

= 2n/2
∑

i

ciφ(2n+1x− 2k − i)

=
1√
2

∑

i

ci2
(n+1)/2φ(2n+1x− (2k + i))

=
1√
2

∑

l

cl−2kφn+1,l(x)

which proves the result. �

From their definitions, it thus follows that

pnk =
1√
2

∑

l

c̄l−2kpn+1,l

Now define a filter H : `2 → `2, a = (ak) 7→ Ha with

(Ha)k =
1√
2

∑

l

cl−2kal.

Then, setting pn = (pnk), it is clear that

pn = Hpn+1.

We do a similar thing for the qnk : Define the filter G : `2 → `2, a 7→ Ga with

(Ga)k =
1√
2

∑

l

dl−2kal.

Lemma 12.2 We have

ψnk =
1√
2

∑

l

dl−2kφn+1,l.

Proof. This is along the same lines as the previous one

ψnk(x) = 2n/2ψ(2nx− k)

= 2n/2
∑

i

diφ(2n+1x− 2k − i)

=
1√
2

∑

i

di2
(n+1)/2φ(2n+1x− (2k + i))

=
1√
2

∑

l

dl−2kφn+1,l(x)

�

Thus with the previous definition of G
qn = Gpn+1.

Now can easily prove that
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Lemma 12.3 The following relations hold

〈φnl, φn+1,k〉 =
1√
2
ck−2l

〈ψnl, φn+1,k〉 =
1√
2
dk−2l.

Proof. Also this one is trivial. For example from

φnl(x) =
1√
2

∑

t

ct−2lφn+1,t(x)

we find that

〈φnl, φn+1,k〉 =
1√
2
ck−2l.

�

If F is an operator (filter) on `2, then the adjoint F∗ : `2 → `2 is defined by

〈Fa, b〉 = 〈a,F∗b〉

The matrix representation of the adjoint operator is the Hermitian conjugate of the matrix repre-
sentation of the operator. Hence the adjoints of H and G are given by

(H∗a)k =
1√
2

∑

l

ck−2lal

(G∗a)k =
1√
2

∑

l

dk−2lal

We now express pn+1 in terms of pn and qn.

pn+1,k = 〈f, φn+1,k〉
= 〈Pn+1f, φn+1,k〉
= 〈Pnf +Qnf, φn+1,k〉

=

〈

∑

l

pnlφnl, φn+1,k

〉

+

〈

∑

l

qnlψnl, φn+1,l

〉

=
1√
2

∑

l

ck−2lpnl +
1√
2

∑

l

dk−2lqnl.

Thus
pn+1 = H∗pn + G∗qn.

Remark: The previous decomposition corresponds to a change of basis in Vn+1 :

{φn+1,k, k ∈ Z} → {φn,k, k ∈ Z} ∪ {ψn,k, k ∈ Z}.

We can use the conditions on the ck we have found before to find that HH∗ = GG∗ = I (the
identity) and HG∗ = GH∗ = O (the zero operator). Somewhat more difficult is to show that
H∗H + G∗G = I. Thus with K∗ = [H∗ G∗], we have KK∗ = I and K∗K = I.

The results of this section can be reflected in the decomposition and reconstruction scheme as
in figure 8
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Figure 8: The operations in the decomposition and reconstruction schemes.

13 Fast Discrete Wavelet transform

We suppose from now on that we work with orthogonal compactly supported wavelets, i.e. ck = 0
for k < 0 and k ≥ 2N and that the coefficients ck are real.
We want to invert the relation

pn+1 = [H∗ G∗]

[

pn
qn

]

which is done by
[

H
G

]

pn+1 =

[

pn
qn

]

In general the matrices corresponding to H and G are infinite dimensional e.g. for ck 6= 0, k =
0, 1, 2, 3

H =
1√
2

















. . .

c0 c1 c2 c3
c0 c1 c2 c3

c0 c1 c2 c3
. . .

















, G =
1√
2

















. . .

. . . c1 c0
c3 −c2 c1 −c0

c3 −c2 c1 −c0
. . .

















However, for practical reasons we work with discrete data vectors of length M = 2K . The operators
(filters) H, G will transform the data vector of length 2K into another vector of the same length
by multiplication with a 2K × 2K matrix.

In DFT, this transform can be made fast because the transformation is represented as a product
of sparse elementary matrices. Moreover, the transformation matrix is orthogonal, so that its inverse
is just equal to its transpose. This matrix is made orthogonal by choosing the unit vectors as basis
in the “time” domain and the sines/cosines as basis in the frequency domain.

A similar observation holds for the DWT.
For finite dimensional data, we shall have to truncate the infinite dimensional matrices. So for

M = 2K we make H, G of dimension 2K−1 × 2K . E.g., for K = 3 and N = 2

H =
1√
2









c0 c1 c2 c3
c0 c1 c2 c3

c0 c1 c2 c3
c0 c1









;G =
1√
2









c3 −c2 c1 −c0
c3 −c2 c1 −c0

c3 −c2 c1 −c0
c3 −c2









However this will cause some edge effects (orthogonality is lost). Therefore we suppose that the
data are periodically extended, which amounts to reenter cyclically the data inH that were chopped
off (a similar technique is used in DFT). So we use instead of the previous H and G for K = 3 and
N = 2 the matrices

H =
1√
2









c0 c1 c2 c3
c0 c1 c2 c3

c0 c1 c2 c3
c2 c3 c0 c1









;G =
1√
2









c3 −c2 c1 −c0
c3 −c2 c1 −c0

c3 −c2 c1 −c0
c1 −c0 c3 −c2








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G, H is “orthogonal” again in the sense HHT = I, GGT = I and HGT = GHT = 0. Thus, with
KT = [HT GT ]: KKT = KTK = I.
Suppose we have a data vector p of length 2K . We can write it in terms of 2K basis functions

p =

2K−1
∑

k=0

pk0φ0k

with φ0k(x) = φ(x− k) with coefficients pk0

pk0 = 〈p, φ0k〉 .

The inner product, which used to be 〈f, g〉 =
∫

f(x)g(x)dx will for the discrete case be transformed
into 〈f, g〉 =

∑

k f(k)g(k). Hence, for a data vector p = (pk) with k = 0, 1, . . . , 2K − 1, we get

〈p, φ0l〉 =
2K−1
∑

k=0

pkφ0l(k).

The expansion thus has to be understood as










p0

p1
...

p2K−1











=
2K−1
∑

k=0

pk0











φ0k(0)
φ0k(1)

...
φ0k(2

K − 1)











E.g., consider p = [9 1 2 0]T and use for φ the box function i.e., K = 2. Note that φ0l(k) = δkl and
thus pk0 = 〈p, φ0k〉 = pk.

p = 9









φ00(0)
φ00(1)
φ00(2)
φ00(3)









+ 1









φ01(0)
φ01(1)
φ01(2)
φ01(3)









+ 2









φ02(0)
φ02(1)
φ02(2)
φ02(3)









+ 0









φ03(0)
φ03(1)
φ03(2)
φ03(3)









.

We can also expand it in terms of

φ−1,k and ψ−1,k , k = 0, 1, . . . , 2K−1 − 1

with coefficients p1 = (pk1) and q1 = (qk1) given by

pk1 = 〈p, φ−1,k〉 , qk1 = 〈p, ψ−1,k〉 .

We could directly compute them by evaluating the inner products. However, by our previous
analysis, we can also find them as

[

p1

q1

]

=

[

HK

GK

]

p0.

For our previous example,

H2 =
1√
2

[

c0 c1
c0 c1

]

; G2 =
1√
2

[

c1 −c0
c1 −c0

]

so that








p01

p11

q01
q11









=
1√
2









1 1
1 1

1 −1
1 −1

















9
1
2
0









=
1√
2









10
2
8
2








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and we can check that this gives indeed the correct decomposition

p =
10√

2









φ−1,0(0)
φ−1,0(1)
φ−1,0(2)
φ−1,0(3)









+
2√
2









φ−1,1(0)
φ−1,1(1)
φ−1,1(2)
φ−1,1(3)









+
8√
2









ψ−1,0(0)
ψ−1,0(1)
ψ−1,0(2)
ψ−1,0(3)









+
2√
2









ψ−1,1(0)
ψ−1,1(1)
ψ−1,1(2)
ψ−1,1(3)









=
10

2









1
1
0
0









+
2

2









0
0
1
1









+
8

2









1
−1

0
0









+
2

2









0
0
1

−1









=









9
1
2
0









!

The first and second term, are the components of p along φ−1,0 and φ−1,1. Together they form the
part of p that is in V−1. This can again be partitioned and written in terms of

φ−2,k and ψ−2,k , k = 0, 1, . . . , 2K−2 − 1

which in our example is

φ−2,0 and ψ−2,0 → coefficients q02 and q02.

This is for our example given by
[

p02

q02

]

=
1√
2

[

H1

G1

] [

p01

p11

]

=
1√
2

[

c0 c1
c1 −c0

] [

p01

p11

]

thus, explicitly
[

p02

q02

]

=
1√
2

[

1 1
1 −1

]

1√
2

[

10
2

]

=

[

6
4

]

and indeed








5
5
1
1









= 6









φ−2,0(0)
φ−2,0(1)
φ−2,0(2)
φ−2,0(3)









+ 4









ψ−2,0(0)
ψ−2,0(1)
ψ−2,0(2)
ψ−2,0(3)









=
6

2









1
1
1
1









+
4

2









1
1

−1
−1









is equal to the sum of the first two terms in the previous decomposition. Thus we have written p
as

p = 6φ−2,0 + 4ψ−2,0 +
8√
2
ψ−1,0 +

2√
2
ψ−1,1

= 6









1/2
1/2
1/2
1/2









+ 4









1/2
1/2
−1/2
−1/2









+
8√
2









1/
√

2

−1/
√

2
0
0









+
2√
2









0
0

1/
√

2

−1/
√

2









Note that in this simple example we didn’t need the wrap around of the H and G matrix.
The two transformations together give the result [p02 q02 q01 q11]

T in terms of [p00 p10 p20 p30]
T as









p02

q02
q01
q11









=
1√
2









1 1
1 −1 √

2 √
2









1√
2









1 1
1 1

1 −1
1 −1

















p00

p10

p20

p30









=
1

2









1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2

















9
1
2
0









=









6
4

8/
√

2

2/
√

2








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The filters (matrices) G and H are often intertwined to have a matrix like e.g.

T =































c0 c1 c2 c3
c3 −c2 c1 −c0

c0 c1 c2 c3
c3 −c2 c1 −c0

. . .

c0 c1 c2 c3
c3 −c2 c1 −c0

c2 c3 c0 c1
c1 −c0 c3 −c2































and the factors 1√
2

are included in the coefficients.

If this matrix has to be orthogonal, then, multiplying it with its transpose should give the identity.
This results in

{

c20 + c21 + c22 + c23 = 1
c2c0 + c3c1 = 0

If we require in addition the approximation to be of order 2.
Then

{

c0 − c1 + c2 − c3 = 0 (H(π) = 0)
0c0 − c1 + 2c2 − 3c3 = 0 (H ′(π) = 0)

A solution of these 4 equations is given by

c0 =
1 +

√
3

4
√

2
, c1 =

3 +
√

3

4
√

2

c2 =
3 −

√
3

4
√

2
, c3 =

1 −
√

3

4
√

2

which is Daubechies D4.
When similarly introducing 6 coefficients c0, . . . , c5, the orthogonality requirement gives 3 condi-
tions, so that we can require the order to be 3 giving 3 more conditions.
A solution is given by D6:

c0 =
(1 +

√
10 +

√

5 + 2
√

10)

16
√

2
, c1 =

5 +
√

10 + 3
√

5 + 2
√

10

16
√

2

c2 =
10 − 2

√
10 + 2

√

5 + 2
√

10

16
√

2
, c3 =

10 − 2
√

10 + 2
√

5 + 2
√

10

16
√

2

c4 =
5 +

√
10 − 3

√

5 + 2
√

10

16
√

2
, c5 =

1 +
√

10 +
√

5 + 2
√

10

16
√

2

One can check this as an exercise.
If the matrix is written in this intertwined form, after each transformation, one needs a permu-

tation.
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Thus e.g.

p0,0

p1,0

p2,0

p3,0

p4,0

p5,0

p6,0

p7,0

p8,0

p9,0

p10,0

p11,0

p12,0

p13,0

p14,0

p15,0










































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
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













Perm→
p0,3

p1,3

}

T1→ p0,4

q0,4
q0,2
q1,2

q0,2
q1,2
q2,2
q3,2

q0,1
q1,1
q2,1
q3,1
q4,1
q5,1
q6,1
q7,1

The p-coefficients at a certain level give the coarse (smooth, large scale) information about the data
vector while the q-coefficients give the more detailed information (small scale).

FORTRAN programs for this transform can be found in [26].
In signal processing literature, this technique is known as subband coding. This means that

for the analysis, the signal pn+1 is filtered by both the filters H (lowpass filter) and G (passband
filter). The results pn and qn are both subsampled (↓ 2) this means that only the samples with
an even index are kept, the rest is thrown away. In the reconstruction, the signals pn and qn are
first upsampled (↑ 2) which means that a zero is introduced between 2 consecutive samples and the
upsampled signals are filtered by G∗ and H∗ and the result is added to give pn+1.

G

pn+1

H

+ pn+1

↓ 2

↓ 2
pn

qn

↑ 2

↑ 2 G∗

H∗

14 Truncated wavelet approximation

A most interesting aspect of DWT is that in many applications, most of the coefficients of the
DWT are very small and therefore we can set them equal to zero and yet retain the most important
information.

The following example is similar to the one given in [26].
Consider a function like in fig. 9, sampled at 1024 equidistant points. The function values are
integers generated by a shifted and rescaled log |x| function. Taking the DWT gives 1024 coefficients
corresponding to certain wavelets. We rounded the wavelet coefficients to integer values between 0
and 255. Only 7% of these coefficients is not rounded to zero and 5% is larger than 1. They
are plotted on a logarithmic scale on the second graph of fig. 9. Only those wavelets whose
support contains the cusp of the given function will really contribute. Thus it already gives a
good approximation if we select only those 5% wavelets (coefficient + position has to be stored!)
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Figure 9: Function with cusp

Exercise 14.1 How many bits does one need to store the position? Conclude that in comparison
with storage for the coefficients, the storage needed for position is negligible. ♦

Note that the cusp is at about one third of the interval [1,1024]. The nonzero wavelet coefficients
are located at about one third of the intervals [513,1024], [257,512], [129,256], [65,128], etc. Also
near the edges ↓ at 512, 256, 128,. . . , one gets nonzero coefficients (that is due to the edge effect).

0 128 256 512 1024

↓ ↓ ↓ ↓ ↓

Figure 10: Edge effect

In general compact (hence unsmooth) wavelets are better for lower accuracy approximation and for
functions with discontinuous (typical for edge detection in image processing) while smooth (hence
noncompact) wavelets are better for high numerical accuracy.

Another example is the DWT of the sine function given in fig. 11. Note that the DWT gives

-1

0

1

0 200 400 600 800 1000

-6

0

8

0 200 400 600 800 1000

Figure 11: DWT of sine

several significant coefficients for the sine whereas the DFT would give only one nonzero coefficient.
This is the price we pay for having a basis of wavelets which is local in the time as well as in the
frequency domain. Note however that the number of significant coefficients is still small. The price
to pay is relatively small.
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15 Biorthogonal wavelets

The orthogonality condition imposed rather strong conditions on the definition of the wavelet.
Therefore weaker forms exist, like e.g., biorthogonal wavelets. Then some dual functions for φ and
ψ are defined

φ̃(x) =
∑

k

c̃kφ̃(2x− k) and ψ̃(x) =
∑

k

d̃kφ̃(2x− k)

or
ˆ̃
φ(2ξ) = H̃(ξ)

ˆ̃
φ(ξ) and

ˆ̃
ψ(2ξ) = G̃(ξ)

ˆ̃
φ(ξ)

with

H̃(ξ) =
1

2

∑

k

c̃ke
−ikξ and G̃(ξ) =

1

2

∑

k

d̃ke
−ikξ.

It is now required that the following biorthogonality relations hold

〈

φnk, φ̃nl

〉

= δkl, n, k, l ∈ Z and
〈

ψik, ψ̃jl

〉

= δijδkl, i, j, k, l ∈ Z

These conditions lead to
[

H̃(ξ) H̃(ξ + π)

G̃(ξ) G̃(ξ + π)

] [

H(ξ) H(ξ + π)
G(ξ) G(ξ + π)

]∗

=

[

1 0
0 1

]

.

The projection operators Pj on Vj and Qj on Wj are given by

Pjf(x) =
∑

k

〈

f, φ̃jk

〉

φjk(x) =
∑

k

pjkφjk(x) and Qjf(x) =
∑

k

〈

f, ψ̃jk

〉

ψjk(x) =
∑

k

qjkψjk(x).

Analysis and reconstruction formulas are

pn+1 = [H∗ G∗]

[

pn
qn

]

and

[

pn
qn

]

=

[

H̃
G̃

]

pn+1.

16 Algorithms

The formulas we have seen in the previous section can be easily put into an algorithm. The following
algorithms can be found in [18]. We suppose that all the coefficients are real and that ck and c̃k are
nonzero for −L ≤ k ≤ L and that the d̃k and dk are nonzero for −M ≤ k ≤M . Moreover, suppose
that L = 2L′ + 1 and M = 2M ′ + 1 are odd. The “signal” is given as a vector of 2K coefficients
pn,k, k = 0, . . . , 2K − 1.

The analysis is the result of the following DWT algorithm.

for n = K − 1(−1)0
for k = 0(1)2n − 1

pnk =
1√
2

L
∑

i=−L

c̃ipn+1,(i+2k) mod 2n+1

qnk =
1√
2

M
∑

i=−M

d̃ipn+1,(i+2k) mod 2n+1

endfor

endfor

The inverse DWT is given by the following reconstruction algorithm
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for n = 1(1)K
for k = 0(1)2n − 1

if k even then

pnk =
1√
2

L′

∑

i=−L′

c2ipn−1,(k/2−i) mod 2n−1

+
1√
2

M ′

∑

i=−M ′

d2iqn−1,(k/2−i) mod 2n−1

else k odd

pnk =
1√
2

L′

∑

i=−L′−1

c2i+1pn−1,((k−1)/2−i) mod 2n−1

+
1√
2

M ′

∑

i=−M ′−1

d2i+1qn−1,((k−1)/2−i) mod 2n−1

endif

endfor

endfor

17 Multidimensional DWT

A wavelet transform of a d-dimensional vector is most easily obtained by transforming the array
sequentially on its first index (for all values of its other indices), then on the second etc. Each
transformation corresponds to a multiplication with an orthogonal matrix. By associativity of the
matrix product, the result is independent of the order in which the indices are chosen.
The situation is identical to multidimensional FFT. For a two-dimensional array (a square image
say), this corresponds to a subdivision of the vector into regions like in fig. 12 A. This gives rise to

A B

Figure 12: Different subdivisions of square

standard bases to span the spaces of the multiresolution

Vk = span{φkn(x)φkm(y) : m,n ∈ Z}.

Exercise 17.1 Could you find the bases that span the orthocomplements Wk? ♦

Setting by definition
(f ⊗ g)(x, y) = f(x)g(y),

we get an expansion of the form

f(x, y) =
∑

i,l

∑

j,k

〈f, ψil ⊗ ψjk〉 (ψil ⊗ ψjk)(x, y).
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This corresponds to taking a 1-dimensional wavelet transform in x and y independently. Note that
this gives a different resolution in x- and y-direction: In the x-direction the scaling is 2−i while in
the y-direction the scaling is 2−j .

There is however another possibility where we subdivide the square into regions like in fig. 12 B.
At each stage, only the lower left quarter is further subdivided. This case gives subspaces Vn in
the multiresolution which, as before, are spanned by

Vk = span{φkn(x)φkm(y) : m,n ∈ Z} (left lower squares)

but the orthocomplements are spanned by mixtures of basis functions which are now easy to
describe:

Wk = span{φkn(x)ψkm(y), ψkn(x)φkm(y), ψkn(x)ψkm(y) : m,n ∈ Z}.
The first set are for the right bottom quarters, the second set for the left top quarters and the last
one for the right top quarters.

Note that there is now only one scaling 2−k for both x- and y-direction.
It is the latter approach we shall follow in the next section.

18 Image compression

In this application, we are concerned with a two dimensional multiresolution problem. This can be
reconstructed using products of functions defining the 1-dimensional multiresolution in x and y.
We now have

Vk+1 = V
(x)
k+1 ⊗ V

(y)
k+1

= (V
(x)
k ⊕W

(x)
k ) ⊗ (V

(y)
k ⊕W

(y)
k )

= (V
(x)
k ⊗ V

(y)
k ) ⊕ (V

(x)
k ⊗W

(y)
k ) ⊕ (W

(x)
k ⊗ V

(y)
k ) ⊕ (W

(x)
k ⊗W

(y)
k )

The different resolution spaces are

Vk = span{φkn(x)φkm(y) : m,n ∈ Z}

and the orthocomplements are

Wk = span{φkn(x)ψkm(y), ψkn(x)φkm(y), ψkn(x)ψkm(y) : m,n ∈ Z}

The projectors are

Pkf =
∑

m,n

pkmnφkm(x)φkn(y)

and
Qkf =

∑

m,n

[q(x)kmn ψkm(x)φkn(y) + q(y)kmn φkm(x)ψkn(y) + q(xy)kmn ψkm(x)ψkn(y)].

The coefficients are found by the recursions

pk+1 = HxHyp
k

q(x)k+1 = GxHyp
k

q(y)k+1 = HxGyp
k

q(xy)k+1 = GxGyp
k.
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An index x means that the operator acts on the first index, an index y means that the operator
acts on the second index, e.g.

(Hxa)nm =
∑

k ck−2nakm
(Gyp)km =

∑

l dl−2mpkl

}

⇒ (HxGyp)nm =
∑

k,l

ck−2ndl−2mpkl

As for the 1-dimensional case, the pk+1 give the coarser information, while the q-vectors give the
small scale information. For example, a high value in q(y)k+1 indicates horizontal edges and q(xy)k+1

indicates corners.
The reconstruction algorithm uses

pk−1 = H∗
xH

∗
yp

k +G∗
xH

∗
yq

(x)k +H∗
xG

∗
yq

(y)k +G∗
xG

∗
yq

(xy)k.

We consider a 256 × 256 matrix of gray scales from 0–255 (8 bits), which produces the picture of
Madonna below.

We use the D4 discrete wavelet transform in 2 dimensions.
For p = 0(0.1)1, we delete all the DWT coefficients that are less than p% of the maximal

coefficient. It turns out that we then use only r% of the total number of coefficients, i.e., (100−r)%
is set equal to zero. This corresponds to a compression factor C = 100/r. To get an idea of the
approximation error, we compute the approximation error E = ‖P − A‖F /‖P‖F where P is the
original picture and A is the approximation and ‖·‖F is the Frobenius norm (‖A‖F = (

∑

ij a
2
ij)

1/2).
The result is given in the table below.

p C r E

0.0 1.00 100.00 0.00
0.1 4.42 22.62 0.06
0.2 15.93 6.27 0.09
0.3 30.18 3.31 0.11
0.4 43.98 2.27 0.12
0.5 58.57 1.71 0.13
0.6 71.39 1.40 0.13
0.7 85.67 1.17 0.14
0.8 100.67 0.99 0.14
0.9 118.08 0.85 0.15
1.0 135.40 0.74 0.16

In the graph below we plotted these data.
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It is possible to see what compression factor can be obtained for a given tolerance in the relative
error.

The pictures below give the approximating picture corresponding to these values of p = 0(0.1)1.

Below are the results of the picture where all wavelet coefficients smaller than 1 percent of the
largest are deleted when the wavelet used is D4, D12 and D20 respectively. The compression
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factors are 135, 146 and 145 respectively. Note that for D20 the picture is smoother than for D4.
This smoother situation is closer to what would be obtained by a Discrete Fourier Transform.

Another example is provided by the following checkerboard. Its DWT is given besides the original.

Below we give the reconstructed picture, on the first row for D4 and on the second row for D20 when
the relative percent p of deleted wavelet coefficients (as in the previous example) is respectively
1%, 5% and 20%.
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19 Solution of linear systems

To solve the problem Ax = b, with wavelet transform, the basic idea is to think of the matrix A
(supposed to be very large) as a digital image. Suppose, it compresses well under 2-dimensional
wavelet transform, i.e., a large fraction of its wavelet coefficients are small (i.e. negligible), then
under the wavelet transform, it becomes a sparse system. Let W be the 1-dimensional wavelet
transform matrix and set

Ã = WAW T , b̃ = Wb

then solve the sparse system Ãx̃ = b̃ and finally find x as x = W T x̃.
An example for which this technique is particularly useful is to solve an integral equation

∫

A(x, y)f(x)dx = g(y)

where A(x, y) is nearly singular near the diagonal x = y, but is very smooth away from the diagonal.
A discretization gives a matrix which may e.g. look like

Aij =

{

−1, i = j

|i− j|−1/2, otherwise

For more details see for example [3].
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Appendices

A Fourier transforms

The Fourier transform of a function f ∈ L2(R) is given by

f̂(ξ) =
1√
2π

∫ ∞

−∞
e−ixξf(x)dx

and the inverse Fourier transform is

f(x) =
1√
2π

∫ ∞

−∞
eixξ f̂(ξ)dξ.

The Plancherel formula is
∫

R

|f(x)|2dx =

∫

R

|f̂(ξ)|2dξ

and the Parseval relation is

〈f, g〉 =

∫

R

f(x)g(x)dx =

∫

R

f̂(ξ)ĝ(ξ)dξ =
〈

f̂ , ĝ
〉

.

The Fourier transform is an isometric isomorphism from L2(R) into L2(R)
L2
P is the space of P -periodic functions for which

∫ P

0
|f(x)|2dx <∞.

The Fourier transform for functions in L2
2π is

f̂k =
1

2π

∫ 2π

0
e−ikθf(θ)dθ, k ∈ Z

The inverse transform is
f(θ) =

∑

k∈Z

f̂ke
ikθ.

The Fourier transform is an isometric isomorphism from L2
2π into `2(Z)

‖f‖2 =
1

2π

∫ 2π

0
|f(θ)|2dθ = ‖f̂‖2 =

∑

k∈Z

|f̂k|2

〈f, g〉 =
1

2π

∫ 2π

0
f(θ)g(θ)dθ = 〈f̂ , ĝ〉 =

∑

k∈Z

f̂kĝk.

B A collection of formulas

φ(x) =
∑

n

cnφ(2x− n), ψ(x) =
∑

n

dnφ(2x− n)

φnk(x) = 2n/2φ(2nx− k), ψnk(x) = 2n/2ψ(2nx− k)

φ̂(2ξ) = H(ξ)φ̂(ξ), H(ξ) =
1

2

∑

n

cne
−inξ
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ψ̂(2ξ) = G(ξ)φ̂(ξ), G(ξ) =
1

2

∑

n

dne
−inξ

φ̂(ξ) =
1√
2π

∞
∏

n=1

H(2−nξ)

〈φnk, φnl〉 = δkl, 〈ψik, ψjl〉 = δijδkl, 〈φnk, ψnj〉 = 0

K = [H(ξ) G(ξ)] ⇒ KK∗ = 1, K∗K =

[

1 0
0 1

]

∑

n

c2n =
∑

n

c2n+1 = 1,
∑

n

cn = 2,
∑

n

(−1)ncn = 0

∑

cn−2k c̄n−2l = 2δkl

G(ξ) = −e−iξH(ξ + π), dn = (−1)nc̄1−n
∑

n

φ(x− n) = 1,
∑

n

|φ̂(ξ + 2nπ)|2 =
1

2π

H(π) = 0, H(0) = 1; G(π) = 1, G(0) = 0

(Ha)k =
1√
2

∑

l

c̄l−2kal, (Ga)k =
1√
2

∑

l

d̄l−2kal,

Pnf =
∑

k

pnkφnk, Qnf =
∑

k

qnkψnk

K∗ = [H∗ G∗] ⇒ K∗K = I, KK∗ =

[

I O
O I

]

[

pn
qn

]

= Kpn+1, pn+1 = K∗
[

pn
qn

]
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