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Background: at any genomic locus (except for Y and

mtDNA) you have two alleles, which may be the same:

say AA, a homozygote. At two other loci, you may be

heterozygous with genotypes Bb and Cc.

Problem: classify the 6 alleles into two groups of 3

alleles having the same parent-of-origin:

A B C and A b c ?
or

A b C and A B c ?
Vocab: The unordered allele pairs form a (multi-locus)

genotype, which is to be decomposed into its two hap-

lotypes. The missing information is the phase.



Why do we care?

In an ideal world: rarely need to solve this problem,

• haplotypes = intermediate step, not endpoint;

• better to work directly from genotype data.

But: haplotypes, not genotypes, form a unit of in-

heritance; they form the natural basis for statistical

genetics models, and have interpretability advantages.

In the actual world: huge interest in this problem,

• genotypes now readily generated;

• “gold rush” to link haplotypes with disease.



Expensive solutions

• laboratory methods are available to identify hap-
lotypes: slow and expensive but can be accurate.

• pedigree data, e.g. family trios:

Locus 1 2 3 4
Father 00 01 00 11
Mother 01 11 01 01

Child 00 01 01 01

can infer that child received 0 0 0 1 from the father
and 0 1 1 0 from the mother. But: haplotypes
cannot be deduced when all three individuals are
heterozygous (01) at a locus, and not everyone
has their parents’ genotypes available.



Statistical methods based on population samples

Shared inheritance ⇒ few of the possible haplotypes re-
alised in a population. Equivalently: strong statistical
dependence between neighbouring loci on a haplotype.

(Humans well-mixed so effect is universal, but stronger
in isolated subpopulations)

• Clark (1990)

• EM algorithm (Excoffier & Slatkin, 1995; Hawley
& Kidd, 1995; Long et al., 1995)

• PHASE 1 (Stephens et al. 2001)

• HAPLOTYPER (Niu et al. 2002)

• ELB (Excoffier, Laval & Balding 2003)

• PHASE 2 (Stephens & Donnelly 2003)



Clark’s algorithm

Based on a “parsimony” principle: tries to minimise

the number of distinct reconstructed haplotypes.

1. Search for resolved individuals, and record all re-

covered haplotypes.

2. Consider an unresolved individual. If the genotype

can be decomposed into a haplotype pair that in-

cludes an existing recovered haplotype: (i) accept

this assignment, (ii) add complementary haplotype

to list of resolved haplotypes.

3. Repeat until all individuals are resolved or no more

haplotypes can be recovered.



Problems:

• No starting point for algorithm.

• Multiple solutions.

• May leave many unresolved individuals.

• How to deal with missing data?

• Does not allow for recombinant haplotypes.



Likelihood-based algorithms: EM, PHASE, H’TYPER

Product-multinomial likelihood:

P (G|h) =
∏
j

∑
i

f
(
Gj|Hi

)
π (Hi1|h) π (Hi2|h)

Gj phase-unknown genotype of individual j

Hi haplotype pair = {Hi1, Hi2}
h population haplotype frequency vector

f indicates Gj compatible with Hi

π multinomial probability mass function

Assumes haplotype pairs independent (Hardy-Weinberg
Equilibrium); NB may not hold for case-control data.



EM algorithm obtains MLE of h via an arbitrary initial

assignment h(0) which is iteratively updated until con-

vergence using Expectation and Maximisation steps.

Severely limited in no. of loci because frequencies of

all possible haplotypes are recorded. The Hi obtained

via MLE given h.

Both PHASE and HAPLOTYPER are pseudo-Gibbs

samplers. Haplotypes initially assigned arbitrarily then

each Hi updated iteratively conditional on H−i, the

other haplotype assignments. Heuristic updating algo-

rithm, not the conditional distribution f

(
Hi |G, H(t)

−i

)

under an explicit statistical model.



PHASE and HAPLOTYPER converge to a stationary

distribution, and samples of output phases, suitably

thinned, give an approximation to this distribution.

Because there is no explicit likelihood, it is not as easy

to interpret the stationary distribution as in standard

Bayesian settings.

Pseudo-posterior probabilities can be calibrated in sim-

ulation studies. Has been done for PHASE with good

results.



HAPLOTYPER employs the simple beta/Dirichlet prior

distribution. It uses a partition-ligation (“divide-and-

conquer”) algorithm that is very fast, handles large

datasets (but only SNPs).

Not only counts of a haplotype are informative about

its population frequency, counts of similar (e.g. differ

by 1 mutation step) haplotypes are also (less) infor-

mative. PHASE uses a more complicated prior based

on coalescent theory to incorporate this effect. It

handles SNP and STR (= microsatellite) haplotypes.

Statistically, PHASE beats HAPLOTYPER beats EM

beats Clark.

PHASE 1 is very slow. PHASE 2 borrows computa-

tional tricks from HAPLOTYPER and is much faster.



Recombination

None of the existing methods is designed to accommo-

date recombinations. Haplotypes can only be globally

well-inferred if LD is very high throughout the region

⇒ recombinations are rare. But ...

• recombination hot-spot can occur; whole haplotype

accuracy is then infeasible, but we may wish to

– diagnose the hot-spot,

– infer partial haplotypes on either side.

• for large genomic regions we may seek haplotypes

that are locally accurate, if not globally.

• simple haplotyping algorithm can later be built into

e.g. fine mapping algorithm.



ELB algorithm uses adaptive windows to accommo-

date recombination effects. Associated with the cur-

rent query locus (here C), there is a window including

C and neighbouring loci (here B through E).
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ELB iteratively updates (i) the window to maximise in-

formation content; (ii) the phase based on current win-

dow (here: counts of h’types BXDE, bXDe, X∈{c,C}).
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Phase updates

Choose an individual, and update each ambiguous phase

in random order.

At each phase call we wish to choose between the cur-

rent haplotype pair (h11/h22) in the window, and the al-

ternative pair (h12/h21), with probabilities proportional

to their joint population proportions. Assuming HWE,

these are p11p22 and p12p21, where pij denotes the pop-

ulation proportion of hij.

The pij are not known, but can be estimated from the

nij, the haplotype counts (within the current window)

among the other n−1 individuals in the sample.



MLE of pij not useful here: it would imply that hij/hi′j′
will never be chosen if either nij = 0 or ni′j′ = 0.

We choose a Bayesian posterior mean under a sym-

metric Dirichlet prior, and assign h11/h22 instead of

h12/h21 with probability:

(n11+α)(n22+α)

(n11+α)(n22+α) + (n12+α)(n21+α)
(1)

Increasing α allows more flexibility to “explore” phase

assignments not currently observed – but all unob-

served haplotypes are treated the same.

We fixed α = 0·01 in the results below, on the basis

of small simulation studies that also considered α = 0

and α = 0·1.



Allowing for mutation

Mutation ⇒ rare haplotypes similar to a more common

haplotype. Wish to give weight to haplotypes “close”

to frequently observed haplotypes.

PHASE uses a coalescent approximation. We adopt

simpler, ad-hoc solution: replace each nij in (1) with

nij + εx11

where xij = sample count of haplotypes within the

current window that differ from hij by one mutation.

We chose ε = 0·01 for SNP data, and ε = 0·2 for STR.



Window updates

Roughly speaking, we want windows to be as large as

possible subject to:

1. few recombinations/high LD within the window

2. haplotype counts not too small.

To achieve 1, we wish to choose the window that max-

imizes R = max{r,1/r}, where r = p11p22/p12p21 and

so is naturally estimated by

(n11+εx11+α)(n22+εx22+α)

(n12+εx12+α)(n21+εx21+α)



Problem: bias towards larger windows, because

large windows ⇒ small counts

⇒ more extreme estimates.

So we also considered the smoother estimator:

r̂ =
(n11+εx11+α)(n22+εx22+α) + γ

(n12+εx12+α)(n21+εx21+α) + γ
(2)

and found that it conveyed no advantage for STR data,

but γ = 0·5 gave a significant advantage for SNP data.



Prior to each phase call, we consider two successive

alterations to the current window for that individual

at that locus: extension by one locus at one end, then

reduction by one locus at the other end. Each proposed

alteration is accepted/rejected with probability

R̂1

R̂1 + R̂2
,

where R̂k = max{r̂k,1/r̂k} for window k, k = 1,2, and

r̂k is given at (2).

If both proposals are rejected, the previous window is

retained.



Global and local accuracy

Global accuracy: the proportion of ambiguous individ-

uals whose entire haplotype pair is correctly recovered:

not very useful for large genomic regions.

Local accuracy: several measures available. We mea-

sure the proportion of pairs of successive ambiguous

loci for which the phase is correctly recovered. NB

allele switch at a locus

True Recovered
A B C D E F A B C d E F
a b c d e f a b c D e f

counts as two phase errors.



Simulation datasets 1: SNP

SNP = Single Nucleotide Polymorphism

Mutat. Recomb. # var. [range] Pairwise
param. param. sites discord.

1 5 40 25 [14-39] 4.8
2 5 100 25 [13-44] 4.8
3 5 200 25 [10-38] 4.9
4 10 40 49 [33-69] 9.9
5 10 100 48 [31-70] 9.6
6 10 200 48 [30-61] 9.6
7 20 40 90 [65-127] 18.3
8 20 100 90 [65-109] 18.7
9 20 200 89 [65-119] 18.5







Simulation datasets 2: STR

STR = Short Tandem Repeat (or microsatellite)

Mutat. Recomb. # Pairwise
param.† param. loci discord.

10 10 40 10 7.8
11 10 100 10 7.9
12 10 200 10 7.8
13 10 40 20 15.7
14 10 100 20 15.6
15 10 200 20 15.6
16 10 40 50 39.1
17 10 100 50 39.1
18 10 200 50 39.1

† per locus.







Simulation datasets 3: SNP with missing data

We investigated two scenarios for missing SNP data:

• A low proportion (1%, 2%, and 4%) of missing

data is distributed uniformly across all individuals.

• 40 individuals were error-free, the remaining 10 in-

dividuals had 5%, 10%, 20%, and 100% missing

data.





“Real” data

100 datasets generated by randomly pairing 42 human
male X chromosomes, typed in a number of short frag-
ments over a 193-Kb low-recombination region. There
were 97 sites at which at least one chromosome dif-
fered from a reference chromosome; on average, chro-
mosome pairs differed at 31 sites.

The chromosomes were drawn from:

23 Afrikaner men
9 Ashkenazim
3 British
3 Swedes
3 Greeks

and the reference individual was Italian (Prof. Francisco
Gianelli, from Guy’s Hospital London).







Conclusions

• ELB is based on simple heuristic ideas, contains

ad-hockeries and several “fudge factors”.

• best suited to large genomic regions where recom-

bination is non-negligible.

• superior in terms of local accuracy, near optimal for

global accuracy and very fast.

• substantial room for further development and op-

timisation.


